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ABSTRACT

The environmental threats of soil subsistence in Jeddah city have been assessed using cross-hole seismic
testing. These threats affect the state of health of roads, buildings, near-surface foundations ensuring a
reliable and economic infrastructure design, as unanticipated site conditions can cause significant traffic
problems, soil subsidence, and structural collapse. Cross-hole seismic testing is of utmost importance in
determining velocity profiles of P- and S-waves for environmental hazard assessment. These velocity pro-
files are required to calculate the geotechnical parameters of soil nearby important structures. A cross
hole seismic survey was conducted at boreholes close to Jeddah desalination plant. A sledgehammer hor-
izontally striking a wooden plate was used to generate S-waves polarized in the crossline and inline
directions. A vertical hammer hitting a metal plate to generate the P-wave then the first break arrival
times were inverted for the P- and S-wave velocity structure estimation. The equipment and procedures
comply with the American Society for Testing and Materials (ASTM) D 4428/D 4428M-91 standard test
method for cross-hole seismic testing. The estimated velocities were utilized to calculate the elastic mod-
uli, geotechnical parameters and density variations within the mapped area. These parameters agree with
the lithological variations of near- surface sediments from borehole logs. Finally, the study area illus-
trated soft, fractured, and poorly graded sediments, which, in turn, require special treatment from engi-
neering point of view before establishing the important facilities in the area. These results are highly
recommended and have to be considered to mitigate the environmental hazards in Jeddah city.
© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

and weak soils are prevail. Soil subsidence phenomenon threatens
the important facilities, such as hospitals, schools, power plants

Major cities, such as Jeddah, face different threats affecting both
of structures and environment, which will get worse in the near-
future. Jeddah city located along the Red Sea coastal strip of west-
ern Saudi Arabia (Fig. 1) and is continually exposed to recurring
environmental hazards that cause ground failure and collapsing
of the topsoil layer. Soil subsidence is one of the most hazardous
threats causes stifling traffic congestion especially in the light of
the population increase in Jeddah. This city is the biggest and most
crowded one in Saudi Arabia, making it at risk of threats of soil
subsidence that commonly occurs in the coastal strip where soft
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and desalination plants. A long record of land subsidence cases
were documented in Jeddah, particularly in the northern and
southern urban expansions. The engineering treatment and reme-
diation operations of land subsidence hazards cost the Saudi gov-
ernment hundreds of millions of Saudi Riyals annually.

Borehole seismic methods have been tested by Luna and Jadi
(2000), Angioni et al. (2003), Park et al. (2008), Dietrich and
Tronicke (2009), Al-Taie (2017), Lebedev and Dorokhin (2019),
and Abdelrahman et al. (2020a), Abdelrahman et al. (2020b). While
site soil stabilization parameters have been calculated by Stipho
(1984), Abd El Rahman (1989), Abd El Rahman and Abd El Latif
(1990), Abd El Rahman et al. (1991), Abd El Rahman et al. (1992),
Abd El Rahman et al. (1994), Wightman et al. (2003), Kim et al.
(2004), Anbazhagan and Sitharam (2006), Roy and Bhalla (2017),
Ravi (2017), Yusof and Zabidi (2016), Kamal Abdelrahman et al.
(2017a), Kamal Abdelrahman et al. (2017b), Kamal Abdelrahman
et al. (2019), Kamal Abdelrahman et al. (2020a), Kamal
Abdelrahman et al. (2020b), and Alhumimidi (2020). Cross-Hole
Seismic Testing (CHST) is a professional and versatile platform that
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Fig. 1. Location map of the study area.

can be used to evaluate structures/infrastructure and environmen-
tal/engineering geophysical surveys. This approach involves lower-
ing a three-component borehole geophone down one hole while
lowering a source down an adjacent borehole or boreholes, firing
the source at some prescribed depth interval.

Building foundation structures for civil engineering installa-
tions often requires comprehensive data of the soil properties at
the investigated site. Borehole logs can be used to define soil types
and determine strength and consolidation parameters regarding
depth. Soil-boring related in-situ tests are correlated with soil
strength as standard penetration test. However, to improve accu-
racy, it is advantageous to measure an in-situ soil property directly
related to soil modulus. Velocity of S- wave (Vs) is the standard
property from which in-situ soil modulus is determined, owing

to its direct relationship with modulus via soil mass density and
its relative ease of measurement, as a result of the advancement
of seismic techniques. The elastic parameters of near-surface sed-
iments provide important indications for several types of civil
engineering problems. Seismic waves are interpreted and pro-
cessed to obtain near-surface seismic velocity structure.

The utilization of CHST to estimate in situ compressional and
shear wave velocities and corresponding elastic soil parameters
is of considerable benefit to geotechnical engineers. There are four
primary benefits of CHST in geotechnical engineering as determin-
ing S-wave velocity of soils, which indicates stiffness; applied very
soon after ground improvement construction; assessing soil prop-
erties which is useful for the ground improvement; and upgrading
of the Saudi Building Code.
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2. Materials and methods
2.1. Cross hole seismic testing

The CHST approach applied at definite depths keeping the
source and receiver at equal elevations (Fig. 2). Measuring P- and
S-wave velocity becomes more efficiency using source-receiver
systems with preferential orientations (Wightman et al., 2003).
The body waves are generated only in the source borehole during
CHST while surface waves are not and consequently not interfering
signals of recorded body waves. There are two types of S-waves
generated during CHST: they have either vertical or horizontal par-
ticle motions. Alternatively, SH-waves can be generated and
recorded in CHST. Fig. 3 illustrations a series of CHST SV-waves
with reversed polarity received at both receiver boreholes. Nota-
bly, the P-wave energy has a lower amplitude than the S-wave
energy (Woods, 1994; Gazetas, 1991).

2.2. Estimation of geotechnical soil parameters

As stated-before, CHST determines the velocities of P- and S-
waves for sediments at the required engineering and environmen-
tal depths. The elastic properties for these deposits can be obtained
through measuring of the in-situ density and Vp and Vs. Once the
seismic layers are graphically defined, the average density (p) from
Vp and Vs with depth and the dynamic soil parameters can be
obtained. Soil dynamic properties can be determined using equa-
tions in tabulated in Table 1 based on the relationships given in
IS: 5249-1992.

3. Data acquisition

In CHST, vertically propagating and horizontally polarized shear
waves and vertically propagating compression waves travel from
an S-wave source and a P-wave source, respectively on the ground
surface to receivers at a known depth in a borehole. Vertically trav-
eling S- and P-waves are not converted to other waves by a hori-
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zontal boundary. The horizontal distance between a source and a
borehole is known and the distance between a source and a recei-
ver is calculated. The first arrival times of S- or P-waves are mea-
sured at each depth. The time difference between the first arrival
times of S or P-waves and the difference in distance between each
depth are used to calculate wave velocities. The major components
of the instrumentation required to perform CHST can be subdi-
vided into three categories: (1) seismic P- and S-wave sensors,
(2) triggering systems, and (3) data acquisition systems to record
output signals.

Cross hole seismic testing is conducted using two special probes
that are pushed into the soil using small machines with hydraulic
rams. Both probes are pushed in vertically and parallel ~1.5 m
apart and in small depth increments. The probes are mounted at
the tip of a rod string and measure the shear wave velocity
between the two probes. The generation of shear waves has done
by striking the push rods, which are connected with the probes
into ground, with hammers. One probe act as an emitter of the
shear waves, while the other one acts as the receiver of the gener-
ated waves by the first probe.

In this study, CHST measurements were conducted to a maxi-
mum depth of 25 m following ASTM procedures D 4428/D
4428M-91. The boreholes were cased with PVC casing pipes with
a completely closed bottom end to prevent sediments getting
inside while lowering the casing. The space outside the PVC pipes
was grouted with cement grout up to the topmost of the borehole.
The CHST data were acquired utilizing one digital three-
component geophone at 1.0 m intervals between readings. A bore-
hole source cable was inserted in one of the boreholes to generate
shear and compressional waves, and a three-component triaxial
geophone receiver was placed in the other borehole to measure
the arrival of the seismic wave. The interval distance between
source and recording boreholes was 3 m. The first reading was
made at a depth of ~1.0 m. The seismic waves generated by the
source were recorded using Geode seismograph model of Geomet-
rics. A triggering device that was connected to the sledge hammer
was used to trigger the recording system. The CS/DS-1 Model was
used for the CHST. This system includes triaxial geophones for

Oscilloscope

inclinomteres to correct
distances Ax with depth.

PVC-cased Borhole

V =ax/at
Downhole
Hammer
(Source) Velocity
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Depth (Geophone
Packer | Receiver)
Note: ; 4 :
Vertically of casing must | " Slope Inclinometer ; FSlope Inclinometer
be established byslope )
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Fig. 2. The cross hole seismic test using a triaxial receiver (modified after Hossain, 2015).
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Fig. 3. Interpretation of the cross hole seismic test (modified after Wightman et al., 2003).

Table 1
The used relationships of dynamic parameters estimation.
Parameter Used equations References
Poisson’s Ratio 1 1 Adams (1951)
0=5\1 75—
(®)-1)
Young’s Modulus E—p [(31’;/5141/3)} Adams (1951)
()
Bulk Modulus k= 3(155) King (1966), Toksoz et al.
(1976)
Shear Modulus w=p (Vs)? King (1966), Toksoz et al.
(1976)
Lame’s constants )= W King (1966), Toksoz et al.
(1976)
Constrained M = p* (Vp)? IS: 5249-1992

modulus

Where, Vp and Vs are P-and S-waves velocities respectively.

direct path measurements associated with each set of impacts for
test the deposits from the impact to the receiver’s location in the
borehole. The inter-borehole distance was divided by the travel
time at each depth to calculate wave velocity. The acquired row
data output from the recording device was travel time-depth
graphs presenting signals of arrival waves. In Fig. 4, the X, Y, and
Z component of every source (P-wave, S-crossline wave and S-
inline wave) are given. Examples of the acquired raw signals are
provided in Fig. 4 at various depths within the mapped area.

4. Data processing

The designed computer program by bureau of reclamation
oriented for reducing cross-hole seismic data to interpret direct

ray path traveltimes between two boreholes (Auld, 1977; Mok,
1987; Kramer, 1996; Bang et al., 2014; Hossain, 2015). Besides,
the program was twisted around the ASTM agreements and test
trials delineated for CHST. Processing CHST data requires a rigor-
ous procedure of QA/QC to avoid inverting information that is
not representative of the subsurface. This is extremely important
where the signal-to-noise ratio of the data is low. The seismo-
graph acquisition unit transferred the analog data into digital
data format. The seismic data were uploaded to a computer
and processed using the different modules of the software pack-
age PSLog™ Data Analysis Software. The primary data processing
steps for the analysis of the acquired data are summarized
below.

e Raw data are imported into the analysis program. Data are
processed by editing recorded traces and applying a frequency fil-
ter to enhance the first arrival time information. Filters can also be
applied to reduce both high frequency random noise and the long-
period noise of uncertain origin. Fig. 5 displays the applied filtering
used to enhance the cross-hole collected data throughout the used
borehole in the area.

e The second step, after the enhancement of the acquired sig-
nals, was the Picking of CHST first arrivals. This involved phase
reading of the first arrivals of P- and S-waves. These “first arrival
times” were determined by selecting the time at which each
receiver component recorded the first coherent energy. Picking
first arrivals on CHST records relies on subjective estimates of
first break positions and can be difficult at deeper geophone
depths where the signal-to-noise ratio is poor. Fig. 6 shows the
selected first arrival times (red symbols) for the three surveyed
boreholes. S-wave arrivals were selected after applying the vecto-
rial sum of the radial and transverse components using Wingeo-
T™ Software.
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Fig. 4. Samples of data collected from the seismic borehole in the mapped area.

Ch1x100,T=0us - 0% Ch 3 x100, T=0 us - 0%
005 . 003 m
004 1
o 002 }
§ 002 § %om {I\ /\ /’\
=1 =
%Z; 3 m M’}\/\ M £ oo v/ M\/J/\\\\//\
=3
L39S vw I W VUL
002 &
002 §
003 &
-0.04 ; -0.03 : +
-100 0 100 300 400 -100 0 100 300 400
Time (Micro Seconds) (10%) Time (Micro Seconds) (10%)
Ch 2 x 100, T—0lls 0% Ch7x1,T=0us-11%
004 @ 15 R
003
10 ]
002
g 0.01 " /\ /,\' 205 1
@ v
E o A l.ﬂ (\ M . A Eoo 3
= oo U \"/ WA/ £
= g5
-0.02
10 ]
003
004 } + ; 15 : i +
-100 0 100 200 300 400 -100 0 100 200 300 400
Time (Micro Seconds) (10%) Time (Micro Seconds) (10°)

Fig. 5. Example of the applied filtering to enhance data collected from the seismic borehole in the area.

5. Results

The data extracted from the CHST consist of sets of times (first
arrival times) measured at various depths from the source posi-
tions. Meanwhile, these are designed versus vertical time axes
and horizontal distance axes, the incline of any line is identical
defines the reciprocal of a velocity: steep slopes correspond to slow
velocities. If the arrival times arranged on a clearly defined
straight-line segments, best-fit lines may be drawn. In the current
project, the corrected time for the P- and S-waves was calculated,
so that the average velocity of seismic waves in homogeneous lay-
ers of soil was represented by the inclination of the line segments
along which the experimental data are aligned (Fig. 7).

The current CHST, using the direct interpretation method, was
used to determine elastic parameters (Poisson’s ratio, shear modu-
lus, elastic bulk modulus, Lamé parameter), for rock competence in
geotechnical application. With the direct method, the travel times
(t) must initially be corrected and measured along the source-
receiver paths to account for the inclination of the path of the
waves and then realize the chart tcor-z for both P-waves and S-
waves. Thus, the average velocity in homogeneous layers of soil
is represented by the inclination of the line segments along which
the experimental data are aligned. Depending on the identification
of subsurface layers, the average density can be obtained through
the velocity - depth relationship, Poisson’s ratio, shear deformation
modulus, Young’s modulus as well as the bulk modulus (Table 2).
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Table 2
a. Estimated velocities for the mapped area. b. Estimated elastic parameters for the mapped area.
(a)
Depth (m) Vpavg (mM/s) Vsavg (mM/s) (V/Vs) Ratio Description
5.37 227 123 1.84 SILTY SAND
10.03 430 309 14 SILT and SAND
25.18 918 540 1.7 SILTY SAND
(b)
pkgm3 M (Gpa) E (cpa) M (GPa) /. (GPa) K (cra) V (Gpa)
1203 0.06 0.05 0.02 0.03 0.04 0.295
1411 0.26 0.26 0.13 0.01 0.08 0.034
1706 1.44 1.23 0.50 0.44 0.77 0.235
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Fig. 8. Illustration of the velocity profile and elastic properties of P- and S-waves with depth.

6. Conclusions

The environmental threats of soil stability in terms of soil sub-
sidence in Jeddah city have been achieved in this study, through
the estimation of both shear and compressional wave velocity ver-
sus depth (1.0 m logging interval) using CHST. These measure-
ments can be used to obtain dynamic soil properties: shear
modulus, Young’s modulus, and Poisson’s ratio. These parameters
have been confirmed to be useful for determining solutions of a
wide range of engineering tasks. The estimated velocities of a soil/
rock can provide important data about the bulk physical character-
istics of the soil/rock, including how the rock will deform under a
given load/stress. The stress status for a given volume of rock is
of substantial concern frequently during the building of large
structures. The computed values of the elastic constants agree with
the values obtained in other areas and from boring (Fig. 8). The val-
ues show that the soils within the study areas are soft, fractured,
and poorly graded. The second layer, which is composed of silt,
needs special engineering treatment as it shows low values of
Vp/Vs ratio and elastic parameters. The calculated velocity model
and the derived layer moduli deliver critical information about
the mechanical resistance of the subsoil. The presence and approx-
imated thickness of low velocity layers, which can constitute a risk
for the foundations of civil engineering projects, is specially
enhanced with the procedure described. It is highly recommended
to consider these results to define sites of land subsidence and
determine the parameters that can inform solutions for environ-
mental hazard mitigation in Jeddah city.
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