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A B S T R A C T

Ahmed et al. (2017) examined the dynamics of a Casson fluid squeezed between two parallel plates where the
fluid was also subjected to a constant magnetic field. Therein they claimed to derive a fourth-order boundary
value problem from the general governing equations whose solution could be used to form the fluid’s velocity
components. The purpose of the present note is to place the ideas in Ahmed et al. (2017) under scrutiny. In
doing so we raise some doubts regarding some of the forms therein.
1. Introduction

The study of fluid flow with moving boundaries continues to draw
the attention of research communities, with some recent contributions
to be found in Tisdell (2023a,b). Moreover, Ahmed et al. (2017) [Effects
on magnetic field in squeezing flow of a Casson fluid between parallel
plates, Journal of King Saud University - Science, 29(1), 119–125,
2017] examined the dynamics of a Casson fluid squeezed between two
parallel plates where the fluid was also subjected to a constant magnetic
field. Therein they claimed to derive a fourth-order boundary value
problem from the general governing equations whose solution could
be used to form the fluid’s velocity components. The purpose of the
present note is to place the ideas in Ahmed et al. (2017) under scrutiny.
In doing so we raise some doubts regarding some of the forms therein.

2. Problem formulation

Let us briefly reintroduce the model and the equations under con-
sideration, drawing on the literature of Wang (1976, 1978) and Ahmed
et al. (2017) where additional details can be found.

Consider the dynamics of an incompressible, squeezed Casson-type
fluid in the 𝑥𝑦-plane, with 𝑥 representing the horizontal axis and 𝑦
the vertical axis. Two plates parallel to the 𝑥-axis are positioned at
±ℎ(𝑡) = ±𝑙

√

1 − 𝛼 𝑡 above and below the center line 𝑦 = 0, where 𝑦 = ±𝑙
signifies their positions at time 𝑡 = 0, and 𝛼 is a constant of dimension
[1/time] that designates the unsteadiness of the plates (Wang, 1976,
p. 579). For 𝛼 > 0 the plates are moving towards each other for
0 ≤ 𝑡 ≤ 𝑡𝑇 , eventually meeting at the terminal instant 𝑡𝑇 = 1∕𝛼; whilst
for 𝛼 < 0, the plates move away from each other for all 𝑡 ≥ 0.

∗ Corresponding author.
E-mail addresses: joshua.lam2@student.unsw.edu.au (J.L. Lam), cct@unsw.edu.au (C.C. Tisdell).

The system is exposed to a uniform magnetic field oriented perpen-
dicularly to the plates. It is assumed that there is no external electric
field, and any influence of magnetic or electric fields generated by the
motion of the electrically conducting fluid is considered insignificant.

The gap between the plates is assumed to be much smaller than
their diameter 𝐷, so any end effects can be disregarded. The lateral
velocity of the fluid is proportional to the distance from the center when
considering continuity (Wang, 1976, p. 579).

Ahmed et al. (2017, p. 120) drew on the governing equations:
𝜕 𝑢
𝜕 𝑥 + 𝜕 𝑣

𝜕 𝑦 = 0, (1)

𝜕 𝑢
𝜕 𝑡 + 𝑢 𝜕 𝑢

𝜕 𝑥 + 𝑣 𝜕 𝑢
𝜕 𝑦 = −1

𝜌
𝜕 𝑃
𝜕 𝑥 + 𝜈

(

1 + 1
𝛾

)(

2 𝜕
2𝑢

𝜕 𝑥2 + 𝜕2𝑢
𝜕 𝑦2 + 𝜕2𝑣

𝜕 𝑦𝜕 𝑥
)

−
𝜎 𝛽2
𝜌

𝑢,

(2)
𝜕 𝑣
𝜕 𝑡 + 𝑢 𝜕 𝑣

𝜕 𝑥 + 𝑣 𝜕 𝑣
𝜕 𝑦 = −1

𝜌
𝜕 𝑃
𝜕 𝑦 + 𝜈

(

1 + 1
𝛾

)(

2 𝜕
2𝑣

𝜕 𝑥2 + 𝜕2𝑣
𝜕 𝑦2 + 𝜕2𝑢

𝜕 𝑦𝜕 𝑥
)

. (3)

In the above context, 𝑢 and 𝑣 correspond to the velocity components
of the fluid along the 𝑥- and 𝑦-axes, respectively. The pressure of the
fluid is denoted by 𝑃 , while 𝜈 represents its kinematic viscosity. The
parameter 𝛾 characterizes the Casson fluid behavior, and 𝛽 quantifies
the magnetic field strength, expressed as 𝛽 = 𝛽0∕ℎ(𝑡) (Noor et al., 2020,
p. 96), where 𝛽0 is the magnetic field’s initial magnitude in the system.

Ahmed et al. (2017, p. 121) established the boundary conditions of
the system, namely:

𝑢 = 0, 𝑣 = 𝑣𝑤 = 𝑑 ℎ
𝑑 𝑡 , at 𝑦 = ℎ(𝑡); (4)

𝜕 𝑢
𝜕 𝑦 = 0, 𝑣 = 0, at 𝑦 = 0; (5)
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and introduced the following expressions:

𝜂 =
𝑦

ℎ(𝑡)
, 𝑢 = 𝛼 𝑙2𝑥

2ℎ2(𝑡)
𝐹 ′(𝜂), 𝑣 = − 𝛼 𝑙2

2ℎ(𝑡)
𝐹 (𝜂), (6)

where 𝐹 is a sufficiently smooth, unknown function to be determined
and ℎ(𝑡) ∶= 𝑙

√

1 − 𝛼 𝑡.

3. Regarding the forms of Ahmed et al.

3.1. The derived boundary value problem

Ahmed et al. substituted the forms (6) into the governing equations
n (1)–(3) and used cross-differentiation to obtain
(

1 + 1
𝛾

)

𝐹 ′′′′(𝜂) − 𝑆
(

𝜂 𝐹 (𝜂) + 3𝐹 ′′(𝜂) + 𝐹 ′(𝜂)𝐹 ′′(𝜂) − 𝐹 (𝜂)𝐹 ′′′(𝜂)
)

−𝑀2𝐹 ′′(𝜂) = 0, (7)

and Ahmed et al. used (4) and (5) to form

𝐹 (0) = 0, 𝐹 ′′(0) = 0, 𝐹 (1) = 1, 𝐹 ′′(1) = 0, (8)

where they defined the squeeze number as 𝑆 ∶= 𝛼 𝑙2∕2𝑣 and 𝑀 was
termed as the magnetic number, see Ahmed et al. (2017, p. 121).

Upon reexamining Ahmed et al.’s derivation of the boundary value
problem (7)–(8), we believe it should be of the form
(

1 + 1
𝛾

)

𝐹 ′′′′(𝜂) − 𝑆
(

𝜂 𝐹 ′′′(𝜂) + 3𝐹 ′′(𝜂) + 𝐹 ′(𝜂)𝐹 ′′(𝜂) − 𝐹 (𝜂)𝐹 ′′′(𝜂)
)

−𝑀2𝐹 ′′(𝜂) = 0, (9)
(0) = 0, 𝐹 ′′(0) = 0, 𝐹 (1) = 1, 𝐹 ′(1) = 0, (10)

where the squeeze number is corrected to 𝑆 ∶= 𝛼 𝑙2∕2𝜈. Observe that
9)–(10) amends some errors, including: the term in the differential

equation has been corrected to 𝜂 𝐹 ′′′(𝜂); one of the right-hand boundary
conditions is now corrected to 𝐹 ′(1) = 0; and 𝑣 has been replaced
with 𝜈 in the definition of the squeeze number 𝑆. We will justify these
corrections in the following subsection.

3.2. A corrected boundary value problem

Let us justify our forms in (9)–(10) by following the same derivation
process of Ahmed et al..

Cross-differentiation, that is, differentiation of (3) with respect to 𝑥
inus the differentiation of (2) with respect to 𝑦 produces
𝜕2𝑣
𝜕 𝑥𝜕 𝑡 −

𝜕2𝑢
𝜕 𝑦𝜕 𝑡 +

𝜕
𝜕 𝑥

(

𝑢 𝜕 𝑣
𝜕 𝑥 + 𝑣 𝜕 𝑣

𝜕 𝑦
)

− 𝜕
𝜕 𝑦

(

𝑢 𝜕 𝑢
𝜕 𝑥 + 𝑣 𝜕 𝑢

𝜕 𝑦
)

𝜈
(

1 + 1
𝛾

) (
2 𝜕

3𝑣
𝜕 𝑥3 + 𝜕3𝑣

𝜕 𝑥𝜕 𝑦2 + 𝜕3𝑢
𝜕 𝑥𝜕 𝑦𝜕 𝑥 − 2 𝜕3𝑢

𝜕 𝑦𝜕 𝑥2 − 𝜕3𝑢
𝜕 𝑦3 − 𝜕3𝑣

𝜕 𝑦2𝜕 𝑥
)

+
𝜎 𝛽2
𝜌

𝜕 𝑢
𝜕 𝑦 .

Using the transformations (6) on the above, noting that
𝜕 𝑣
𝜕 𝑥 = 0 and 𝜕2𝑢

𝜕 𝑥2 = 0,

we thus obtain the equation
(

− 𝛼2𝑥
4𝑙(1 − 𝛼 𝑡)5∕2 𝜂 𝐹

′′′(𝜂) − 3𝛼2𝑥
4𝑙(1 − 𝛼 𝑡)5∕2 𝐹

′′(𝜂)
)

+ 𝛼2𝑥
4𝑙(1 − 𝛼 𝑡)5∕2 𝐹 (𝜂)𝐹 ′′(𝜂) − 𝛼2𝑥

4𝑙(1 − 𝛼 𝑡)5∕2 𝐹
′′(𝜂)𝐹 ′(𝜂)

= 𝜈
(

1 + 1
𝛾

) (
− 𝛼 𝑥
2𝑙3(1 − 𝛼 𝑡)5∕2 𝐹

′′′′(𝜂)
)

+
𝜎 𝛽2
𝜌

𝛼 𝑥
2𝑙(1 − 𝛼 𝑡)3∕2 𝐹

′′(𝜂).

If we thus multiply both sides of the previous expression by
2𝑙3(1 − 𝛼 𝑡)5∕2

𝛼 𝑥𝜈
and substitute in the squeeze number 𝑆 = 𝛼 𝑙2∕2𝜈 then we obtain the
equation
2 
(

1 + 1
𝛾

)

𝐹 ′′′′(𝜂) −
(

𝛽2𝑙2𝜎(1 − 𝛼 𝑡)
𝜌𝜈

)

𝐹 ′′(𝜂)

= 𝑆
(

𝜂 𝐹 ′′′(𝜂) + 3𝐹 ′′(𝜂) + 𝐹 ′(𝜂)𝐹 ′′(𝜂) − 𝐹 (𝜂)𝐹 ′′′(𝜂)
)

. (11)

Observe in (11) that

𝑀2 =
𝛽2𝑙2𝜎(1 − 𝛼 𝑡)

𝜌𝜈
=

𝛽2𝜎 ℎ2(𝑡)
𝜌𝜈

=
𝛽20 𝑙

2𝜎
𝜌𝜈

producing the non-dimensionalized constant 𝑀 = 𝛽0𝑙
√

𝜎∕(𝜌𝜈) known
as the Hartmann number.

The boundary conditions in (4), (5), when transformed by (6), yield

𝑢 = 0 at 𝑦 = ℎ(𝑡) ⇒
𝛼 𝑙2𝑥
2ℎ2(𝑡)

𝐹 ′
(

ℎ(𝑡)
ℎ(𝑡)

)

= 0, so 𝐹 ′(1) = 0;

= 𝑑 ℎ
𝑑 𝑡 at 𝑦 = ℎ(𝑡) ⇒ − 𝛼 𝑙2

2ℎ(𝑡)
𝐹
(

ℎ(𝑡)
ℎ(𝑡)

)

= 𝑑 ℎ
𝑑 𝑡 , so − 𝛼 𝑙2

2ℎ(𝑡)
𝐹 (1)

= − 𝛼 𝑙2
2ℎ(𝑡)

, and 𝐹 (1) = 1;
𝜕 𝑢
𝜕 𝑦 = 0 at 𝑦 = 0 ⇒

𝛼 𝑥
2𝑙(1 − 𝛼 𝑡)3∕2 𝐹

′′
(

0
ℎ(𝑡)

)

= 0, so 𝐹 ′′(0) = 0;

= 0 at 𝑦 = 0 ⇒ − 𝛼 𝑙2
2ℎ(𝑡)

𝐹 ′
(

0
ℎ(𝑡)

)

= 0, so 𝐹 (0) = 0.

As we can see, appropriate boundary conditions have now been de-
rived and one of the conditions at the right-hand end point has been
corrected.

4. Conclusion

In this commentary we examined some of the forms presented
y Ahmed et al. (2017) in their investigation of squeezing flow. We

discovered some inconsistencies with the resultant differential equation
and one of the boundary conditions therein. We reconsidered and
orrected the derivation of the boundary value problem.
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