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ABSTRACT

Toxicology aims to comprehend and envisage the adverse outcomes of chemicals and xenobiotics on the
biological system. Predicting toxicity on the biological system is a complex and immense process. In-vivo,
in-vitro, pre-, clinical and —omics level experimental approaches have been utilized to describe the tox-
icological impact of these chemicals and this has generated a vast wealth of data. Hence, there now exist a
need for a system that can interrelate and provide accurate and robust extrapolation of these data across
various systems. Therefore, it is essential to re-shift our notion from empirical, animal-based testing to a
mechanistic understanding. Systems biology is one such system that can extrapolate and interrelate
these vast biological system data. Systems biology is a computational and mathematical modelling
approach developed to understand interrelationships between networks of biological systems. The use
of systems biology to answer toxicology-related questions is termed as systems toxicology. In this review
we will look at the standard and classical toxicology experimentations and how we can use mechanistic

Toxicology data (systems biology) to answer toxicology-related questions using systems toxicology and what are the
future opportunities in systems toxicology. The advancement of systems toxicology heralds new dawn of
technologies that will aid in our quest to better comprehend and envisage the adverse outcomes of chem-
icals and xenobiotics on the biological system.
© 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Toxicity is demarcated as the adverse sequence of events that
are triggered by exposure towards biological, physical or chemical
agents (Klaassen and Amdur, 2013) and is manifested in various
forms; from mild malfunctions to serious organ impairment and
even death (Klaassen and Amdur, 2013). These reversible or irre-
versible events are influenced by the poison’s absorption, distribu-
tion, metabolism and excretion (ADME) properties, as well as the
interactions of the toxicant or its metabolites with cellular macro-
molecules (Hodgson, 2004).

Toxicology encompasses the study of these events at entire bio-
logical system, ranging from molecules to complex ecosystems and
requires extensive inter-disciplinary approaches. The question is
whether such complex interaction(s) can be studied and mapped.
The answer may lie in systems toxicology, where principles and
methods of other disciplines; biology, chemistry, molecular biol-
ogy, computer science and informatics are employed to better
understand the resilience of biological system towards toxicants
insults. The progressive advancement in genomics and systems-
orientated perspective on biology has herald the shifting from
empirical testing to a mechanistic understanding of toxicants per-
turbation. Understanding this systems-orientated perspective in
biology involves gathering large sets of high-content technologies
data and/or data from mining related literature, articles and data-
bases, followed by recommending possible mathematical models
that might be associated to this data set. Thereafter, numerical pre-
dictions are obtained from accurate computer simulation gener-
ated from these mathematical models and finally, the quality
assessment of the models and numerical prediction with actual
experimental data.

Hence, this review article aims to provide a guide and frame-
work to new and novice researchers that are interested in applying
systems biology in toxicological perspective. It provides an over-
view of the progression in the field of toxicology; from the in-
vivo and in-vitro studies to vast ranges of tools such as the —omics
as well as high data and information content screening, bioinfor-
matics and systems biology to determine the changes on cells, tis-
sues, and organisms upon chemical or xenobiotic exposure. Extra
emphasis will be given on the latter portion.

Search strategies utilising the following bibliographic data-
bases; Scopus, PubMed, Science Direct and EBSCOHost (Medline,
Cumulative Index to Nursing and Allied Health Literature; CINAHL
and Academic Search Complete) were developed using the selected

LLTS) ” o« ” o«

keywords such as “in vivo”, “in vitro”, “animal testing”, “network
biology”, “systems biology”, “mechanistic data”, “systems toxicol-
ogy”, “-omics”, “toxicogenomics*”, ‘“transcriptomics*”, “pro-
teomic*”, “metabolomic* and “synthetic biology”. Boolean
operators, wildcards, exact, truncation and other commands were
utilised whenever appropriate. The electronic databases searching
across all databases was conducted on October 2019 and no limit
was set for the evaluated time. Manual searches of reference lists
of relevant articles was also performed and partial grey literature

search was conducted using Google Scholar.

2. In-vivo and in-vitro toxicology

In-vivo toxicological studies are those in which various com-
pounds and their entities are tested on whole living organisms;

usually, non-human animals and plants whereas in-vitro toxicity
studies is the scientific analysis on the effect of these compounds
and their entities on a cultured mammalian or bacterial cells.

In the context of toxicology, the in-vivo and in-vitro models are
often referred to as and continues to be the gold standard in the
toxicity evaluation of chemicals (Pereira and Tettamanti, 2011).
Data generated and gathered from these study models are usually
extrapolated to the human biology system context to provide ‘safe’
exposure data for human usage and consumption but equally, it
proves not to be without flaws and limitations (Pereira and
Tettamanti, 2011; Fielden and Kolaja, 2008; Hartung and Daston,
2009). One of the biggest challenges in animal testing have been
false negatives which by itself can be interpreted as could be noth-
ing or even worse something even bigger (Hartung and Daston,
2009). Animal behavior, physiology and environment differ greatly
from human and this may lead to false or skewered results
(Hartung and Daston, 2009; Fielden and Kolaja, 2008). Though
the in-vitro model addresses this issue of the animal to human
extrapolation factor but fails to represent the physiology of a whole
biological system (Hartung and Daston, 2009). Most cell system is
representative of only one cell type, often monoclonal with no cell-
cell interactions and this fails to mimic the normal human biolog-
ical processes. The lack of the capability to undergo biotransforma-
tion is one of the best-known limitations of the in-vitro and the
cancer origin of most cell culture adds to this problem (Hartung
and Daston, 2009).

The rapid growth of understanding of mechanistic toxicology
and its basis are not sufficiently simulated in the current animal
testing and there is now a need to integrate mechanistic investiga-
tions in toxicity evaluation and this may be provided by the in-vitro
model. The integration and combination of both of these models
would probably have a better representation of the accuracy of
toxicity estimations. One possible avenue that addresses this inter-
action is the —omics (Guttmacher and Collins, 2003). The rise of the
genomic paved new avenues of exploration in better understand-
ing the relatedness between the in-vivo and in-vitro models. It
was the missing link that connects these two models through the
use of various experimental approaches.

3. -Omics in toxicology

The integration of in-vivo and in-vitro studies with —omics stud-
ies would provide comprehensive and in-depth toxicological anal-
ysis. With Watson and Crick’s discovery of DNA structure in 1953
(Watson and Crick, 1953), appreciating the need to understand
the genetic code’s translation to the function of certain gene and
protein that may impact on the functioning and physiology of cells,
organ and organism as a whole paved a new frontier for toxicity
estimations (Hamadeh et al., 2002). Though this concept sounds
basic and simple, however, the capability to fully comprehend
the ability to translate the code to function is an enigma still chal-
lenging most of today’s scientists (Hamadeh et al., 2002; Afshari,
Hamadeh, and Bushel, 2011). It requires many technology
advances, collaborative sciences and integration of data informa-
tion. Having said that, considerable progress has been made in
regards to the integration of —omics with toxicology that creates
a platform in assessing the cellular, tissue, organ and organisms’
wellbeing through the translation and interpretation of molecular
distresses. The progression of these molecular techniques is then
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used in a whole-genomic capacity to the studies of the toxic effect
of compounds is known as toxicogenomics ((Nuwaysir et al.,
1999); Fig. 1). Toxicogenomics is the understanding of the molec-
ular and cellular effects of toxicants in a whole biological system.
It encompasses multidisciplinary sciences including informatics,
biotechnology and engineering with traditional toxicological
research (Hamadeh et al., 2002; Afshari, Hamadeh, and Bushel,
2011; Nuwaysir et al., 1999; Pennie et al., 2000).

Typical toxicogenomics experiments usually observe the
changes of transcripts across a genome ensuing cells and/or tissues
to a chemical/compound insult (Fig. 2). Toxicogenomics data anal-
ysis can track several different paths which include discovery and
comparison of classes and mechanistic analysis (Afshari, Hamadeh,
and Bushel, 2011).

This standard method of evaluating RNA, proteins and metabo-
lites is known as ‘~omic’ technologies (Fig. 1). These technologies
are so-called based on their ability to characterize most if not all
members of a family of molecules in a single analysis. With these
new tools and technologies, complete assessments of functional
activity of biochemical pathways, genetic sequences differences
among individuals and species can be obtained. These methods
of high-throughput and multi-endpoint analysis comprise of gene
expression arrays which enable the expression of all human genes
to be simultaneously measured on a single “chip” (Hamadeh et al.,
2002; Afshari, Hamadeh, and Bushel, 2011; Nuwaysir et al., 1999;
Pennie et al., 2000; Aardema and MacGregor, 2002; Waters and
Fostel, 2004; Pognan, 2004; Hayes and Bradfield, 2005;
Smetanova et al., 2015). Similarly, robust and powerful methods
for protein analysis (proteomics: the large-scale study of proteins
structure and functions; (Pognan, 2004; Anderson and Anderson,
1998; Blackstock and Weir, 1999; James, 1997; Wilkins et al.,
1996) and for analysis of cellular small molecules (metabonomics:
the study of the cellular metabolites and its intermediates formed
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and degraded under pathophysiological stimuli or genetic modifi-
cation; (Nicholson, Lindon, and Holmes, 1999; Nicholson et al.,
2002; Holmes, Wilson, and Nicholson, 2008); Fig. 1).

These technologies allows gathering of genomic-sequence data
rapidly and its gene and protein footnote, thus allows for rapid
analysis of gene-expression to better understand a toxicant
mode-of-action on the biological system (Waters and Fostel, 2004).

Examples of such technologies are ¢cDNA and oligonucleotide
microarrays (Vermeeren and Michiels, 2011), protein chips (Yang
et al.,, 2011) and molecular profiling by nuclear magnetic resonance
(NMR; (Nelson, 2003) that permits simultaneous expression mea-
surements of numerous genes, proteins, metabolites and its inter-
mediates that accelerates toxicant pathways discovery, mode of
actions and chemical and drug targets.

Therefore, there is a possibility of the data generated could be
stored in a global depository through informatics (toxicoinformat-
ics) and collectively analyzed to be able to offer a complete view of
the genetic and biochemical machinery of the cell function and
eventually the biological system. The integration of transcrip-
tomics, proteomics and metabonomics data could add value to
the expansion of toxicogenomics knowledgebase (Fig. 1) and even-
tually evolve to become systems biology (Waters and Fostel, 2004;
Hartung et al., 2017; Kitano, 2002). This is due to the fact that cur-
rent gene, protein and metabolite expression profile are just simple
‘snapshots’ at a particular time whereas in contrast, systems toxi-
cology (as with systems biology) attempts to delineate the interac-
tion of all of the elements that occurs in a specific biological system
upon toxicant exposure, thus enabling to understand the toxico-
logical responses on a mechanistic level (Kitano, 2002; Hartung
et al.,, 2017).

The main challenge in toxicogenomics is the coordination and
standardization across fields and disciplines that would ensure a
better universal representation of data (Waters and Fostel, 2004).

TOXICOGENOMICS
.z KNOWLEDGEBASE -

“ -, ~
Ve -~ | ~ N
> \
\
\
v v
&T \ E-
GENOMICS  TRANSCRIPTOMICS PROTEOMIKCS  METABOLOMICS SYSTEM
o ; : ' - TOXICOLOGY
DNA RNA PROTEIN METABOLITES INFORMATCS

Fig. 1. Schematic diagram showing flow of toxicogenomics knowledgebase. Toxicogenomics is the amalgamation of genomics (genome), transcriptomics (transcriptome),
proteomics (proteins) and metabonomics (metabolites) knowledge in order to attain a comprehensive understanding of the effect of a particular chemical/toxicant on the
biological system. Systems toxicology is created when networks of conventional toxicology along with quantitative analysis of large networks representing molecular and
functional changes that are taking place across various levels of biological organisations are integrated. The knowledgebase serves as a library and computational system that
carry out tasks to create new information and understanding by employing and integrating data, information and latest knowledge.

3



Farizatul Akmawati Yahya, Nur Fariesha Md Hashim, Daud Ahmad Israf Ali et al.

Journal of King Saud University — Science 33 (2021) 101254
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Fig. 2. A flow scheme example of toxicogenomics. In-vivo and in-vitro models are exposed to varying chemical/xenobiotics doses and cells, tissues or organs are collected at
different time points and thereafter subjected to various methods of experimental analysis. Experimental analysis is carried out to (1) determine numbers of genes altered in
every sample in each organ in response to candidate chemical/xenobiotic and (2) mapping these observed changes into annotated pathways. Steps (1) and (2) offers
preliminary assessment of potential pathways and mechanisms in response to candidate chemical/xenobiotic. Thereafter, (3) the potential pathways and mechanisms can
then be compared and plotted against libraries of data to identify similarity of chemical/xenobiotic action/response to other previously determined chemical/xenobiotic. In
addition, this allows the flexibility to analyse dose/time profiles either individually or as a trend. Adapted from Afshari et al., 2011.

One possible solution is the progression and advancement of the
systems biology that exploits computational and mathematical
modelling of complex biological systems that would standardize
the data from the -omics era.

4. Systems toxicology

Systems biology unifies studies of biological system at the
molecular level (Waters and Fostel, 2004). It involves and encom-
passes perturbing system, monitoring molecular expression, inte-
grating response data and modelling and displaying the
molecular structure and network function of the system. When
this concept is applied into toxicology context, it is then known
as systems toxicology (Hartung et al, 2017; Kitano, 2002;
Kongsbak et al., 2014; Slikker et al., 2007; Mc Auley et al., 2015;
Plant, 2015). Systems toxicology describe the -omics as well as
‘classical’ endpoints evaluation of a biological system, including
perturbation by toxicants and stressors, monitoring molecular
expression and toxicological parameters and repetitively integrat-
ing response data to model and represent the archetypically toxi-
cological system.

The wealth of in-vivo, in-vitro and -omics data is still not fully
utilized as it does not lead to an accurate predictive power on
the biological system and the robustness of these systems may
be questionable. The understanding of the effects are usually done
in a single system and broader perspective are merely determined
by extrapolation. An accurate prediction and comprehensive inte-
gration capabilities are therefore required and systems toxicology
aims to address this gap by incorporating computational
approaches used in system biology in addressing toxicology-
related problems. The computational approaches ranges from rela-

tional databases (repository of curated information and screening
tools) and even potential digital organism (Plant, 2015) (Fig. 3).

To novice researchers, systems toxicology may sounds complex
and confusing due to countless available approaches. Using article
by Plant, 2015 as a guide, this issue will be addressed here along
with the available databases to assist researchers. The ultimate
determinant of a successful application of systems toxicology is
knowing and deciding the researcher requirements from this
approach. These following questions will aid in selecting the best
possible approach (Plant, 2015) (Fig. 4).

I. Is there a need to understand the mechanism?
II. Is the biology to be examined well understood?
III. Is the biology to be examined well characterised?
IV. Does it occur in a single cell, a single organ or the whole
organism?

The relational approach may be ideal if the answer to question I
is a no. Relational approach (Table 1) analyses the association
between predicted network components without requiring the
comprehension of mechanistic footings. This may include pro-
tein-protein and/or chemical-protein interactions predictions by
evaluating the toxicity of a chemical depending upon its structural
fragments (Plant, 2015).

The relational approach would still be ideal if the answer to
question Il is also a no. If the answer is yes, then the best approach
is a modelling approach, but this depends on question III and IV
answers (Plant, 2015). To determine whether a quantitative or
qualitative model approach will be employed, the answer to ques-
tion IIT will be the determining factor. Quantitative approach (net-
work connectivity and with kinetic/abundance values are known)
allows the highest level of biology simulation accuracy in terms
of predicting dose- and time- courses (Plant, 2015). Qualitative
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Genotype- ﬁ
% Relational Phenotype ::f
Databases Modelling
PREDICTIVE
SYSTEMS
TOXICOLOGY
CYCLE
i Refinement
= PBPK and O
Modelling Validation

Fig. 3. Safety assessment within the systems toxicology cycle. Systems toxicology approaches (PBPK modelling, relational databases, genotype-phenotype modelling) are
further strengthened with advance experimental data (AOPs, exposomic, toxicoproteomics, toxicometabolomics data). Continuous cycle (note the arrows that are continuous
and inter-related) of refinement and validation as well as revisiting assessment, review and addressing experimental gaps will further heighten the model’s predictive power

that will provide great confidence for safety assessment. Adapted from Plant, 2015.

[ QI: Is there a need to understand the mechanism? ]

E.g. Relational approach
[ Q2: Is the biology to be examined well understood? ]

E.g. Modellingapproach

E.g. Relational approach

[ Q3: Is the biology to be examined well characterised? ]
1

v

[ Known kinetic/abundance values ]

Quantitative mlodel approach

]
[ Unknown kinetic/abundance values ]

Qualitative moldel approach

)

[ Q4: Does it occur in a single cell, a single organ or the whole organism? ]

The complex the biological model, the more dataand computational power is needed. Employ the concept of
reductionism so that it is more feasible to model. Select the best tradeoff between model size and complexity.

Fig. 4. Decision tree to define most appropriate approach(es) in systems toxicology. Firstly it is important to decide the aim of employing systems toxicology approach
and the available data. There are many possible decision trees but are generally addressed by these 4 questions. A relational approach is most suitable is the answer to both
Question 1 (Q1) and Question 2 (Q2) is a no. Relational approach allows for prediction of associations between network components without the need of mechanistic
understanding. Modelling approach is applicable if the answer to Q2 is a yes, with Question 3 (Q3) and Question 4 (Q4) deciding which type of model can be used.
Quantitative models are able to simulate biology in high precision while qualitative models are able to estimate the behaviour of the system but with low precision and
accuracy. The determinant of which models to be used depends on data availability. The decision on Q4 depends on the tradeoff between model size and complexity as
increase in model complexity requires tremendous biological data to make the model that produces a more accurate biology and vice versa.

approach (known network connectivity but unknown Kkinetic/
abundance values) forecast the system’s behavior with no fixed
numbers. The decision to select quantitative or qualitative model
approach heavily depends on the data availability (Table 2;
(Plant, 2015).

Finally, the answer to question IV is vital in determining the
complexity within the model by providing a degree of reduction-
ism. As the model complexity increases (i.e. increase in biology
representation/reproducibility), it becomes progressively strenu-
ous to both the biological data that is necessary to make the model
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Table 1
Relational databases.
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Table 2
Databases for kinetic and abundance data.

DATABASES WEBSITE DATABASES  WEBSITE

Chemical Network topology

ArrayExpress https://www.ebi.ac.uk/arrayexpress/ BioCyc https://biocyc.org/

ChEBI https://www.ebi.ac.uk/chebi/ KEGG https://www.genome.jp/kegg/

ChEMBL https://www.ebi.ac.uk/chembl/ MetaCyc https://metacyc.org/

Comparative http://ctdbase.org/ Enzyme nomenclature and annotation
Toxicogenomics ExplorEnz https://www.enzyme-database.org/
Database HAMAP https://hamap.expasy.org/

DOCK Blaster https://blaster.docking.org/ IntEnz https://www.ebi.ac.uk/intenz/

GEO https://www.ncbi.nlm.nih.gov/geo/ TCDB http://www.tcdb.org/

HExpoChem https://services.healthtech.dtu.dk/ Protein abundance

LINCS https://lincs.hms.harvard.edu/db/ PAXDB https://pax-db.org/

METLIN https://metlin.scripps.edu/ Enzyme Kkinetics

OCHEM https://ochem.eu/home/show.do BRENDA https://www.brenda-enzymes.org/

PubChem https://pubchem.ncbi.nlm.nih.gov/ SABIO-RK https://www.h-its.org/projects/sabio-rk-biochemical-

SDBS https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index. reaction-kinetics-database/

cgi Cellular signalling pathway

STITCH http://stitch.embl.de/ NCATS https://tripod.nih.gov/bioplanet/

ToxCast http://epa.gov/ncct/toxcast/ BioPlanet

ZINC15 https://zinc15.docking.org/

Toxicological and ADME

ACToR https://actor.epa.gov/

ADMET Lab http://admet.scbdd.com/ Table 3

LIVERTOX livertox.nih.gov/ Resources for large-scale network reconstruction.

T?xbar}k http://www.toxbank.net/ RESOURCES WEBSITE

Biological

EFO https://www.ebi.ac.uk/efo/ Network

GENT https://omictools.com/gent-tool BiGG http://bigg.ucsd.edu/

Human Genome Project  http://www.gdb.org/ Cytoscape https://cytoscape.org/

Human Protein Atlas https://www.proteinatlas.org/ ERGO https://www.igenbio.com/ergo

MedLine

https://www.nlm.nih.gov/bsd/medline.html

Drug discovery and Clinical trials

AFND http://www.allelefrequencies.net/

CancerPPD http://crdd.osdd.net/raghava/cancerppd/
Drugs@FDA https://www.accessdata.fda.gov/scripts/cder/daf/
MOSAIC http://genome.jouy.inra.fr/mosaic/

PharmGKB https://www.pharmgkb.org/

Rule-based toxicity prediction

DEREK Nexus
Toxtree

https://omictools.com/derek-nexus-tool
http://toxtree.sourceforge.net/

Rule-based metabolism prediction

Meteor Nexus

https://omictools.com/meteor-nexus-tool

(Q)SAR-based toxicity prediction

CEASAR http://www.caesar-project.eu/

TEST https://www.epa.gov/chemical-research/toxicity-
estimation-software-tool-test

TOPKAT https://omictools.com/topkat-tool

Chemical-protein interaction prediction

CARLSBAD http://carlsbad.health.unm.edu/wp/

ChemProt http://www.cbs.dtu.dk/services/ChemProt/
ChemProt-2.0/

SLAP http://cheminfov.informatics.indiana.edu:8080/

slap/

Protein-protein interaction and pathway prediction

APID http://apid.dep.usal.es/
BioGRID https://thebiogrid.org/

CAZY http://www.cazy.org/

CORUM https://mips.helmholtz-muenchen.de/corum/
GWIDD http://gwidd.compbio.ku.edu/
HINT http://hint.yulab.org/

IMID www.integrativebiology.org/
IntAct https://www.ebi.ac.uk/intact/
KBDOCK https://kbdock.loria.fr/

MINT https://mint.bio.uniromaz2.it/
ProtChemSI http://pcidb.russelllab.org/
SCOPPI http://www.scoppi.org/
STRING https://string-db.org/
Gene-disease data

GeneCards https://www.genecards.org/
OMIM https://omim.org/

Gene Pathway prediction

Reactome

https://reactome.org/

and the computational power necessary to run the model (Plant,
2015). Therefore, a compromise is required between the complex-
ity of the biological system and sub-systems and model size,

KEGG mapper https://www.genome.jp/kegg/mapper.html

MetaCyc https://metacyc.org/

MetaNetX https://www.metanetx.org/

Model SEED https://modelseed.org/

Pathway tools software

PDID http://biomine.cs.vcu.edu/servers/PDID/index.php
STITCH http://stitch.embl.de/

Transpath http://genexplain.com/transpath/

yAPOPTOSIS http://www.ycelldeath.com/yapoptosis/

whereby higher complexity will reduce the model size and vice
versa (Table 3).

The network-based focus of systems toxicology and the avail-
ability of large information data sets and modelling approaches
have improved understanding of toxicological events and effects
at multiple biological levels. Systems toxicology approaches have
been utilized in risk assessment (Aguayo-Orozco, Taboureau, and
Brunak, 2019; Hayes et al., 2019; Lanzoni et al.,, 2019; Sturla
et al., 2014), safer design of chemicals and identification of safer
alternatives (Voutchkova et al., 2010), drug design, discovery and
development (Bloomingdale et al, 2017; Blomme and Will,
2016), toxicity prediction (Kiani et al., 2016) mostly in kidney
(Ramm et al.,, 2019; Te et al., 2016), liver (Te et al., 2016; Longo
et al., 2019; Battista et al., 2018) and heart (Li et al., 2018). Select-
ing optimal drug cocktails combination relies on the usage of such
computational approaches as it necessitates a distinctive under-
standing of network biology behavior (Folger et al, 2011;
Hopkins, 2008). In environmental toxicology, the establishment
of adverse outcome pathway (AOP) concept and modelling
approaches are used for the identification of hazards and defining
risk assessments for the high number of environmental chemicals
(Villeneuve et al., 2014a, 2014b). Moreover, systems toxicology is
being employed to have a representative and collective under-
standing of diseases and treatments. For instance, systems toxicol-
ogy highlighted a threshold dose suggestive of a long-term
biphasic effect of formaldehyde exposure that leads to carcino-
genicity (Martin et al., 2019). By using systems toxicology, an iden-
tification information framework of paracetamol/acetaminophen
overdose was applicable for healthy and high-risk individuals as
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well as being able to define the quantitative estimation of liver
injury probability was made possible (Mason et al,, 2019). The
same approach was also used to better comprehend the mecha-
nisms of drug-induced liver injury (DILI) and provide evidences
for reducing its risk (Peng et al., 2019). Implementation of quanti-
tative systems toxicology (QST) modelling, mechanisms account-
able several macrolide antibiotics with varying degree of toxicity;
despite being within a class of drugs and having structural similar-
ity were successfully elucidated (Woodhead et al., 2019). A sys-
tems toxicology including physiology, histology and molecular
measurements approach was used to ascertain the effect of
modified-risk tobacco products aerosols in comparison to conven-
tional cigarette showed a reduction to almost sham exposure levels
(Phillips et al., 2019; Smith et al., 2016).

Though systems toxicology provides to an extent a representa-
tive and collective data of toxicants acting on an organism has a
whole, there are still several challenges and limitations to be
addressed. By resolving these limitations, it will help in influencing
how effectively these disciplines are constantly relevant in toxicol-
ogy research. One main limitation is the calibration of the compu-
tational models since this aspect is important especially in
toxicology as risk evaluation is of utter importance and extremely
sensitive models weaken their potential effectiveness (Mc Auley
et al,, 2015; Plant, 2015). An optimization is required to make this
model much more robust and recently research had ongoing to
address this key limitation. Another limitation is the consideration
of spatial scale that deals from the smallest cellular structure to the
large whole organism. Many projects have embarked to resolve the
problem but it remains in its infancy (Mc Auley et al., 2015; Plant,
2015).

To resolve this issue, a review provided a comprehensive listing
of over 900 key in silico data resources relevant to ADME proper-
ties, animal, biological databases, chemical identity and properties,
clinical trials, -omics, patents-related databases, pathways, phar-
macovigilance, protein-protein interactions (PPIs), toxicology (in-
cluding nano-material toxicity) amongst others. The paper
highlights and suggested the need for a common platform for map-
ping and integration of databases to provide better accessibility
and translatability (Pawar et al., 2019).

5. Future opportunities for systems toxicology

The advancement in systems toxicology is increasing exponen-
tially and paved vast area of expansion of advancement that
includes toxicoproteomics (Nasi, Picariello, and Ferranti, 2009;
George et al., 2010), toxicometabolomics (Bouhifd et al., 2013;
Lindon et al., 2005), AOPs modelling (Vinken, 2013; Ankley et al.,
2010) and the exposomes (Wild, 2012; Rappaport, 2011; Miller
and Jones, 2014) amongst others. One such current advancement
is the emergence of synthetic biology (Mc Auley et al., 2015;
Haynes, 2016; Oso6rio, 2015). The purpose of synthetic biology is
to design and engineer novel biological entities from genes
(Aitken and Akman, 2013) and the generation of virtual organs that
can be used to improve health (Polizzi, 2013). The toxicological
aspects of synthetic biology are known as synthetic toxicology
(Schmidt and Pei, 2011). Synthetically engineered biological gene
circuits are designed to assess the effect of input has towards the
output. These gene circuits will allow the impact of a stressor on
transcription to be evaluated. An example of such circuit is the syn-
thetic Deg-On system (a system consisting of two plasmids) that
converts proteasomal degradation of TetR (transcriptional regula-
tor) into a fluorescent signal, thereby linking ubiquitin-protea-
some system (UPS) activity to an easily detectable signal (Zhao
et al., 2014). This bioproduct will be able to screen for UPS activat-
ing molecules and will aid in selecting mammalian cells with dif-
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ferent levels of proteasome activity. One such application is in
toxicant studies as UPS activation can be employed as a mean of
detecting toxicant exposure such as that of arsenic trioxide that
deactivates the UPS system (Chiu et al., 2015). Synthetic biology
in general and synthetic toxicology specifically offers the capacity
to study cellular regulation and the pathways by re-designing bio
parts, devices, and systems. In terms of challenges, it will generate
hitherto unknown and unnatural molecules that need to be tested
for their toxicity to natural and future synthetic biological systems
(Behrendorff and Gillam, 2017; Polizzi, 2013; Aitken and Akman,
2013; Mc Auley et al., 2015).

Though the advancement in systems toxicology is heading in
the right direction, it is equally important to address and acknowl-
edge the existing challenges facing systems toxicology. Among the
pertinent issues that need to be addressed are need of validation
and scientific credibility, understanding the limitations of new
and alternative methods, practicality and cost of methods, stan-
dardize and systematic test systems and improved computational
models and modelling approaches, the need of robust, repeatable
data-driven multicellular systems biology, linking network pertur-
bations to phenotypes, uncertainties is systems toxicology compu-
tational models that allows for reliable predictive power, safe and
secure sharing of high quality, multiscale datasets through curated
public data libraries. Understanding and addressing these chal-
lenges in itself requires development of new algorithm and data
integration methods. The success of this will ensure systems toxi-
cology move toward regulatory acceptance, provided that system-
atic and coherent international standards are in place.

6. Conclusion

A key player in toxicological research is the need to predict the
adverse outcomes of chemicals. The ability to fully delineate the
biological phenotype describing an adverse outcome is a pre-
requisite in understanding which chemical is responsible for elicit-
ing a toxic response including the mechanism by which this is
achieved. Perceptibly, the more accurate and robust downstream
prediction is likely to be provided when more detailed descriptions
are included in the analysis. However, the setback is with coming
up with a rational explanation to relate data and to identify useful
information from to the vast amount of available data. There now
exist a paradigm shift in toxicological research that deviates from
the —omics era towards that of the systems’ era (i.e. from generat-
ing data to understanding datasets). It is important to note that
these deviations are not completely void from drug discovery/de-
velopment and safety assessment paradigms but rather building
upon massive experimental knowledgebase and integrating it into
a more user-friendly and easily accessible format that will give rise
to digital cells, organs and ultimately organisms. This will increase
our ability to better understand the progression of diseases and to
develop safer and more efficacious network-based drugs. Such a
system would be a huge asset and advantage and would directly
influence the way toxicity studies are conducted in the near future.
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