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ABSTRACT

In this paper, the authors initiate a soft topological ordered space by adding a partial order relation to the
structure of a soft topological space. Some concepts such as monotone soft sets and increasing (decreas-
ing) soft operators are presented and their main properties are studied in detail. The notions of ordered
soft separation axioms, namely p-soft T;-ordered spaces (i = 0, 1,2, 3,4) are introduced and the relation-
ships among them are illustrated with the help of examples. In particular, the equivalent conditions for
p-soft regularly ordered spaces and soft normally ordered spaces are given. Moreover, we define the soft
topological ordered properties and then verify that the property of being p-soft T;-ordered spaces is a
soft topological ordered property, fori = 0,1, 2, 3,4. Finally, we investigate the relationships between soft
compactness and some ordered soft separation axioms and point out that the condition of soft compact-
ness is sufficient for the equivalent between p-soft T,-ordered spaces and p-soft Ts;-ordered spaces.
© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Increasing (Decreasing) soft operator
Soft compactness and p-soft T;-ordered
spaces (i=0,1,2,3,4)

1. Introduction

In 1965, Nachbin (1965) defined a topological ordered space by
adding a partial order relation to the structure of a topological
space. So it can be considered that the topological ordered spaces
are one of the generalizations of the topological spaces. McCartan
(1968) utilized monotone neighborhoods to introduce and study
ordered separation axioms. Also, McCartan (1971) presented the
notions of continuous and anti-continuous topological ordered
spaces. Later on, many studies are done on ordered spaces (see,
for example, Abo-Elhamayel and Al-shami, 2016; Arya and
Gupta, 1991; Das, 2004; El-Shafei et al., 2017; Farajzadeh et al.,
2012; Kumar, 2012; McCartan, 1971; Zangenehmehr et al., 2015).

In 1999, the notion of soft set theory was initiated by Molodtsov
(1999) to approach problems associated with uncertainties. He
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demonstrated the advantages of soft set theory compared to prob-
ability theory and fuzzy theory. The applications of soft sets in
many disciplines such as economics, medicine, engineering and
game theory give rise to rapidly increase researches on it. Maji
et al. (2002, 2003) presented the first application of soft sets in
decision making problems and established several fundamental
operators on soft sets. Aktas and Cagman (2007) studied soft
groups and derived that every fuzzy set (rough set) may be consid-
ered soft set. Ali et al. (2009) pointed out that some results
obtained in Maji et al. (2003) are not true and improved some
operations on soft sets. Cagman and Enginoglu (2010) defined soft
matrices and then they constructed a soft max-min decision
method which can be used in handling problems that contain
vagueness without utilizing fuzzy sets and rough sets.

In 2011, the idea of soft topological spaces was formulated by
Shabir and Naz (2011). They studied the main concepts regarding
soft topologies such as soft closure operators, soft subspaces and
soft separation axioms. Min (2011) studied further properties of
these soft separation axioms and corrected some mistakes in
Shabir and Naz (2011). As a continuation of the study of elementary
concepts regarding soft topologies, Hussain and Ahmad (2011)
studied the properties of soft interior and soft boundary operators,
and investigated some findings that connected between them.
Aygiinoglu and Aygiin (2012) started to investigate soft compact-
ness and soft product spaces. To study soft interior points and soft
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neighborhood systems, Zorlutuna et al. (2012) introduced an idea of
soft points. Then the authors (Das and Samanta, 2013; Nazmul and
Samanta, 2013) simultaneously modified a notion of soft points,
which play the same role of the element in the crisp set, in order
to study soft metric spaces and soft neighborhood systems. By the
soft points, many results in soft sets and soft topologies are handled
easily. The soft filter and soft ideal (Sahin and Kucuk, 2013; Yiiksel
et al., 2014) notions were formulated and the main features were
discussed. Kandil et al. (2014) generated a soft topological space
stronger than the original soft topological space by utilizing a
notion of soft ideal. Hida (2014) gave two formulations of soft com-
pact spaces namely, SCPT1 and SCPT2, and compared these two for-
mulations in relation with some important soft topological
properties. Recently, we (El-Shafei et al., 2018) defined partial
belong and total non belong relations which are more effective to
theoretical and application studies in soft topological spaces and
then utilized them to study partial soft separation axioms.

The idea of this study is to establish a soft topological ordered
space which consists of a soft topological spaces endowed with a
partial order relation. From this point of view, it can be consider
that a generating soft topological ordered space and an original soft
topological space are equivalent if a partial order relation is an
equality relation. This paper starts by presenting the definitions
and results of soft set theory and soft topological spaces which will
be needed to probe results obtained herein. Then we define the
concepts of monotone soft sets and increasing (decreasing) soft
operators and illuminate their fundamental properties. One of
the significant findings obtained in Section 3 is Theorem (3.8)
which will be used to verify some results concerting soft product
spaces. In the last section of this paper, we introduce the notions
of ordered soft separation axioms, namely p-soft T;-ordered spaces
(i=0,1,2,3,4) and illustrate the relationships among them with
the help of examples. Also, we investigate the characterizations
of p-soft regularly ordered and soft normally ordered spaces, and
point out that p-soft T;-ordered spaces (i = 0,1,2) are equivalent
if these soft spaces are p-soft regularly ordered. Moreover, we
use ordered embedding soft homeomorphism maps to define soft
topological ordered properties and then verify that the property
of being p-soft T;-ordered spaces is a soft topological ordered prop-
erty, for (i=0,1,2,3,4). Finally, we investigate soft compact
spaces in connection with some ordered soft separation axioms
and obtain interesting results.

2. Preliminaries
Let us recall some basic definitions and properties on soft sets,
soft topological spaces and partial order relations which we shall

need it to prove the sequels.

Definition 2.1. Molodtsov (1999) A pair (G, E) is said to be a soft set
over X provided that G is a mapping of a set of parameters E into 2.

Remark 2.2.

(i) For short, we use the notation G instead of (G, E).
(ii) A soft set Gg can be defined as a set of ordered pairs

Gt = {(e,G(e)) : e € E and G(e) € 2*}.

Definition 2.3. Molodtsov (1999) For a soft set G¢ over X and x € X,
we say that:

(i) x € Gg if x € G(e), for each e € E.
(ii) x ¢ Ge if x ¢ G(e), for some e € E.

Definition 2.4. Maji et al. (2003) A soft set G¢ over X is called:

(i) A null soft set, denoting by &, if G(e) = ¢, for each e € E.

(ii) An absolute soft set, denoting by X, if G(e) =X, for each
eckEk.

Definition 2.5. Maji et al. (2003) The union of soft sets G4 and Fp

over X is the soft set V, where D=A(JB and a map V : D — 2*
is defined as follows

Gd : deA-B
V(d) = F(d) deB-A
Gd)Fd) : deANB

It is written briefly, Ga OFB =Vp.

Definition 2.6. Pei and Miao (2005) The intersection of soft sets G,
and Fp over X is the soft set Vp, where D=A(NB, and a map
V:D — 2% is defined by V(d) = G(d) " F(d), for all d € D. It is writ-
ten briefly, G4 ﬁFB =Vp.

In this connection, we draw the attention of the readers to that
there are other kinds of soft union and soft intersection of soft sets
were originated and investigated in Ali et al. (2009).

Definition 2.7. Pei and Miao (2005) A soft set Gy is a soft subset of
a soft set Fp if

(i) ACB.
(ii) For all a € A, G(a) C F(a).

The soft sets G4 and Fj are soft equal if each of them is a soft subset
of the other. The set of all soft sets, over X under a parameter set A,
is denoted by S(X,).

It should be noted that there are other kinds of soft subset and
soft equal relations were introduced and discussed in Qin and
Hong (2010).

Definition 2.8. Ali et al. (2009) The relative complement of a soft
set Gg, denoted by G¢, where G : E — 2% is the mapping defined by
G°(e) = X\ G(e), for each e € E.

Definition 2.9. Shabir and Naz (2011) A collection 7 of soft sets
over X under a fixed parameters set E is said to be a soft topology
on X if it satisfies the following three axioms:

(i) X and & belong to .
(ii) The intersection of a finite family of soft sets in 7
belongs to 7.
(iii) The union of an arbitrary family of soft sets in T belongs to 7.

The triple (X, t,E) is called a soft topological space (briefly, STS).
Every member of 7 is called soft open and its relative complement
is called soft closed.

Definition 2.10. Shabir and Naz (2011) A soft set x; over X is
defined by x(e) = {x}, for each e € E.

Proposition 2.11. Shabir and Naz (2011) If (X, t,E) is an STS, then
for each e € E, a family 1. = {G(e) : Gg € T} forms a topology on X.
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Definition 2.12. Shabir and Naz (2011) Let Y be a non-empty sub-

set of an STS (X, 7,E). Then Ty = {Y(\G¢ : G € T} is said to be a soft
relative topology on Y and the triple (Y, ty,E) is said to be a soft
subspace of (X, 7,E).

Definition 2.13. Shabir and Naz (2011) For a soft subset Hg of an
STS (X,t,E),Int(Hg) is the largest soft open set contained in Hg
and Cl(Hg) is the smallest soft closed set containing Hg.

Definition 2.14. Zorlutuna et al. (2012) A soft subset W of an STS
(X, 1,E) is called soft neighborhood of x € X, if there exists a soft

open set Gg such that x € Gz C Wg.

Definition 2.15. Zorlutuna et al. (2012) A soft mapping between
S(Xa) and S(Yp) is a pair (f, ¢), denoted also by f,, of mappings such
thatf: X —Y,¢ : A — B. Let G¢ and H, be soft subsets of S(X,) and
S(Ys), respectively. Then the image of Gx and pre-image of H; are
defined by:

(i) f4(Gk) = (f,(G)), is a soft subset of S(Y;) such that

Uacs of (@) = ¢ ()NK # &

Fy(@)b) = { |
2 Nk =g

for each b € B.
(ii) ff (H) = (f;l(H))A is a soft subset of S(X,4) such that

1 .
£ (H)a@) = {f H@@) = 6@ ZL
for each a € A.

Definition 2.16. Zorlutuna et al.
fy :S(Xa) — S(Yp) is said to be:

(2012) A soft map

(i) Injective if f and ¢ are injective.
(ii) Surjective if fand ¢ are surjective.
(iii) Bijective if fand ¢ are bijective.

Proposition 2.17. Nazmul and Samanta (2013) Let
fs:S(Xa) — S(Y) be a soft map. Then for each soft subsets G, and
Hp of S(Xa) and S(Y3), respectively, we have the following results:

(i) Ga Cf,'f4(Ga) and Gy = £,'f,,(Ga) if f,, is injective.
(ii) ff,'(Hp) C Hp and f ,f ' (Hy) = H if f,, is surjective.

Definition 2.18. (Nazmul and Samanta, 2013; Zorlutuna et al.,
2012) A soft map f, : (X,7,A) — (Y,0,B) is said to be:

(i) Soft continuous if the inverse image of each soft open subset
of (Y, 0,B) is a soft open subset of (X, 7,A).

(ii) Soft open (resp. soft closed) if the image of each soft open
(resp. soft closed) subset of (X, t,A) is a soft open (resp. soft
closed) subset of (Y, 0,B).

(iii) Soft homeomorphism if it is bijective, soft continuous and
soft open.

Definition 2.19. Aygiinoglu and Aygiin (2012)

(i) A collection {G;, : i € I} of soft open sets is called soft open
cover of an STS (X, 1,E) if X = JG,,.
iel
(ii) An STS (X, t,E) is called soft compact (resp. soft Lindel6f)
provided that every soft open cover of X has a finite (resp.
countable) subcover.

Proposition 2.20. Aygiinoglu and Aygiin (2012) Every soft closed
subset Hg of a soft compact (resp. soft Lindelof) space is soft compact
(resp. soft Lindeldf).

Definition 2.21. Aygiinoglu and Aygiin (2012) Let G4 and Hp be
soft sets over X and Y, respectively. Then the cartesian product of
Gs and Hp is denoted by (GxH),, and is defined as
(G x H)(a,b) = G(a) x H(b), for each (a,b) € A x B.

Theorem 2.22. Aygiinoglu and Aygiin (2012) Let (X,t,A) and
(Y, 6,B) be two STSs. Let Q = {Ga x Fg : G4 € T and Fy € 0}. Then the
family of all arbitrary union of elements of Q is a soft topology on
X xY.

Definition 2.23. Das and Samanta (2013) A soft set Hg over X is
called countable (resp. finite) if H(e) is countable (resp. finite), for
eachecE.

Definition 2.24. (Das and Samanta, 2013; Nazmul and Samanta,

2013) A soft subset P; of X is called soft point if there exists
e € E and there exists x € X such that P(e) = {x} and P(x) = &,
for each o € E\ {e}. A soft point will be shortly denoted by P
and we say that P} € G, if x € G(e).

It is noteworthy that the above definition of soft point is a spe-
cial case of the definition of soft point which introduced in
Zorlutuna et al. (2012).

Definition 2.25. El-Shafei et al. (2018) For a soft set Gg over X and
X € X, we say that

(i) x€Gg if x € G(e), for some e € E.
(ii) « € G if x ¢ G(e), for each e € E.

Definition 2.26. El-Shafei et al. (2018) A soft set Gg in S(X) is said
to be stable if there exists a subset S of X such that G(e) =S, for
eachecE.

Definition 2.27. El-Shafei et al. (2018) An STS (X, 1, E) is said to be:

(i) p-soft To-space if for every pair of distinct points x,y € X,
there is a soft open set Gg such that x € Gg, y & G or
ye Gg, 2 & Gp.

(ii) p-soft T;-space if for every pair of distinct points x,y € X,
there are soft open sets Gg and Fr such that x € Gg, y & G
and y € Fg, v & Fg.

(iii) p-soft T»-space if for every pair of distinct points x,y € X,
there are disjoint soft open sets Gr and Fr containing x and
y, respectively.

(iv) p-soft regular if for every soft closed set Hr and x € X such
that = ¢ Hy, there are disjoint soft open sets Gz and F such
that H; C G and x € Fy.
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(vi) (Shabir and Naz, 2011) Soft normal if for every two disjoint
soft closed sets Hy, and H,,, there are two disjoint soft open
sets G and Fz such that Hy, C Gz and H,, C Fr.

(vii) p-soft Ts-space if it is both p-soft regular and p-soft
T,-space.

(viii) p-soft T4-space if it is both soft normal and p-soft T;-space.

Lemma 2.28. El-Shafei et al. (2018) If Hg, «, is a soft closed subset of
a soft product space (X x Y, 71 x T2,E1 x E3), then

Hg, «k, = [(GEI)C X 17] O P( X (FEZ)C],for some Gg, € T1 and Fg, € Ts.

Definition 2.29. Kelley (1975) a binary relation < on a non-empty
set X is called a partial order relation if it is reflexive, anti-
symmetric and transitive.

{(x,x): for each x € X} is the equality relation on X and it is
indicated by A.

Definition 2.30. Kelley (1975) Let (X, <) be a partially ordered set.
An element a € X is called:

(i) A smallest element of X provided that a < x, for all x € X.
(ii) A largest element of X provided that x < q, for all x € X.

Definition 2.31. Nachbin (1965) A triple (X, 1, <) is said to be a
topological ordered space, where (X, <) is a partially ordered set
and (X, 1) is a topological space.

Definition 2.32. McCartan (1968) A topological ordered space
(X,7,=) is called:

(i) Lower (Upper) T;-ordered if for each x Ay in X, there is an

increasing (resp. a decreasing) neighborhood W of a(resp.
b) such that b(resp. a) belongs to W°*.

(ii) To-ordered if it is lower T;-ordered or upper T;-ordered.

(iii) T;-ordered if it is lower T;-ordered and upper T;-ordered.

(iv) Ty-ordered if for each x £ y in X, there are disjoint neighbor-
hoods W; and W, of x and y, respectively, such that W, is
increasing and W, is decreasing.

3. Monotone soft sets

In this section, we first formulate the definitions of partially
ordered soft sets, increasing (decreasing) soft sets and increasing
(decreasing, ordered embedding) soft maps. Then we present and
investigate the main properties of these new concepts.

Definition 3.1. Let < be a partial order relation on a non-empty set
X and let E be a set of parameters. A triple (X,E, <) is said to be a
partially ordered soft set.

Definition 3.2. Let (X E, <) be a partially ordered soft set. We
define an increasing soft operator i: (S(Xg), <) — (S(Xg), <) and a
decreasing soft operator d: (S(Xg), <) — (S(Xg), <) as follows, for
each soft subset Gg of S(Xg)

(i) i(Gg) = (iG)g, where iG is a mapping of E into X given by
iG(e) = i(G(e)) = {x € X : y < x, for some y € G(e)}.

(ii) d(Gg) = (dG);, where dG is a mapping of E into X given by
dG(e) = d(G(e)) = {x e X : x X y, for some y € G(e)}.

Definition 3.3. A soft subset G of a partially ordered soft set
(X,E, =) is said to be:

(i) Increasing if Gg = i(Gg).
(ii) Decreasing if Gr = d(Gg).

Proposition 3.4. We have the following results for a soft subset Gg of
a partially ordered soft set (X,E, <).

(i) Geisincreasing if and only if for each P} € i(Gg), then P} € Gg.
(ii) Gg is decreasing if and only if for each P} e d(Gg), then
P;‘ c GE'
(iii) If Gg is increasing, then for each x € i(Gg), we have x € Gg.
(iv) If Gg is decreasing, then for each x € d(Gg), we have x € G.

Proof. We only prove case (i), and the other follow similar lines.
Necessity: It comes immediately from Definition (3.3).

Sufficiency: By hypothesis, P} € i(Gg) implies that P} € Gg. Then
x € G(e). Since = is reflexive, then x € i(Gg). So P} € i(Gg). This
means that i(GE)EGE. Thus Gg =i(Gg). Hence a soft set Gg is
increasing. O

Proposition 3.5. Let {G;, : j € J} be a collection of increasing (resp.
decreasing) soft subsets of a partially ordered soft set (X, E, <). Then:

(i) OG,—E is increasing (resp. decreasing).
Jjel

(ii) ﬁG,—E is increasing (resp. decreasing).
i€l

Proof. (i): We prove this case when a collection consists of

increasing soft sets. Let P} € OGJ-E. Then there exists j, € J such that
Jel

P¥ € G;,,. Therefore i(P¥) Ci(Gj,,) = Gj,, C UGj,- Thus a soft set [ JG;,
Jel Jel
is increasing.
A similar proof is given for the case between parentheses.

By analogy with (i), one can prove (ii). d

Corollary 3.6. A collection of all increasing (resp. decreasing) soft
subsets of a partially ordered soft set (X,E, <) forms a soft topology
on X.

Proposition 3.7. A soft subset Gg of a partially ordered soft set
(X,E, =) is increasing (resp. decreasing) if and only if Gy is decreasing
(resp. increasing).

Proof. Let G; be an increasing soft set. Suppose, to the contrary,
that G; is not decreasing. Then there exists P} € d(G;) and
P} ¢ Gi.Sox € d(G(e)) and x ¢ G(e). This means that there exists
y € G°(e) such that x <y. Since x € G(e) and the soft set G is
increasing, then yeG(e). But this contradicts that
G(e)NG‘(e) = &. Hence G; is decreasing. Similarly, one can prove
the proposition in case of G is decreasing. O

Theorem 3.8. The finite product of increasing (resp. decreasing) soft
sets is increasing (resp. decreasing).
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Proof. We only prove the theorem for two soft sets in case of
increasing soft sets and one can prove it similarly for finite soft
sets.

Let G4 and Fg be two increasing soft subsets of (X,A, <1) and
(Y,B, =), respectively. Setting Ha.p=Gs xFg such that
H(a,b) = G(a) x F(b), for each (a,b) € A x B. Suppose, to the con-

trary, that Hy, g is not increasing. Then there exists a soft point PE’;{‘};}

such that ny>€l(HAX3) and P’”’ ¢ Ha.g. This means that

(x,y) €i(H(a,f)) and (x,y) ¢ H(%ﬁ)- So  (x,y) € i(G(a) x F())
implies that

x €1(G(a)) = G(o) and y € i(F(B)) = F(p) (1)
and (x,y) ¢ G(a) x F(B) implies that
X ¢ G(o)ory ¢ F(B) 2)

From (1) and (2), we obtain a contradiction. Since the contradiction
arises by assuming that the soft set Hy,p is not increasing, then Hy, p
is increasing.

A similar proof is given for the case between parentheses. O

In the following two results, we present the main properties of
the increasing and decreasing soft operators.

Proposition 3.9. Let G and Fg be two soft subsets of (X, E, <) and let
i:(S(Xg), =) — (S(Xg), %) be an increasing soft operator. Then:

() i(2) = .

(ii) Ge Ci(Gg).

(iii) i(i(Gg)) = i(Gg).

(iv) 1[ s UFe| = i(Gp)Ui(F).

Proof. The proof of items (i) and (ii) are obvious.

(iii): From (ii), we get that i(Gg) C i(i(Gg)). On the other hand, let
x€i(i(Gg)). Then there exists y&i(Gg) such that y < x. Also, there
exists zeGg such that z <y. Since < is transitive, then z < x. So
xe€i(Gg). Thus i(i(Gg)) Ci(Gg). This completes the proof of this
property.

(iv): Obviously, i(GE)Oi(FE)Ei[GEOFE]. On the other hand,
GEOFggi(GE) Oi(FE). From (iii) and Definition (3.3), we infer that
i(Gg) and i(Fg) are increasing. From Proposition (3.5), we infer that
i(Gg) Ui(Fg) is increasing. So i[GEOFE] ‘Ci(Gg)Ui(Fg). Hence this
part of the proposition holds. a

Proposition 3.10. Let G; and Fg be two soft subsets of (X,E, <) and
let d: (S(Xg), %) — (S(Xk), <) be a decreasing soft operator. Then:

(i) d(@) = .
(ii) G C d(Ge).
(iii) d(d(Gg)) = d(Gg).

(iv) d[GeUF| = d(Ge)Ud(Fe).
Proof. The proof is similar to that of Proposition (3.9). dJ

Proposition 3.11. The following two results hold for a soft map
fis:S(Xa) — S(Ya).

(i) The image of each soft point is soft point.
(i) If f, is bijective, then the inverse image of each soft point is soft
point.

Proof.

(i) Consider P; is a soft point in the domain. Then
fo(Py) = (f4(P))g such that f,(P)(b) = U ¢(P(a)). Since

acp~(b)
singleton element of X a=
) - { d .
[%) oaFo

then this part of proposition holds.
(ii) Consider P,{ is a soft point in the codomain. Then

f1P) =(f,'(P)), such that f,'(P)(a)=USf"(P(¢(a))).

Since ¢(a) is a singleton element in B and Pﬁ is a soft point,

then
y o pla)=p

P =

wan={3 | S
Since ¢ and f are bijective, then

. ingleton element in X ¢(a) =B

1p _ {smg

[ (P (a)) p o0 f
This completes the proof of this part of proposition. d

Definition 3.12. Let P] and P} be two soft points in a partially
ordered soft set (X,E, <). We say that P; < P} ifx < y.

Definition 3.13. A soft map f : (5(
be:

XA)7 j]) — (S(Yg)jz) is said to

(i) Increasing if P;=<; Py}, then f,(P})=.f ,(P).
(i) Decreasing if Py =P}, then f,(P})=.f ,(Py).
(iii) Ordered embedding if P;=;P} if and only if f,(P;)=.f ;(P}).

Theorem 3.14. The following two results hold for a soft map
fo 1 (S(Xa), =1) — (S(Y), =2).

(i) If f,, is increasing, then the inverse image of each increasing
(resp. decreasing) soft subset of Y is an increasing (resp. a

decreasing) soft subset of X.
(ii) If f, is decreasing, then the inverse image of each increasing

(resp. decreasing) soft subset of Y is a decreasing (resp. an
increasing) soft subset of X.

Proof. (i): Let Gx be an increasing soft subset of Y. Suppose that
f;l(GK) is not increasing. Then there exists x € X and there exists
o € A such that P} € i(fl;](GK)) and P ¢ f;l(GK). So we infer that
there exists P} ef{;l(GK) such that P}<,P}. Since f, is increasing,
then f,(P}))=.f,(P;) and since f,(P}) efd)(f;](GK))EGK, then
f4(P}) € Gg. This implies that P} ef;1 (Gk). But this contradicts that
P} ¢ f{;l (Gk). Hence the soft set f(;](GK) is increasing.
A similar proof is given for the case between parentheses.

By analogy with (i), one can prove (ii). O

Theorem 3.15. Let f, : (S(Xa),=1) — (S(Ys),=<2) be a bijective
ordered embedding soft map. Then the image of each increasing (resp.
decreasing) soft subset of X is an increasing (resp. a decreasing) soft
subset of Y.
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Proof. Let G; be an increasing soft subset of X. Suppose that f4(Gr)
is not increasing. Then there exists y € Y and there exists € B
such that Py €i(f,(G)) and P} ¢ f,(G). So we infer that there
exists P; € f,(Gy) such that P{=,P}. Since f, is ordered embedding,
then f,"(P})=.f,"'(P}) and since f,'(P;) € f,'(f,(G1)) = G, then
f;l (PY) € G.. This implies that P} < f,(Gy). But this contradicts that
P} ¢ f4(Go). Hence the soft set f,(G;) is increasing.

A similar proof is given for the case between parentheses. O

4. Ordered soft separation axioms

We devote this section to introducing soft ordered separation
axioms namely, p-soft T;-ordered spaces (i=0,1,2,3,4) and to
studying their main properties. Various examples are considered
to show the relationships among them and to illustrate some
results obtained herein.

Definition 4.1. A quadrable system (X, 7,E, <) is said to be a soft
topological ordered space, where (X, 7, E) is a soft topological space
and (X, E, <) is a partially ordered soft set.

Henceforth, we use the abbreviation STOS in a place of soft
topological ordered space.

Definition 4.2. A soft subset W of an STOS (X, 7, E, <) is said to be:

(i) Increasing soft neighborhood of x € X if W is soft neighbor-
hood of x € X and increasing.

(ii) Decreasing soft neighborhood of x € X if W¢ is soft neighbor-
hood of x € X and decreasing.

Definition 4.3. For two soft subsets Gy and Hr of an STOS
(X,7,E, <) and x € X, we say that:

(i) Gg containing x provided that x € Gg.
(ii) Gg containing H; provided that Hg C Gg.
(iii) Gg is a soft neighborhood of Hg provided that there exists a
soft open set Fg such that Hg C F; C G.

Definition 4.4. An STOS (X, 7,E, <) is said to be:

(i) Lower p-soft T;-ordered if for every distinct points x A y in X,
there exists an increasing soft neighborhood W of x such
that y ¢ Wp.

(ii) Upper p-soft T,-ordered if for every distinct points x Z y in X,
there exists a decreasing soft neighborhood W¢ of y such

that = ¢ Wp.

(iii) p-soft To-ordered if it is lower soft T-ordered or upper soft
T,-ordered.

(iv) p-soft Ty-ordered if it is lower soft T;-ordered and upper soft
T,-ordered.

(v) p-soft T,-ordered if for every distinct points x £ y in X, there
exist disjoint soft neighborhoods Wy and Vi of x and y,
respectively, such that Wk is increasing and V¢ is decreasing.

Proposition 4.5. Every p-soft T;-ordered space (X,t,=<,E) is p-soft
Ti_q-ordered, fori=1,2.

Proof. It is obtained immediately from the above definition. O

In what follows, we present two examples to illustrate that the
converse of the above proposition fails.

Example 4.6. let E={e;,e;} be a set of parameters,
<= aU{(x,y),(x,2)} be a partial order relation on X = {x,y,z}
and T = {5,)?, Gy, Gy, G3, } be a soft topology on X. The soft sets
Gy,, Gy, and Gs, are defined as follows:

G]E = {(e1,{y}),(e2,{y})},
Gy, = {(e1,{2}), (e2,{z})},
G3, ={(e1,{y,2}), (€2, {y,2})}.

Then (X, 7, <, E) is a lower p-soft T;-ordered space. So it is p-soft
To-ordered. On the other hand, there does not exist a soft open set
containing x and does not contain y or z. Thus (X, 7, <,E) is not
p-soft Tq-ordered.

Example 4.7. let E={e;,e;} be a set of parameters,
<= aU{(1,x) : x € R} be a partial order relation on the set of real
numbers R and T = {6, G: C R : G is finite } be a soft topology on
R. Obviously, (R,t,=,E) is p-soft T;-ordered, but is not p-soft
T,-ordered.

Theorem 4.8. Let (X,1,E, <) be an STOS. Then the following three
statements are equivalent:

(i) (X,t,E, =) is upper (resp. lower) p-soft T,-ordered;
(ii) For all x,y € X such that x £ y, there is a soft open set Gg con-
taining y(resp.x) in which x £ a(resp. a £ y) for every aeGg;
(iii) For all x € X, (i(x))g(resp.(d(x))g) is soft closed.

Proof. (i) — (ii): Consider (X, 7,E, <) is an upper p-soft T;-ordered
space and let x,y € X such that x # y. Then there exists a decreasing
soft neighbourhood U of y such that « ¢ Ug. Putting Gg = Int(Ug).
Suppose that G ¢ (i(x));. Then there exists aeG; and a & (i(x))5-
Therefor a € (i(x)), and this implies that x < a. Now, a€U; implies
that xeUg. But this contradicts that = ¢ Ug. Thus Gg C (i(x))s. Hence
X % a, for every aeGg.

(ii) — (iii): Consider x € X and let ae(i(x));. Then x Z£a.
Therefore there exists a soft open set Gg containing a such that
Gk C (i(x))5. Since a and x are chosen arbitrary, then a soft set (i(x))§
is soft open, for all x € X. Hence (i(x)); is soft closed, for all x € X.

(iif) — (i): Let x Z y in X. Obviously, (i(x)), is increasing and by
hypothesis, (i(x))g is soft closed. Then (i(x)); is a decreasing soft
open set satisfies that y € (i(x)); and = & (i(x))$. Hence the proof is
completed.

A similar proof can be given for the case between
parentheses. O

Corollary 4.9. If a is the smallest element of a lower p-soft T-ordered
space (X, 1,E, <), then ag is decreasing soft closed.

Corollary 4.10. If a is the largest element of an upper p-soft
T:-ordered space (X, t,E, <), then ag is increasing soft closed.

Proposition 4.11. If a is the smallest (resp. largest) element of a finite
p-soft Ti-ordered space (X,t,E,=), then ag is decreasing
(resp. increasing) soft open.
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Proof. We will start with the proof for the smallest element, as the
proof for the largest element is analogous. Since a is the smallest
element of X, then a <x, for all x € X. By the anti-symmetric of
=, we have x £ q, for all x € X. By hypothesis, there is a decreasing

neighborhood Wg of a such that = ¢ W. It follows that a; = ﬁWE.
Since X is finite, then a is a decreasing soft open set. a

Proposition 4.12. A finite STOS (X, t,E, <) is p-soft T,-ordered if and
only if it is p-soft T,-ordered.

Proof. Necessity: For each y € X\ (i(x));, we have (d(y)); is soft
closed. Since X is finite, then Oyex\(,-(x))E(d(y))E is soft closed. There-

fore (Oyex\(,-(x))E(d(y))E>E = (i(x))g is a soft open set. Thus (X, 7, E, <)

is a p-soft T,-ordered space.
Sufficiency: It follows immediately from Proposition (4.5). O

Theorem 4.13. An STOS (X,t,E,=<) is p-soft T,-ordered if and
only if for all x £y in X, there exist soft open sets Gg and Hg
containing x and y, respectively, such that a # b for every a € G(e)
and b € H(e).

Proof. Necessity: Consider (X, ,E, <) is p-soft T-ordered and let
X,y € X such that x Zy. Then there exist disjoint soft neighbor-
hoods W and V¢ of x and y, respectively, such that Wg is increasing
and Vg is decreasing. Putting Ug.p = Int(Wg) x Int(Vg). Let
aelnt(Wg) = Gg and belnt(Vg) = Hg. Suppose that a € G(e) and
b € H(e) such that a < b. As W is increasing and V¢ is decreasing,
then it follows, by assumption, that WEﬁVE % Ad But this contra-
dicts the disjointness between Wy and Vi. Therefore a £ b, for
every a € G(e) and b € H(e).

Sufficiency: Let x Zy in X and assume that for any soft open
sets Gr and Hg containing x and y, respectively, we have

that i(GE)ﬁd(HE);éAd. Then there exists ecE such that

Xe i(G(e))ﬁd(H(e)). Therefore there exist a € G(e) and b € H(e)
such that a < x and x < b. This means that a < b. But this contra-
dicts, the given hypothesis, that a #b for every a € G(e) and

b € H(e). Thus i(Gg)(\d(Hs) = &. This completes the proof. O

Proposition 4.14. If (X, T,E, =) is an STOS, then for each e € E, a fam-
ily 7. ={G(e) : G € t} with a partial order relation <, form an
ordered topology on X.

Proof. From Proposition (2.11), a family 7, forms a topology on X.
From Definition (2.31), the triple (X, 7., <) forms a topological
ordered space. ]

Proposition 4.15. If an STOS (X, 1,E, <) is p-soft T;-ordered, then a
topological ordered space (X, Te, <) is always T;-ordered, fori = 0,1, 2.

Proof. We prove the proposition when i =2 and the other two
cases are proven similarly. Let x,y be two distinct points in
(X, Te, <) such that x £ y. As (X, 1,=,E) is p-soft T,-ordered, then
there exist disjoint an increasing soft neighborhood W¢ of a and
a decreasing soft neighborhood V: of b such that v Wy and
a & Vi Therefore W(e) is an increasing neighborhood of a and
V(e) is a decreasing neighborhood of b in (X,7.,=<) such that
W(e)NV(e) = &. Thus a topological ordered space (X,T., =) is
T,-ordered. O

Corollary 4.16. A p-soft T,-ordered space (X, T, E, <) contains at least
2%1 soft open sets.

Definition 4.17. let YCX and (X,7,E,<) be an STOS.
Then (Y,ty,E, <y) is called soft ordered subspace of (X,7,E, =)
provided that (Y,7y,E) is soft subspace of (X,7,E) and
<=y =<XNYxY.

Lemma 4.18. If U is an increasing (resp. a decreasing) soft subset of

an STOS (X, t,E, <), then U5ﬁ17 is an increasing (resp. a decreasing)
soft subset of a soft ordered subspace (Y, ty,E, =<y).

Proof. Let Ur be an increasing soft subset of an STOS (X, 7,E, <). In
a soft ordered subspace (Y,ty,E, <y), let a e ijy(UEﬁ?). Since

i, (UNY) C i, (Ug) Niz, (Y) CUNY, then a e UgY. Therefore
i.,(UsNY) = UgNY. Thus UgNY is an increasing soft subset of a

soft ordered subspace (Y, ty, E, <y).
The proof is similar in case of Ug is decreasing. a

Theorem 4.19. The property of being a p-soft Ti-ordered space is
hereditary, fori=0,1,2.

Proof. Let (Y, ty,E, =<y) be a soft ordered subspace of a p-soft T,-
ordered space (X, t,E, <). If a,b € Y such that a4yb, then a £ b. So
by hypothesis, there exist disjoint soft neighborhoods W¢ and V¢
of a and b, respectively, such that W¢ is increasing and Vg is
decreasing. Setting Uy = Y(\W and Gg = YV, then from the
above lemma, we obtain that Ug is an increasing soft neighborhood
of a and G is a decreasing soft neighborhood of b. Since the soft
neighborhoods U and G¢ are disjoint, it follows that (Y, ty,E, <y)
is p-soft T,-ordered.
The theorem can be proven similarly in case of i = 0, 1. d

Proposition 4.20. Every p-soft T;-ordered space (X, t,E, <) is p-soft
T;-space, fori=0,1,2.

Proof. The proof comes immediately from the definition of p-soft
T;-ordered spaces and the definition of p-soft T;-spaces, for
i=0,1,2. O

It can be given some examples to illustrate that the converse of
the above theorem fails. However, for the sake of economy, we
consider a set of parameters E is singleton and suffice with
Example 1 and Example 6 in McCartan (1968).

Definition 4.21. An STOS (X, 7, E, <) is said to be:

(i) Lower (resp. Upper) p-soft regularly ordered if for each
decreasing (resp. increasing) soft closed set Hr and x € X
such that = ¢ Hy, there exist disjoint soft neighbourhoods
We of Hp and Vi of x such that W is decreasing (resp.
increasing) and V¢ is increasing (resp. decreasing).

(ii) p-soft regularly ordered if it is both lower p-soft regularly
ordered and upper p-soft regularly ordered.

(iii) Lower (resp. Upper) p-soft Ts-ordered if it is both lower
(resp. upper) p-soft T;-ordered and lower (resp. upper) p-
soft regularly ordered.

(iv) p-soft Ts-ordered if it is both lower p-soft T;-ordered and
upper p-soft Ts-ordered.
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Theorem 4.22. An STOS (X, t,E, <) is lower (resp. upper) p-soft reg-
ularly ordered if and only if for all x € X and every increasing (resp.
decreasing) soft open set Ur containing x, there is an increasing (resp.
a decreasing) soft neighbourhood V¢ of x satisfies that ClI(Vg) C Ug.

Proof. Necessity: Let x € X and Ug be an increasing soft open set
containing x. Then Uj is decreasing soft closed such that = ¢ Us.
By hypothesis, there exist disjoint soft neighbourhoods Vi of x
and W of U; such that V¢ is increasing and Wg is decreasing. So
there is a soft open set Gi such that U§ C G C We. Since Vi C WE,
then ViCWS{CG;CUs and since Gf is soft closed, then
Cl(Ve) C G; C Up.

Sufficiency: Let x € X and Hg be a decreasing soft closed set such
that = ¢ Hy. Then HE is an increasing soft open set containing x. So
that, by hypothesis, there is an increasing soft neighbourhood Vg of
x such that Cl(Vg) C HE. Consequently, (CI(VEg))© is a soft open set
containing Hg. Thus d((CI(VE))©) is a decreasing soft neighbourhood
of Hg. Suppose that Vgﬁd((Cl(VE))”) # 5. Then there exists x € X
and there exists e € E such that x € V(e) and x € d((CI(V))"(e)). So
there exists y € (CI(V))‘(e) satisfies that x <y. This means that
y € V(e). But this contradicts the disjointness between Vg and
(CI(VE))©. Thus VEd((CI(VE))*) = &. This completes the proof.

A similar proof can be given for the case between
parentheses. O

Proposition 4.23. The following three properties are equivalent if
(X,7,E, =) is p-soft regularly ordered:

(i) (X,t,E, =) is p-soft T,-ordered;
(ii) (X, t,E, =) is p-soft Ty-ordered;
(iii) (X, 1,E, =) is p-soft To-ordered.

Proof. The direction (i) — (ii) — (iii) is obvious.

To prove that (iii) — (i), let x,y € X such that x A#y. Since
(X, 7,E, =) is p-soft Tp-ordered, then it is lower p-soft T;-ordered or
upper p-soft Ti-ordered. Say, it is upper p-soft T;-ordered. From
Theorem (4.8), we have that (i(x)) is soft closed. Obviously, (i(x))g
is increasing and y & (i(z))g. Since (X,t,E, <) is p-soft regularly
ordered, then there exist disjoint soft neighbourhoods W¢ and Vg
of y and (i(x))g, respectively, such that W is decreasing and Vg is
increasing. Thus (X, 1,E, <) is p-soft T,-ordered. O

Corollary 4.24. The following three properties are equivalent if
(X, 7,E, <) is lower (resp. upper) p-soft regularly ordered:

(i) (X,t,E, =) is p-soft T,-ordered;
(ii) (X, t,E, =) is p-soft Ty-ordered;
(iii) (X, 1,E, =) is lower (resp. upper) p-soft T,-ordered.

Definition 4.25. An STOS (X, 7, E, <) is said to be:

(i) Soft normally ordered if for each disjoint soft closed sets Fg
and Hg such that Fg is increasing and H is decreasing, there
exist disjoint soft neighbourhoods W of Fr and V¢ of Hg such
that W is increasing and V¢ is decreasing.

(ii) p-soft T4-ordered if it is soft normally ordered and p-soft
T;-ordered.

Theorem 4.26. An STOS (X,t,E,=) is soft normally ordered if and
only if for every decreasing (resp. increasing) soft closed set Fr and
every decreasing (resp. increasing) soft open neighborhood Ug of Fp,
there is a decreasing (resp. an increasing) soft neighborhood V¢ of Fg

satisfies that Cl(Vg) C Ug.

Proof. Necessity: let F; be a decreasing soft closed set and Ug be a
decreasing soft open neighborhood of Fr. Then U} is an increasing
soft closed set and FEﬁUE = . Since (X,1,E, =) is soft normally
ordered, then there exist disjoint a decreasing soft neighborhood
Ve of Fr and an increasing soft neighborhood Wi of U;. Since Wg
is a soft neighborhood of Ug, then there exists a soft open set Hg
such that U; CHg CWe Consequently, Wi;CH;CU; and
Ve C WS So it follows that CI(Vg) C CI(WE) C HE C Ug. Thus
Fe C Cl(VE) € CI(WS) C HS C Ug. Hence the necessary part holds.
Sufficiency: Let Fq, and F,, be two disjoint soft closed sets such
that F, is decreasing and F», is increasing. Then F;, is a decreasing
soft open set containing F;,. By hypothesise, there exists a
decreasing soft neighborhood Vi of F;, such that Cl(VE)EFgE.

Setting HE:)N(\CI(VE). This means that Hg is a soft open set

containing F,. Obviously, Fo, C Hg, F1, C Vg and He(\Ve = 5. Now,
i(Hg) is an increasing soft neighborhood of F,,. Suppose that

i(HE)ﬁVE # 5. Then there exists e € E such that x € i(H(e)) and
x e V(e) =d(V(e)). This implies that there exist a € H(e) and
b € V(e) such that a < x and x < b. As < is transitive, then a < b.

Therefore b@HEﬁVE. This contradicts the disjointness between Hg
and Vg. Thus i(HE)ﬁVE = 5 Hence the proof is completed. O

Proposition 4.27. Every p-soft T;-ordered space (X, t,E, <) is p-soft
T;_i-ordered, for i = 3,4.

Proof. From Proposition (4.23), we obtain that every p-soft T3-
ordered space is p-soft T,-ordered. To prove the proposition in case
of i=4, let a € X and Fr be a decreasing soft closed set such that
a & Fp. Since (X,7,E, <) is p-soft Ty-ordered, then (i(a));) is an
increasing soft closed set and since (X,t,E, <) is soft normally
ordered, then there exist disjoint soft neighborhoods W¢ and V¢
of (i(a));) and Fg, respectively, such that W is increasing and V;
is decreasing. Therefore (X,t,E,<) is lower p-soft regularly
ordered. If Fg is an increasing soft set, then we prove similarly that
(X, 7,E, <) is upper p-soft regularly ordered. Thus (X, t,E, <) is p-
soft regularly ordered. Hence (X, 7,E, <) is p-soft Ts-ordered. a

The converse of the above proposition is not always true as
illustrated in the following two examples.

Example 4.28. Llet E={e;,e;,e3} be a set of parameters,
== AU{(1,2)} be a partial order relation on the set of natural

numbers M and 7 = {Gg C N such that1 ¢ G or [1 € G(ey) and G
is finite |} be a soft topology on A. Obviously, (V, T,E, <) is p-soft
T,-ordered. In the following, we illustrate that (\, 7, E, <) is p-soft
regularly ordered. A soft subset Hg of (N, 1,E, <) is soft closed if
1 e Hgor[1 ¢ H(ey) and Hg is finite].

On the one hand, consider &  Hg # Nis a decreasing soft
closed set. Then we have the following two cases:

(i) Either 1 € Hg. Then for each x € AV such that = & Hp, we
define a soft set G as follows G(e) = {x}, for each e € E. So
Gr is an increasing soft open set containing x and its relative
complement is a decreasing soft open set containing H.
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(ii) Or[1 ¢ H(e,) and Hg is finite]. Suppose that = & Hj. Then we
have the following two cases:

1. Eitherx = 1.Then2 ¢ H .. So we define a soft set G as fol-
lows G(e) =N\ H(e), for each ecE. Thus Gg is an
increasing soft open set containing 1 and its relative
complement is a decreasing soft open set containing Hg.

2. Or x# 1. Then we define a soft set Gz as follows
G(e) = {x}, for each e € E. Thus G is an increasing soft
open set containing x and its relative complement is a
decreasing soft open set containing Hg.

Thus (N, 1,E, <) is lower p-soft regularly ordered.

On the other hand, consider '@ # Hp # N is an increasing soft
closed set. Then we have the following two cases:

(i) Either 1 € Hg. Then 2 € Hg. So for each x € N such that

r & Hp, we define a soft set Gg as follows G(e) = {x}, for each

e € E. Thus G is a decreasing soft open set containing x and

its relative complement is an increasing soft open set con-

taining Hg.
(ii) Or [1 ¢ H(e;) and Hg is finite]. Suppose that = & Hg. Then
we have the following two cases:

1. Either x = 1. Then we define a soft set Gy as follows
G(e) =N \ H(e), for each e € E. Thus Gg is a decreasing
soft open set containing 1 and its relative complement
is an increasing soft open set containing Hk.

2. Orx# 1.1fx=2,then1 ¢ Hp. So, by the definition of soft
open sets in this soft topology, we obtain that Hg is an
increasing soft open set. Obviously, its relative comple-
ment is a decreasing soft open set containing x. If
x#1+#2, then we define a soft set G as follows
G(e) = {x}, for each e € E. Thus G is a decreasing soft
open set containing x and its relative complement is an
increasing soft open set containing Hg.

Thus (N, 1,E, <) is upper p-soft regularly ordered.

From the above discussion, we conclude that (N, 1,E, <) is p-
soft regularly ordered. Hence (N, 1,E, <) is p-soft T3-ordered. To
illustrate that (\V, 7, E, <) is not soft normally ordered, we define an
increasing soft closed set Hg and a decreasing soft closed set Fg as
follows:

H(er) = {1,2},H(ez) = {3}, H(es) = {4},
F(e1) = {3},F(ez) = {4} and F(e3) = {1,5}.

Since the two soft closed set are disjoint and there do not exist
disjoint soft neighborhoods Wg and Vg containing Hg and Fg,
respectively, then (N, 7,E, <) is not soft normally ordered. Hence
(N, 1,E, =) is not p-soft T4-ordered.

Example 4.29. It can be considered that the p-soft T;-ordered
spaces are equivalent for T;-ordered spaces if E is singleton.
So by taking E = {e}, we consider Example 4 which given in
McCartan (1968). It is p-soft T,-ordered, but it is not p-soft
T3-ordered.

Definition 4.30. Let {(X;,7;,E;,<;):i€{1,2,...,n}} be a finite
family of soft topological ordered spaces. The product of these soft

topological ordered spaces is given by X = ﬁx,-,r is the product
i=1

i=n
topology on X,E=]]E and =<={(x,y):x,ye€X such that
i=1
(xi,y;) € =; for every i€ {1,2,...,n}}, where x= (X1,X2,...,Xn)
and y = (¥1,Y2,---,¥n)-

Lemma 4.31. If H, ., is a decreasing (resp. an increasing) soft closed
subset of a soft ordered product space (X x Y, T1 x T2,E; x Ez, <), then
Hg, .5, = [Gg, x V]O[)M( x Fg,], for some increasing (resp. decreasing)
soft open sets Gg, € T; and Fg, € T,.

Proof. Suppose that Hg,.g, is a decreasing soft closed subset of a
soft product space (X x Y, Ty x T2,E1 x Ez,<). Then from Lemma
(2.28), there exist soft open sets Gg, € 71 and Fg, € 7o such that
H51><Ez = [GE] x Y]U[X x FEZ]

To prove that Gg, and Fg, are increasing, consider that at least
one of them is not increasing. Without lose of generality, consider
that G, is not increasing. Then G, is not decreasing. It follows that
there exist e € E; and x € X such that P} € d(Gg ) and P} ¢ G .By

choosing P} ¢ F;,, we obtain that P(’"{))ed[Gg] x Y] and

(e,
PGl # [Gf, x YJUIX x Fg,]. This implies that Hg,.r, is not a
decreasing soft set. But this contradicts the given condition. Hence

Gg, and F, are increasing soft sets.

1

A similar proof is given for the case between parentheses. |

Now, we are in a position to verify the following main theorem
in this section.

Theorem 4.32. The finite product of p-soft T;-ordered spaces is p-soft
T;-ordered, fori=0,1,2,3,4.

Proof. We prove the theorem in case of i =2 and i = 3, and the
other follow similar lines.

(i) Consider (X x Y, 1,E, <) is the soft ordered product space of
two p-soft T,-ordered spaces (X,7q,E;,=;) and
(Y,72,E>,=<5) and let (x1,y;) and (X»,y,) be two distinct
points in X x Y such that (x1,y,) Z (x2,¥,). Then x;#,x, or
V12.Y,. Without lose of generality, say x;Z;X;. Since
(X, t1,E1, =4) is p-soft T,-ordered, then there exist disjoint
soft neighborhoods W, and Vg, of x; and x,, respectively,
such that Wg, is increasing and Vg, is decreasing. So
W, x Y is an increasing soft neighborhood of (x;,y,) and
Vg, % Y is a decreasing soft neighborhood of (x,y,) such
that [Wg, x Y]\[VE, x Y] = &g, 5. Hence the proof is
completed.

(ii) Consider (X x Y, 1,E, <) is the soft ordered product space of
two p-soft Ts-ordered spaces (X,t1,E;,=<;) and
(Y,72,E>, <2) and let Hg, ., be a decreasing soft closed set.
Then Hg, g, = (Gg, x YUX x Ug, ), for some increasing soft
open sets Gg, € 71 and Uy, € 7,. For every (z,y) € Hp,«p, We
have (z,y) ¢ G4, xY and (v,y) & X x Ug,. It follows that
v @& Gy and y & Up,. Since (X, 7q1,E;,=1) and (Y,73,E;, <)
are p-soft regularly ordered, then there exist disjoint soft
neighbourhoods Fy, and F,, of x and G, respectively, such
that F1E1 is increasing and FzE] is decreasing, and there exist
disjoint soft neighbourhood Fs, and Fa,, of y and ng,
respectively, such that Fs, is increasing and Fy, is decreas-
ing. Thus (F3, x Y)UX x Fa,,) is a decreasing soft neigh-
bourhood of Hg,.k, in (X xY,7,E,=<) and (FlE1 X Fgfz)is an
increasing soft neighbourhood of (x,y) in (X xY,71,E, =).
Since  [Fy,, x Fs, JN[(F2, x Y)U(X x Fa )] = Br,r,,  then
(X x Y,1,E,=) is lower p-soft regularly ordered. Similarly,

one can prove that (X x Y, t,E, <) is upper p-soft regularly
ordered. Hence (X x Y, 1, E, <) is p-soft Ts-ordered. O
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Definition 4.33. A soft ordered subspace (Y, ty,E, <y) of an STOS
(X, 7,E, =) is called soft compatibly ordered provided that for each
increasing (resp. decreasing) soft closed subset Hg of (Y, ty,E, =<y),
there exists an increasing (resp. a decreasing) soft closed subset

H} of (X, 1,E, <) such that Hy = YNH}.

Theorem 4.34. Every soft compatibly ordered subspace (Y, Ty,E, <y)
of a p-soft regularly ordered space (X,t,E,=) is p-soft regularly
ordered.

Proof. Let y €Y and Hr be a decreasing soft closed subset of
(Y,ty,E,<y) such that y & Hz As the soft ordered subspace
(Y, ty,E, =y) of (X,7,E, =) is soft compatibly ordered, then there
exists a decreasing soft closed subset Hy of (X,1,E, <) such that
Hg = VﬁH;. So that by hypothesis, there exist disjoint soft neigh-
borhoods V; and Wi of y and Hy, respectively, such that Vi is
increasing and Wrg is decreasing. It follows, by Lemma (4.18) that
?ﬁVE is an increasing soft neighborhood of y and ?ﬁWE is a
decreasing soft neighborhood of Hg in (Y,7y,E,<y) such that
(YOVeE)N(YNWe) = Dy. Consequently, (Y,7y,E, <y) is lower p-
soft regularly ordered. Similarly, one can prove that (Y, ty,E, <y)
is upper p-soft regularly ordered. Hence the proof is com-
pleted. O

Corollary 4.35. Every soft compatibly ordered subspace (Y, ty,E, <y)
of a p-soft Ts-ordered space (X, t,E, <) is p-soft Ts-ordered.

One can easily verify the following proposition and so the proof
will be omitted.

Proposition 4.36. Every soft closed compatibly ordered subspace
(Y,ty,E,=y) of a p-soft T4-ordered space (X,t,E,=) is p-soft Ty-
ordered.

Definition 4.37. A soft topological ordered property or soft topo-
logical ordered invariant is a property of a soft topological ordered
space which is invariant under ordered embedding soft homeo-
morphism maps.

Theorem 4.38. The property of being a p-soft T;-ordered space is a
soft topological ordered property, fori=0,1,2,3,4.

Proof. We prove the theorem in case of i =2 and i = 4, and the
other follow similar lines.

(i) Suppose that f, is an ordered embedding soft homeomor-
phism map of a p-soft T,-ordered space (X,7,A,=;) onto
an STOS (Y,0,B,=,) and let x,y € Y such that x A, y. Then
Py £, P}, for each f € B. Since f, is bijective, then there exist
P; and p{; in X such that f4(Py) =P; and f(p(Pf() =P} and
since f, is an ordered embedding, then P‘;ﬁ]P’;. So a%;b. By
hypothesis, there exist disjoint soft neighborhoods W¢ and
Ve of a and b, respectively, such that Wg is increasing and
Vg is decreasing. Since f, is bijective soft open, then
fs(Wg) and f,(Vg) are disjoint soft neighborhoods of x and
y, respectively. It follows, by Proposition (3.15), that
f4(Wrg) is increasing and f , (V) is decreasing. This completes
the proof.

(ii) Suppose that f, is an ordered embedding soft homeomor-
phism map of a soft normally ordered space (X, 7,A, <;) onto

an STOS (Y, 60,B,=;) and let Hr and Fr be two disjoint soft
closed sets such that Hg is increasing and Fr is decreasing.

Since f, is bijective soft continuous, then f;l(HE) and
f;l(FE) are disjoint soft closed sets and since f, is ordered
embedding, then f,' (H) is increasing and f,,' (F¢) is decreas-
ing. By hypothesis, there exist disjoint soft neighborhoods
We and Vi of f,'(Hg) and f,' (Fg), respectively, such that
W is increasing and Vi is decreasing. So HEEfd,(WE) and
Fi Cf,(Ve). The disjointness of the soft neighborhoods
f4(WE) and f 4(Vg) completes the proof. i

In the rest of this section, we present some results that connect
between soft compactness and some ordered soft separation
axioms.

Theorem 4.39. If D is a stable soft compact subset of a p-soft T,-
ordered space (X, t,E, <), then i(Dg) (d(Dg)) is a soft closed set.

Proof. Consider D is a stable soft compact subset of a p-soft T,-
ordered space (X,7,E, <) and let a € (i(Dg)). Then for all b € D,
we have b £ a. Therefore there exist an increasing soft neighbor-
hood G;, of b and a decreasing soft neighborhood H;, of a such that

G,-EﬁH,-E = 5 Thus DEEUie,GiE. Since Dg is soft compact, then
Dr € UGy Also, a e ({H;.. Since (UGN (NEHL) = &,
then i(De)(N="H,) = &. So a e (N="H;,) C (i(Dg))° and this
means that a € Int[(i(Dg))]. Since a is chosen arbitrary, then

(i(Dg))" is a soft open set. Hence i(Dg) is soft closed. A similar proof
can be given for the case between parentheses. |

Theorem 4.40. Let F; be a decreasing (resp. an increasing) soft com-
pact subset of a p-soft T,-ordered space (X,t,E,=<). If v & Fr, then
there exist a decreasing (resp. an increasing) soft neighborhood W
of x and an increasing (resp. a decreasing) soft neighborhood Vg of

Fg with WEﬁVE = 6

Proof. Let Fr be a decreasing soft compact set such thatz ¢ Fj; and
y&Fg. Since Fg is decreasing, then x Zy and since (X, 7,E, <) is p-
soft T,-ordered, then there exist disjoint soft neighborhoods W,
and V;, of x and y, respectively, such that W;, is increasing and
Vi, is decreasing. Therefore {V;,} forms a decreasing soft neighbor-
hood cover of Fr. By hypothesis, Fr is soft compact, it follows that

Fe C U=V, Now, (J=1V,, is a decreasing soft neighborhood of Fi
and i="W,, is an increasing soft neighborhood of x. In view of dis-
jointness of the soft neighborhoods |Ji="V;. and (i="W,, the theo-
rem holds. A similar proof is given in case of F is increasing soft
compact. O

Corollary 4.41. Every soft compact p-soft T,-ordered space
(X,t,E, =) is p-soft T3-ordered.

5. Conclusion

The concept of topological ordered spaces was first presented
by Nachbin (1965). The idea of soft sets was given by Molodtsov
(1999) for dealing with uncertain objects and then the notion of
soft topological spaces was formulated depend on the soft sets
notion by Shabir and Naz (2011). In this work, we present a notion
of monotone soft sets and establish some properties associated
with it such as the relative complement of an increasing (resp. a
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decreasing) soft set is decreasing (resp. increasing) and the finite
product of increasing (resp. decreasing) soft sets is increasing
(resp. decreasing). In the last section, we generate an STOS
(X,t,E, <) which is finer than the given STS (X, t,E) by adding a
partial order relation on the universe set X and then we define
new ordered soft separation axioms namely, soft T;-ordered spaces
(i=0,1,2,3,4) which are strictly stronger than soft T; (Shabir and
Naz, 2011) and p-soft T; (El-Shafei et al., 2018) in case of i = 0,1, 2.
By analogy with the equivalent conditions of T;-ordered and
regularly ordered spaces on topological ordered spaces, we give
the equivalent conditions for p-soft T;-ordered and p-soft regularly
ordered spaces on soft topological ordered spaces. In Proposition
(4.23), we investigate the conditions under which such p-soft
T;-ordered spaces (i = 0, 1, 2) are equivalent, and in Theorem (4.32),
we point out that the finite product of p-soft T;-ordered spaces is
p-soft T;-ordered, for i = 0,1, 2,3,4. By using ordered embedding
soft homeomorphism maps we define soft topological ordered
properties and then verify that the property of being a p-soft
T;-ordered space is a topological ordered property, for
i=0,1,2,3,4. The important role which soft compactness play
with some of the initiated ordered soft separation axioms are
studied. From this study, it can be seen that an STOS (X, 1,E, <)
consider an STS if < is an equality relation and consider a topolog-
ical ordered space if E is a singleton set. Finally, the concepts intro-
duced and results obtained herein form an introductory platform
and open scopes for studying further important topics related to
soft topological ordered spaces. We plan in an upcoming paper,
to introduce and study new ordered soft separation axioms by
utilizing total belong € and partial non belong ¢.
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