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Abstract Kaolin intercalates were prepared by employing derivatives of oleochemicals namely

rubber seed oil (SRSO) and tea seed oil (STSO) and characterized by employing powder X-ray

diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption–

desorption (NAD) techniques. Intercalation was achieved in the presence of hydrazine hydrate

as co-intercalate. The PXRD patterns showed an increase in the interlayer basal spacing d-001
for the SRSO treated and STSO treated kaolins confirming intercalation process. The FTIR stud-

ies indicated that the fatty acid salts of rubber seed oil and tea seed oil were effectively interca-

lated in the kaolinite layers as per the bands at 1564 cm�1 and 1553 cm�1 for SRSO treated and

STSO treated kaolinites, respectively. The SEM revealed intercalation of organic materials in the

kaolinite layers. The NAD results showed that intercalation of kaolin resulted in an overall

decrease in the specific surface area as well as pore volume. Specific surface area decreased in
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the following order: untreated (pristine) kaolin > STSO treated kaolin > SRSO treated kaolin

and pore size in the order: untreated (pristine) kaolin > SRSO treated kaolin > STSO treated

kaolin.

ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Kaolin commonly called China clay is a ubiquitous mineral
which consists mainly of the mineral kaolinite having an

empirical formula of Al2Si2O5(OH)4 and theoretical chemical
composition as follows: Si2 = 46.54%; Al2Si2 = 39.50%;
and H2O = 13.96% with structure consisting of silicon oxide

tetrahedral and gibbsite octahedral sheets typical of type 1:1
minerals. They can be employed in many applications for
property enhancements; for example in ceramics, medicine, pa-
per coatings, as a food additive, in toothpaste, as a light diffus-

ing material in white incandescent light bulbs, and in
cosmetics. It is generally the main component in porcelain. It
is also used in paint production to extend titanium dioxide

(TiO2) and modify gloss levels; in rubber for semi-reinforcing
properties; and in adhesives to modify rheology (Krishnan
et al., 2012; Guessoum et al., 2012; Preetha and Rani, 2012;

Songfang et al., 2011; Ma and Bruckard, 2010; Murray,
2007; Ciullo, 1996).

Kaolin is naturally hydrophilic and is not best suited for

some applications like in Natural Rubber (NR) reinforcement
due to the hydrophobicity of Natural Rubber. To ensure com-
patibility with the NR matrix, kaolin is organomodified by
intercalation with some organic molecules.

Most materials used as organomodifiers are obtained from
petroleum or natural gas and these are very expensive due to
the non-renewable nature of their sources. Oleochemicals are

preferred as kaolin organomodifiers based on their renewable
and inexhaustible nature, availability, eco-friendliness and
conformability.

Nitrogen gas adsorption or the Brunauer–Emmett–Teller
(BET) method is a proven method for the characterization of
a wide range of mesoporous materials including kaolin (Wang
et al., 2011; Sing, 2001; Reichenauer and Scherer, 2001; Inel

and Tumsek, 2000). The adsorption and desorption isotherms
provide practicable information about materials that can be
applied into the specific surface area, the pore size and pore

volume.
Following the pioneering work of Irving Langmuir in 1918,

the interpretation of adsorption data became interesting.

Many further attempts have been made to interpret the iso-
therm information, including BET and Barrett–Joyner–Halen-
da (BJH). BET is a standard method of determining the

surface area. Owing to the artificial nature of the BET theory
the range of applicability of the BET equation is always limited
to a part of the nitrogen isotherm in the order 0.05 < P/
P0 < 0.30. By measuring the volume of gas adsorbed at a par-

ticular partial pressure, the Brunauer–Emmett–Teller (BET)
equation gives the specific surface area of the material.

The classification of pores according to size has been pro-

posed by the International Union of Pure and Applied Chem-
istry as follows: micropore is defined as pores with an internal
width less than 2 nm; mesopore for pores between 2 and 50 nm

and macropore for pores greater than 50 nm. Pore types and
pore sizes play important roles in the adsorption process. Dif-
ferent methods are employed to determine the pore size and
the pore size distribution.

The aim of this study is to evaluate and compare the char-
acteristics of kaolin and its derived modified forms resulting in
partial intercalation as well as delamination or exfoliation. All
the samples were analyzed with respect to a specific surface

area by Single point surface area, BET surface area, Langmuir
surface area, BJH Adsorption cumulative surface area, pore
volume and size by BJH Adsorption cumulative pore volume

and BJH cumulative average pore diameter, respectively. The
SRSO treated kaolin and STSO treated kaolin were initially
characterized by Powder X-ray Diffraction (PXRD) and Fou-

rier Transform Infrared spectroscopy (FTIR) to verify interca-
lation of the organic substance within the kaolinite layers.

2. Experimental

2.1. Materials

BCK grade Kaolin used in this work was obtained from Eng-
lish Indian Clays Ltd. Thiruvananthapuram, India; Rubber
seed oil (RSO) and Tea seed oil (TSO) were provided by NI-

IST, CSIR, Thiruvananthapuram, India; Laboratory grades
of Sodium hydroxide (MERCK) and Hydrazine hydrate (FIN-
NAR) were obtained from local suppliers.

2.2. RSO-Kaolin treatment

Following a similar procedure earlier reported by Rugmini and

Menon (2008) the sodium salt of rubber seed oil (SRSO) was
stoichiometrically prepared by mixing 33 mL of RSO with
100 mL of 20% NaOH solution in an ice bath with continuous

stirring for 12 h. The resulting mixture was kept for 1 day to
cure. The final pH of the resulting solution was adjusted to
9. The SRSO was washed with water to remove excess of
NaOH, dried in a hot air oven and the dried product was pow-

dered. This was followed by slowly adding 98 g of Kaolin to a
mixture containing 20 g SRSO and 70 mL hydrazine hydrate
with vigorous stirring at 20 �C. The mixture was homogenized

using an Art-MICCRA D-8 (Germany) homogenizer, and the
sample was dried in a freeze drier.

2.3. TSO-Kaolin treatment

Sodium salt of tea seed oil (STSO) was stoichiometrically pre-
pared by reacting 28 mL of TSO with 27 mL of 20% NaOH
solution in an ice bath with constant stirring for 12 h and kept

for 1 day to allow for curing to take place. The pH of the
resulting solution was adjusted to 9. STSO was washed with
water to remove excess base; dried in a hot air oven to remove

residual moisture and powdered. Then 98 g of Kaolin was
slowly added to a mixture containing 20 g STSO and 70 mL



Figure 2 Pristine Kaolin at a magnification of ·15,000.

Figure 3 SRSO treated Kaolin at a magnification of ·15,000.
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hydrazine hydrate with vigorous stirring at 20 �C. The mixture
was homogenized using an Art-MICCRA D-8 (Germany)
homogenizer, and the sample was dried in a freeze drier.

2.4. Characterization of the untreated and treated Kaolins

2.4.1. Scanning electron microscopy

The morphology of the pristine and treated Kaolin was ob-
served from the JEOL (JSM- 5600LV SEM) at an acceleration

voltage of 15 kv. The image magnification of ·15,000 was se-
lected to reveal the kaolinite layers. The samples to be exam-
ined were initially surface coated using palladium–gold

plating by sputtering to increase conductivity.

2.4.2. X-ray diffraction

PXRD of the samples was performed using a PHILIPS-1710

X-ray diffractometer using monochromatic Ni-filtered Cu
Ka radiation 1.5418 Å at 40 kV and 20 mA from 2h = 5–55�
with a speed of 2�/min and step size of 0.05�. The diffraction
of X-rays by crystals is described by Bragg’s Law:

nk ¼ 2d sinh

where k is the wavelength of monochromatic X-ray source
measured in Angstrom (Å), ‘‘d’’ is the interplanar spacing gen-
erating the diffraction measured in Angstrom, h is the diffrac-

tion angle at which X-ray falls on the sample, and n is the
order of reflection.

2.4.3. FTIR

The FTIR spectra of the organomodified and untreated kao-
lins were obtained using MAGNA 560 NICOLET Fourier
Transform Infrared spectrometer. Wavenumbers from

3800 cm�1 to 600 cm�1 were considered.

2.4.4. NAD (BET Test)

NAD experiment was performed using the GEMINI DEVICE

(Gemini 2375 V5.01, Micromeritrics Corporation, USA). A
known amount (�3–4 mg) of the sample was weighed and de-
gassed at 120 �C under vacuum (780 mmHg) to remove ad-

sorbed gases and moisture. The material is again weighed
and subjected to nitrogen adsorption under vacuum and liquid
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Figure 1 Combined X-ray diffraction pattern for pristine kaolin,

SRSO treated kaolin and STSO treated kaolin.

Figure 4 STSO treated Kaolin at a magnification of ·15,000.
nitrogen conditions. The adsorption and desorption informa-
tion obtained from each run was used to determine the specific

surface area (m2/g), pore size distribution and pore size (nm)
using the BET and BJH models. The specific surface area
was calculated using the BET method from the adsorption iso-

therm within the relative pressure (P = P0) range 0–0.375. The
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Figure 5 FTIR spectra for untreated Kaolin.
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Figure 6 FTIR spectra for SRSO treated Kaolin.
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Figure 7 FTIR spectra for STSO treated Kaolin.
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nitrogen molecule covers an area of 16.2 Å2 („0.162 nm2).
Adsorption measurements can estimate the porous volume
corresponding to P/P0 = 1. The pore size distribution in the

mesoporous range (2–50 nm) was evaluated according to the
BJH method. This experiment was conducted for the un-
treated, SRSO treated and STSO treated kaolins, respectively.
3. Results and discussion

3.1. X-ray diffraction studies for the Kaolin

The X-ray diffraction patterns of the untreated and treated

Kaolins are shown in Fig. 1. It is evident that all the samples
exhibited a diffraction peak at 2h = 12.54� which is assigned
to the characteristic interlayer basal spacing d-001 of kaolinite
at 7.10 Å. A closer value of 7.15 Å was obtained by Rugmini

and Menon (2008) for untreated kaolin. However, the intensity
of the peak has reduced significantly in the case of its organo-
modified forms indicating partial modification (intercalation

or delamination or exfoliation). In the SRSO treated Kaolin,
a displacement of the peak to lower angles 2h = 6.60� has ta-
ken place resulting in an interlayer basal spacing d-001 of

13.40 Å. The STSO treated Kaolin recorded a much lower
interlayer basal spacing of d-001 of 9.70 Å at angle
2h = 9.13� compared to the SRSO treated Kaolin. Both the

patterns thus indicated that the kaolinite interlayer region
has expanded, along the c-axis, as a result of the intercalation
of the oleo derivatives achieved by employing hydrazine
hydrate as co-intercalate. However, it was difficult to differen-

tiate between intercalation, delamination and exfoliation. The
value obtained for STSO treated kaolin in this work was much



Table 1 Position and assignment of the various absorption bands in the FTIR spectra of the Kaolin and its treated forms.

Position and assignment of bands (cm�1) Kaolin SRSO-treated

Kaolin

STSO-treated

Kaolin

STSO-treated Kaolin

OH stretching of inner surface hydroxyl groups

(in plane vibration with a transition moment nearly

perpendicular to the (001) plane)

3691 3688 3689

OH stretching of inner surface hydroxyl groups

(anti-phase vibration with a transition moment lying in the (001) plane)

3655 3654 3654

OH stretching of inner surface hydroxyl groups 3620 3620 3620

C‚O stretching (indicating the presence of organic modification) – 1564 1553

Si–O stretching (longitudinal mode; shoulder of absorption band) 1115 1115 1115

In plane Si–O stretching 1030 1029 1030

In plane Si–O stretching 1006 1005 1006

OH deformation of inner hydroxyl groups 913 912 912

Si–O 789 789 790

Si–O, perpendicular 752 751 751
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Figure 9 Adsorption isotherm of nitrogen on SRSO treated

Kaolin.
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Figure 8 Adsorption isotherm of nitrogen on untreated Kaolin.
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Figure 10 Adsorption isotherm of nitrogen on STSO treated

Kaolin.
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Figure 11 Langmuir plot of the different Kaolin samples.
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lower compared to the value of 14.3 Å obtained by (Yahaya
et al., 2010). The value of 13.40 Å recorded for SRSO treated
Kaolin was low compared to the value of 14 Å obtained from

an earlier study by Rugmini and Menon (2008) and high com-
pared to the values of 12.5 Å and 12.6 Å obtained for sodium
montmorillonite by Arroyo et al. (2003) and Wu et al. (2005),
respectively.
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3.2. SEM studies

The SEM morphologies of untreated Kaolin, SRSO treated
Kaolin and STSO treated kaolin are shown in Figs. 2–4. A clo-

ser look at the micrograph of the pristine kaolin in Fig. 2 re-
veals the hexagonal shape of the kaolinite crystal. The
morphology of the kaolinite crystal is platelet shaped. In
Fig. 3 the SRSO-treated kaolin has a compact plate-like fari-

naceous morphology which shows the presence of organic
material (organomodification) in the kaolin. The SRSO treated
kaolin has delaminated layers indicating an intercalation with

organic material.
The STSO treated morphology in Fig. 4 clearly revealed the

presence of organic material in the kaolin matrix. The STSO

treated kaolin has delaminated layers indicating an intercala-
tion with organic material.

3.3. FTIR studies

The FTIR spectra of untreated Kaolin, SRSO modified Kaolin
and STSO modified kaolin are depicted in Figs. 5–7. The com-
plete assignment of the absorption bands in measured IR spec-

tra is summarized in Table 1. The unmodified as well asmodified
kaolins exhibited bands at 3620 cm�1 and 3654 cm�1 which are
characteristics of inner hydroxyls (Vaculikova et al., 2011;

Yahaya et al., 2010; Dai and Huang; 1999; Johnston and Stone,
1990) and hence are not accessible for interaction with guest
molecules. In the case of organomodified samples, the occur-

rence of bands between 2850 cm�1 and 2920 cm�1 showed the
Table 2 Summary report of the nitrogen adsorption/desorption pr

Properties U

Area (m2/g)

Single point surface area at P/P0 (0.272) 13

BET surface area 13

Langmuir surface area 21

BJH adsorption cumulative surface area of pores between

17 Å and 3000 Å diameter

14

Volume (cm3/g)

BJH adsorption cumulative pore volume of pores between

17 Å and 3000 Å diameter

0

Pore size (nm)

BJH adsorption average pore diameter (4 V/Å) 6
occurrence of intercalation of SRSO and STSO on kaolin sur-
faces (Rugmini and Menon, 2008). These bands are attributed
to the symmetric and asymmetric –CH2– stretching vibrations,

respectively. In the treated samples, there is occurrence of bands
between 1564 cm�1 and 1553 cm�1 showing the occurrence of
intercalation of SRSO and STSO on kaolin surfaces which are

attributed to C‚O stretching. This intercalation process de-
creased the electrostatic attraction between the lamellae by caus-
ing an increase in the dielectric constant when the compounds

penetrated between the layers. The sharp band at around
912 cm�1 and the weak shoulder at 940 cm�1 are due to the
Al(VI)-OH vibrations.

3.4. The N2 adsorption–desorption report

Surface area of all the samples under study was evaluated by
employing nitrogen adsorption–desorption method. The pore

volume and pore diameter were evaluated from the adsorption
arm of isotherm based on Barrett–Joyner–Halenda (BJH)
model. All the materials yielded a type IV isotherm as shown

in Figs. 8–10 for the untreated kaolin, SRSO treated kaolin
and STSO treated kaolin. Fig. 11 is the Langmuir plot of the
samples investigated, while Fig. 12 is the BET surface area plot

of the samples investigated. A summary of the results
generated from the nitrogen adsorption–desorption experi-
ment is shown in Table 2.

The reduction in surface areas, pore volumes and pore

sizes of the SRSO treated and STSO treated kaolins is an
indication of the formation of nanosized materials from kaolin
(i.e. Nanoclay) which is a result of the organomodification

process.
4. Conclusions

From the present study, the following conclusions were made:

1. The SRSO treated and STSO treated kaolins were interca-
lated as evidenced from an increased interlayer basal spac-

ing in the X-ray studies and the C‚O stretching from
FTIR studies indicating the presence of organic modifica-
tion at bands 1564 cm�1 and 1553 cm�1 for the SRSO

and STSO modified kaolins, respectively.
2. New mesoporous materials from kaolin were synthesized

and developed from oleochemicals.
operties of untreated, SRSO treated and STSO treated Kaolins.

ntreated Kaolin SRSO treated

Kaolin

STSO treated

Kaolin

.0179 4.8264 5.1747

.1160 5.2287 5.6733

.0305 9.0155 9.9300

.1274 5.12166 5.7424

.023573 0.008447 0.008824

.674 6.591 6.146
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3. All the adsorption isotherms were found to conform to the

Langmuir equation.
4. The adsorption isotherms of the modified kaolins were

found to have the characteristic features of type IV iso-

therm according to IUPAC classification with initial part
of the isotherm attributed to monolayer-multilayer
adsorption.

5. The presence of hysteresis in all the isotherms indicates cap-

illary condensation in the micropores.
6. The Single Point surface area, BET surface area, Langmuir

surface area, External surface area, micropore area, and

BJH adsorption cumulative surface area values of samples
obtained by nitrogen adsorption were found to decrease in
the following order: untreated (pristine) kaolin > STSO

treated kaolin > SRSO treated kaolin.
7. The micropore volume and BJH adsorption cumulative

pore volume values of samples obtained by nitrogen
adsorption were found to decrease in the following order:

untreated kaolin > STSO treated kaolin > SRSO treated
kaolin.

8. The BJH Adsorption average pore diameter (4 V/Å) values

of samples obtained by nitrogen adsorption were found to
decrease in the following order: untreated kaolin > SRSO
treated kaolin > STSO treated kaolin.

9. The pore sizes of the kaolin and the modified kaolin are
within themesoporous materials range of 2–50 nmwith kao-
lin having a pore size of 6.674 nm > SRSO treated kaolin

having 6.591 nm > STSO treated kaolin having 6.146 nm.
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