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Abstract Silver has been used for the treatment of medical ailments for over 100 years due to its

natural antibacterial and antifungal properties. In this study, silver nanoparticles were synthesized,

evaluated for its wound healing activity and its effect in some functions of the liver and kidney. We

investigated the wound-healing properties of silver nanoparticles in an animal model and found that

rapid healing and improved cosmetic appearance occur within 15 days. Furthermore, we showed

that silver nanoparticles exert positive effects through their antimicrobial properties, reduction in

wound inflammation, and modulation in some of liver and kidney functions during skin wound

healing. These results have given insight into the actions of silver and have provided a novel ther-

apeutic direction for wound treatment in clinical practice.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Silver nanoparticles had been utilized in various aspects like
spectrally selective coating for solar energy absorption, optical

receptors, polarizing filters, catalysts in chemical reaction,
biolabelling and antimicrobial agents (Liechty et al., 2000).
Application of silver nanoparticles in these fields is dependent
on the ability to synthesize particles with different chemical
ity. All rights reserved. Peer-

d University.
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composition, shape, size and mono-dispersity. Development
of simple and ecofriendly method would help in developing

further interest in the synthesis and application of metallic
nanoparticles. The use of silver in the past has been restrained
by the need to produce silver as a compound, thereby increas-

ing the potential side effects. Nanotechnology has provided a
way of reducing pure silver nanoparticles. This system also
markedly increases the rate of silver on release.

The ultimate goal for wound healing is a speedy recovery
with minimal scarring and maximal function. Wound healing
proceeds through an overlapping pattern of events including

coagulation, inflammation, proliferation, matrix and tissue
remodeling.

Fan and Bard (1999) published studies of silver nanoparti-
cles on wound healing are sparse, and the mechanism of action

remains unknown. Herein we report that silver nanoparticles
can promote wound healing and reduce scar appearance in a
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dose-dependent manner. Furthermore, our studies show that

silver nanoparticles act by decreasing inflammation and no
side effect on the liver and kidney functions through rat model.
The potential benefits of silver nanoparticles in all wounds can
therefore be enormous.
Figure 1 UV–vis absorption spectra.

Figure 2 TEM image.
2. Materials and methods

2.1. Animal experiment

Nine-week old Male Wistar rats (53.2–106.9 g) from the Laboratory

Animal Unit of King Saud University, Research centre – Saudi Arabia

– Riyadh. All animals were reared on a standard laboratory. They were

kept in a room where the temperature (20 ± 10 �C), humidity (25–

35%), and day:night cycle (12:12 light:dark) were controlled.

Injury template was fashioned from a plastic 60-mL syringe by cut-

ting a window (10 · 5 mm) into the back with the opposite half re-

moved. The dorsum of each rat was carefully shaved beside the tail

and laid on the injury template following anaesthesia. This model

would achieve approximately 10% deep partial thickness injury of to-

tal body surface area. The rate was injected with sterile saline intraper-

itoneally (1 mL) for fluid resuscitation.

2.2. Synthesis of silver nanoparticles

The formation of silver nanoparticles can be observedby a change in col-

or since small nanoparticles of silver are yellow. Add 30 mL of sodium

borohydride (NaBH4) to an Erlenmeyer flask. Add a magnetic stir bar

and place the flask in an ice bath on a stir plate. Stir and cool the liquid

for about 20 min. Drip 2 mL of silver nitrate (AgNO3) into the stirring

NaBH4 solution at approximately drop per second. Stop stirring as soon

as all of the AgNO3 is added. The addition of a few drops of 1.5 M so-

dium chloride (NaCl) solution causes the suspension to turn darker yel-

low, then gray as the nanoparticles aggregate. Transfer a small portion

of the solution to a test tube. Add a drop of 0.3% polyvinyl pyrrolidone

(PVP). PVP prevents aggregation. Addition of NaCl solution then has

no effect on the color of the suspension. Add enough solid polyvinyl

alcohol (PVA) to give a 4% solution (Solomon et al., 2007).

2.3. UV–visible spectral analysis

Inmetal nanoparticles such as in silver, the conduction band and valence

band lie very close to each other in which electrons move freely. These

free electrons give rise to a surface plasmon resonance (SPR) absorption

band (Taleb et al., 1998; Noginov et al., 2006; Link and El-Sayed, 2003;

Kreibig andVollmer, 1995), occurring due to the collective oscillation of

electrons of silver nano particles in resonance with the light wave (Nath

et al., 2007). Classically, the electric field of an incoming wave induces a

polarization of the electrons with respect to much heavier ionic core of

silver nanoparticles. As a result a net charge difference occurs which in

turn acts as a restoring force. This creates a dipolar oscillation of all

the electrons with the same phase. When the frequency of the electro-

magnetic field becomes resonant with the coherent electron motion, a

strong absorption takes place, which is the origin of the observed color.

Here the color of the prepared silver nanoparticles is dark reddish

brown. This absorption strongly depends on the particle size, dielectric

medium and chemical surroundings (Noginov et al., 2006; Link and El-

Sayed, 2003). Small spherical nano particles (<20 nm) exhibit a single

surface plasmonband (He et al., 2002). The absorption peak (SPR) is ob-

tained in the visible range at 410 nm in Fig. 1.With the abovementioned

concentration. The stability of silver nanoparticles is observed for

4 months and it shows a SPR peak at the same wavelength.

2.4. Transmission electron microscopy (TEM) analysis

A TEM image of the prepared silver nano particles is shown in the

Fig. 1. The Ag nano particles are spherical in shape with a smooth sur-
face morphology. The diameter of the nano particles is found to be

approximately 9 nm. TEM image Fig. 2 also shows that the produced

nano particles are more or less uniform in size and shape.

2.5. Statistical analysis

The results were expressed as mean (mean ± SD). Data were analyzed

statistically using one-way analysis of variance followed by t test. A va-

lue of (P< 0.05) was considered statistically significant.

3. Results

Silver nanoparticles promote healing and achieve better cos-
mesis. In our control model (Noginov et al., 2006) rats, the

deep partial-thickness wounds normally healed after
(27 ± 1.99) days. In animals treated with silver nanoparticles
(NP). A single dose of (5 g/kg) of body weight was orally ga-

vaged into (Moore and O’Garra, 1993) rats and observed for
any sign of toxicity for the next 14 days, these healed in
(16 ± 68) days, whereas (Fig. 3A). The rate of healing in the
two groups was also compared. As with healing time, rate of



Figure 3 Silver nanoparticles accelerate wound healing and achieve superior cosmetic outcome: (A) time taken for wounds to heal in

animals treated with silver nanoparticles (Np), and no treatment (NT). (B) The rate of wound healing in wound animals treated with (Np)

or no treatment (NT). (C) Photographs of wounds from animals treated with Np, or no treatment on days 0, 10, and 15 after burn injury.
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healing was increased in animals treated with NP (Fig. 3B).
These observations indicate that wound healing is accelerated

by silver nanoparticles.
We next compared the appearance of healed wounds. We

found that wounds in the Np group showed the most resem-

blance to normal skin, with less hypertrophic scarring and
nearly normal hair growth on the wound surface, with a thin
epidermis and nearly normal hair follicles (Fig. 3C).

The inflammatory response is an important component of
wound healing. Within wounds, various inflammatory media-
tors are secreted to modulate the healing process.

In normal wound healing, the potential for pro- and anti-

inflammatory cytokines is certainly present, and the inflamma-
tory response is entirely appropriate.

To accomplish successful wound repair and tissue regener-

ation, the inflammatory response must be tightly regulated
in vivo. Among the contributors to delayed wound healing,
prolonged inflammatory response is undoubtedly one of the

important factors.
A vital mediator in this anti-inflammatory cascade appears

to be IL-10, which can be produced by keratinocytes as well as
inflammatory cells involved in the healing process, including T

lymphocytes, macrophages, and B lymphocytes (Moore and
O’Garra, 1993). One of the unique actions of IL-10 is its ability
to inhibit the synthesis of pro-inflammatory cytokines which

also include IL-6 (Fiorentino et al., 1991; de Waal Malefyt
et al., 1991). IL-10 also inhibits leukocyte migration toward
the site of inflammation, in part, by inhibiting the synthesis

of several chemokines, including monocyte chemo attractant
protein-1 (MCP-1) and macrophage inflammatory protein-1a
(MIP-1a).

Both of the C–C chemokines promote monocyte accumula-
tion, and MIP-1a is also a potent neutrophil chemoattractant
in rats (Ajuebor et al., 1999). Moreover, studies have shown

that MCP-1 and MIP-1a play prominent roles in macrophage
recruitment into wounds during wound repair (Alam et al.,
1994). Within wounds, IL-6 is also secreted by polymer phonu-

clear cells (PMNs) and fibroblasts. IL-6 has been recognized as
an initiator of events in the physiological alterations of inflam-
mation after injury (DiPietro, 1995; Engelhardt et al., 1998). In
fact, an increase in IL-6 concentration parallels the increase in

PMN count locally within acute wounds. IL-6 promotes
inflammation through monocyte and macrophage chemotaxis
and activation (Paquet and Piérard, 1996). Decreased IL-6

may result in fewer neutrophils and macrophages recruited
to the wound and less cytokines being released in the wound
with subsequently lower paracrine stimulation of cellular pro-

liferation, fibroblast and keratinocyte migration, and extracel-
lular matrix production (Biswas et al., 1998). This lack of
amplification of the inflammatory cytokine cascade may be
important in providing a permissive environment for scar less

wound repair to proceed. Silver induced neutrophil apoptosis
and decreased MMP activity may also contribute to the overall
decrease in the inflammatory response and as a consequence,

an increased rate of wound healing.
In the study reported herein, better cosmetic appearance

was observed in animals treated with silver nanoparticles. In

terms of wound healing, enhanced expression of TGF-



Table 3 Liver function changes in (Np and NT) group.

Time 1 day 7 day 15 day

GOT (Np) 167 182.58 162.2
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b1mRNA is found in both keloids and hypertrophic scars.

Cumulative evidence has suggested that TGF-b1 plays an
important role in tissue fibrosis and post-injury scarring. We
think that lower levels of TGF-b coincided temporally with
increased levels of IFN-g until wound closure in the ND

group.
As IFN-g has been demonstrated as a potent antagonist of

fibro genesis through its ability to inhibit fibroblast prolifera-

tion and matrix production, its control on TGF-b production
may play a role (Duncan and Berman, 1985).

3.1. Body weight gain

The body weight gain of rats treated with silver nanoparticles

(Np) was similar to that of controls no treatment (NT) (Tables
1 and 2) while combined administration of this treatment
resulted in a significant progress ready during the first 2
weeks.

The final body weight of the rats was un treated increase by
34%, 35%, 36% and 42% (P < 0.0001). This difference is
considered to be extremely statistically significant. The analysis

of variance has shown that increase in body weight gain. While
the experimental group treated with silver nanoparticles had
increased in body weight gain 39%, 41%, 45% and 51%

(P < 0.0001). This difference is considered to be extremely sta-
tistically significant. The increase in body weight gain the same
result between two group (ND and NT) an effects the silver
nanoparticles was also noted.
Table 1 Body weight gain for control group (1). No

treatment.

Test 1 2 3 4 5

Weight before treatment (g) 91.9 85.1 101.8 106.9 89.4

Weight after treatment (g) 141.7 145.9 158.2 162.8 140.4

Intermediate values used in calculations:

t= 27.5266, df = 4, standard error of difference = 1.990

Group Group one Group two

Mean 95.020 149.800

SD 9.039 10.109

SEM 4.042 4.521

N 5 5

Table 2 Body weight gain for experimental group (2). Treatment w

Test 1 2 3 4

Weight before treatment (g) 82.8 70.1 53.2 83.

Weight after treatment (g) 120.3 119.7 108.4 159.

Intermediate values used in calculations:

t = 7.9659, df = 18, standard error of difference = 6.858

Group Group on

Mean 67.630

SD 10.812

SEM 3.419

N 10
3.2. Liver function changes

GPT were significantly increased after 7th day and 15th days
to experimental group (NP) when compared with the control

group (NT) (Table 3, Figs. 4 and 5).
GOT were significantly increased after 7th day and then de-

creased 15th days to experimental group (NP) and the control

group (NT) Table 3.
Glutamic–pyruvic transaminase (GPT) – also known as

alanine aminotransferase or ALT – is a cytoplasmic hepatocel-
lular enzyme, whose increase in blood is highly indicative for

liver damage e.g. by hepatitis, cirrhosis or hepatic tumors.
Changes of liver function (GPT) no differed among rats

treated with silver nanoparticles (Np), and rats no treatment

with silver nanoparticles (NT). Unpaired t test results this dif-
ference is considered to be not statistically significant (95%)
(t = 0.1125, df = 13, standard error of difference = 5.069).

In most types of liver disease (GPT) activity is higher than
that of glutamicoxaloacetic transaminase (GOT); an exception
is in alcoholic hepatitis. The ratio of GPT and GOT may pro-

vide further information about the severity of the disease and
may serve as a prognostic indicator (Tables 4 and 5).
ith silver nanoparticles (Np).

5 6 7 8 9 10

1 74 63.7 65.5 72.2 58 53.7

5 128.7 121.5 129.3 138.4 105.5 91.3

e Group two

122.260

18.800

5.945

10

GPT (Np) 25.38 27.78 32.16

GOT (NT) 152.11 161.1 155.1

GPT (NT) 22.26 33.71 24.27

Figure 4 The value of (GOT and GPT) liver function in (1, 7,

and 15) for the two groups.



Figure 5 The value of (Got, GPT).
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Changes of liver function (GOT) no differed among rats
treated with silver nanoparticles (Np), and rats no treatment
with silver nanoparticles (NT). Unpaired t test results this dif-

ference is considered to be not statistically significant (95%)
t= 0.4511, df = 13, standard error of difference = 16.139.

3.3. Kidney function changes

Urea is a waste product formed from the breakdown of pro-

teins. Urea is usually passed out in the urine. A high blood le-
vel of urea (‘uraemia’) indicates that the kidneys may not be
Table 4 Unpaired t test (GPT) between two gruops.

Group Group one Group two

Mean 28.420 27.850

SD 12.163 7.612

SEM 5.440 2.407

N 5 10

Table 5 Unpaired t test (GOT) between two gruops.

Group Group one Group two

Mean 170.580 163.300

SD 29.796 29.319

SEM 13.325 9.271

N 5 10

Table 6 Changes of some kidney function to the control

group.

Test 1 2 3 4 5

Creatinine <44.2 <44.2 <44.2 <44.2 <44.2

Urea 50.3 54.1 52.2 47.5 55.6

Table 7 Changes of some kidney function to the experimental grou

Test 1 2 3 4 5

Creatinine <44.2 <44.2 <44.2 <44.2 <4

Urea 61 46.9 52.8 50.4 47.8
working properly, or that you are dehydrated (have a low

body water content). Creatinine is a waste product made by
the muscles. Creatinine passes into the bloodstream, and is
usually passed out in urine. A high blood level of creatinine
indicates that the kidneys may not be working properly. Cre-

atinine is usually a more accurate marker of kidney function
than urea.

Changes of some kidney function (creatinine and urea) no

differed among rats treated with silver nanoparticles (Np),
and no treatment (NT) Tables 6 and 7.

Unpaired t test results (95%) this difference is considered to

be not statistically significant (t= 1.0430, df = 13, standard
error of difference = 2.560) Table 8 and the same level of cre-
atinine (Tables 6 and 7).

3.4. Size of the lesion

Size of the lesion for experimental group (P< 0.0001). By

conventional criteria, this difference is considered to be extre-
mely statistically significant (95%) (t= 8.4459, df = 12, stan-
dard error of difference = 0.399) (Table 9).

Size of the lesion for control group (P < 0.0001). By con-
ventional criteria, this difference is considered to be extremely
p.

6 7 8 9 10

4.2 <44.2 <44.2 <44.2 <44.2 <44.2

45.5 52.7 46.5 42.8 46.3

Table 8 Unpaired t test between two groups.

Group Group one Group two

Mean 51.940 49.270

SD 3.183 5.201

SEM 1.424 1.645

N 5 10

Table 9 Paired t test for experimental group.

Group Group one Group two

Mean 6.2777 2.9092

SD 3.4212 2.1436

SEM 0.9489 0.5945

N 13 13

Table 10 Paired t test for control group.

Group Group one Group two

Mean 7.6700 2.9810

SD 2.2265 1.8288

SEM 0.4979 0.4089

N 20 20



Table 11 Size of lesion between two groups (NT) and (Np).

Time Experiment (NP) Control (NT)

Length (mm) Width (mm) Length (mm) Width (mm)

Day 1 10.16 5.5 10.7 5.54

Day 2 10.1 5.68 10.64 5.5

Day 3 9.59 5.24 10.46 5.24

Day 4 8.93 4.67 10.3 5.1

Day 5 8.42 4.16 10.02 4.92

Day 8 7.49 3.49 9.4 4.42

Day 9 7 3.06 9.02 4.18

Day 10 6.17 2.49 8.78 3.9

Day 11 5.53 1.86 8.52 3.64

Day 12 9.88 1.21 7.88 3.16

Day 15 2.63 0.16 7.36 2.62

Day 16 0.67 0 6.96 2.3

Day 17 0.04 0 6.7 2.16

Day 18 6.5 2

Day 19 6.12 1.74

Day 22 5.68 1.24

Day 23 5.24 0.96

Day 24 4.78 0.6

Day 25 4.38 0.34

Day 26 3.86 0.02

Figure 6 Size of lesion length and width between two groups.

Figure 7 Length and width between two groups.
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statistically significant (95%, t= 51.8715, df = 19, standard

error of difference = 0.090) (Table 10) and that mean when
we use silver nanoparticles we found. The rate of healing
was increased in animals treated with NP. These observations

indicate that wound healing is accelerated by silver nanoparti-
cles (Table 11, Figs. 6 and 7).
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