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Abstract In this paper, we generalized the notions of rough set concepts using two topological

structures generated by general binary relation defined on the universe of discourse. New types

of topological rough sets are initiated and studied using new types of topological sets. Some prop-

erties of topological rough approximations are studied by many propositions.
ª 2010 King Saud University. All rights reserved.
1. Introduction

The theory of rough set, proposed by Pawlak (1982), is an
effective tool for data analysis (Greco et al., 2001, 2002; Hu

and Cercone, 1995; Kryszkiewicz, 1998, 1999; Pawlak et al.,
1994; Pawlak, 1991, 1997, 1998, 2001; Lin and Yao, 1996;
Lingras and Yao, 1998; Leung and Li, 2003; Orlowska,
1986; Orlowska and Pawlak, 1987; Skowron and Rauszer,

1992; Skowron, 1993, 1995; Stepaniuk, 1998, 2000; Zhang
et al., 2003). It can be used in the attribute-value representa-
tion model to describe the dependencies among attributes
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and evaluate the significance of attributes and derive decision

rules. Classical rough set philosophy is based on an assump-
tion that every object in the universe of discourse is associated
with some information. Objects characterized by the same

information are indiscernible with the available information
about them. The indiscernibility relation generated in this
way is the mathematical basis for the rough set theory. Classi-

cal rough set theory has used successfully in the analysis of
data in complete information systems.

The indiscernibility relation is reflexive, symmetric and

transitive. The set of all indiscernible objects is called an ele-
mentary set or equivalent class. Any set of objects, being a un-
ion of some elementary sets, is refereed to as crisp set,
otherwise is called rough set. A rough set can be described

by a pair of crisp sets, called the lower and upper approxima-
tions. By relaxing indiscernibility relation to more general bin-
ary relation, classical rough set can be extended to a more

general model. Slowinski and Vanderpooten (1997) discussed
rough approximation based on the reflexive and transitive bin-
ary relation. Skowron and Stepaniuk (1995) and Yao and

Wong (1995) discussed generalized approximation space based
on the reflexive and symmetry binary relation. Slowinski and
Vanderpooten (2000) proposed generalized definition of
rough approximation based on reflexive binary relation and
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compared with other definitions. Lin (1988), Lin and Yao
(1996), Yao and Lin (1996), and Yao (1996, 1998) study the
approximation operators defined by different neighborhood

operators. Skowron and Stepaniuk (1995, 1996) and Stepaniuk
(1998, 2000) defined generalized approximation space by using
uncertain function and rough inclusion function and described

its construction. Also they used the proposed techniques to
investigate the problem of object selection.

In practice, tolerance relation (reflective, symmetric) and

preference relation (reflective, anti-symmetric, transitive) are
important relations. Greco et al. (2001, 2002) proposed rough
approximations based on preference relation and applied it to
multi-criteria decision analysis; rough approximation based on

tolerance relation has been used successfully to compute attri-
bute reducts and derive decision rules in incomplete information
systems (SkowronandRauszer, 1992; Skowron, 1993; Slowinski

and Stepaniuk, 1989; Kryszkiewicz, 1998, 1999; Leung and Li,
2003). For example,Kryszkiewicz (1998, 1999) defined tolerance
relation in incomplete information systems and proposed the

concepts of generalized decision and relative reduct for an ob-
ject. By using discernibility function and Boolean reasoning
techniques, one can obtain the relative reduct of every object

and the optimal decision rules supported by the object. Leung
and Li (2003) gave a computational approach of relative reduct
of each object by using maximal consistent block techniques.

This paper is organized as follows: Section 2 discuss the

topological transition to rough generalizations. In Section 3
we initiated five types of rough generalizations using any bin-
ary relation and using the topological structure generated by

this relation. The properties of the new five types of generaliza-
tions and some approximations are studied in Section 4. The
conclusion of this work is discussed in Section 5.
2. Rough sets topological view

The reference space in rough set theory is the approximation

space whose topological structure is generated by the equiva-
lence relation R. This topology has the property that every
open set in it is closed. This topology is called quasi-discrete

topology and it is a kind of approximations that are transitive.
We will express rough set properties in terms of topological

concepts. Let X be a subset of U. Let cl(X); int(X) and b(X) be
closure, interior, and boundary points respectively. X is exact if

b(X) = U, otherwise X is rough. It is clear X is exact iff
cl(X) = int(X). In Pawlak space a subset X ˝ U has two possi-
bilities rough or exact. For a general topological space, X ˝ U

has the following types of definability:

(1) X is totally definable if X is exact set

‘‘cl(X) = X = int(X)’’,
(2) X is internally definable if X = int(X), X „ cl(X),
(3) X is externally definable if X „ int(X), X= cl(X),
(4) X is undefinable if X „ int(X), X „ cl(X).

Original rough membership function is defined using equiv-
alence classes. We will extend it to topological spaces. If s is a

topology on a finite set U, where its base is b, then the rough
membership function is

ls
XðxÞ ¼

f\bxg \ Xj j
f\bxgj j ; bx 2 b; x 2 U;
where bx is any member of b containing x. It can be shown that

this number is independent of the choice of bases. Since, the
intersection of all members of the topology containing X con-
cedes with the intersection of all members of a base containing x.

3. Rough topological approximations

In this section we introduce the basic notations to topological

lower and topological upper approximations. Here we define
two topologies generated by any binary general relation R.
The subbase of the first topology sxR (right topology) is the
right neighborhood xR. Also, the topology sRx (left topology)

is the left neighborhood Rx where, xR = {y 2 X : xRy} and
Rx= {y 2 X : yRx}.

The topological lower and the topological upper approxi-

mations of a subset X of U are defined using the topolo-
gies sxR and sRx as follows:

RsxRðXÞ ¼ [fxR : xR#Xg and

RsxRðXÞ ¼ [fxR : xR \ X – /g;

RsRxðXÞ ¼ [fRx : Rx#Xg and

RsRxðXÞ ¼ [fRx : Rx \ X – /g:

Some types of topological rough sets are initiated in the fol-
lowing definition.

Definition 3.1. Let (U,R) be a generalized approximation
space. Let sxR and sRx be the two topologies generated using

the relation R. Then the subset X ˝ U is called:

(i) Semi rough (briefly S12-rough) if X # RsRxðRsxRðX ÞÞ.
(ii) Pre rough (briefly P12-rough) if X # RsxRðRsRxðAÞÞ.
(iii) Semi-pre rough (briefly b12-rough) if X # RsRxðRsxR

ðRsRxðX ÞÞÞ.
(iv) a-Rough (briefly a12-rough) if X # RsxRðRsRxðRsxRðX ÞÞÞ.
(v) c-Rough (briefly c12-rough) if X # RsRxðRsxRðX ÞÞ[

RsxRðRsRxðX ÞÞ.

The family of all S12-rough (resp. P12-rough, b12-rough,
a12-rough and c12-rough) sets in (U,R) is denoted by FS12(U)
(resp. FP12(U), Fb12(U), Fa12(U) and Fc12(U)).

The complement of S12-rough (resp. P12-rough, b12-rough,
a12-rough and c12-rough) set is called Sc

12-rough (resp. Pc
12-

rough, bc
12-rough, ac12-rough and cc12-rough).

The family of all Sc
12-rough (resp. Pc

12-rough, bc
12-rough,

ac12-rough and cc12-rough) sets of (U,R) is denoted by FSc
12ðUÞ

(resp. FPc
12ðUÞ;Fbc

12ðUÞ;Fac12ðUÞ and Fcc12ðUÞÞ.

Proposition 3.1. In the generalized approximation space (U,R),

we can prove that:

(i) Fa12(U) < FS12(U)< Fc12(U) < Fb12(U).
(ii) Fa12(U) < FP12(U) < Fc12(U) < Fb12(U).
Proof. Obvious. h

The following example illustrates the above definition.

Example 3.1. Let R be any binary relation defined on a
nonempty set U= {a,b,c,d} defined by R = {(a,a), (a,c),
(a,d), (b,b), (b,d), (c,a), (c,b), (c,d), (d,a)}. Hence the subbase
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of sxR is {{a,c,d}, {b,d}, {a,b,d}, {a}} and the subbase of sRx is
{{a,c,d}, {b,c}, {a}, {a,b,c}}. Then

sxR ¼ fU;/; fa; c; dg; fb; dg; fa; b; dg; fag; fdg; fa; dgg;
sRx ¼ fU;/; fa; c; dg; fa; cg; fa; b; cg; fag; fcg; fb; cgg:
Consequently,

Fa12ðUÞ ¼ FS12ðUÞ
¼ fU;/; fa; c; dg; fb; dg; fa; b; dg; fag; fdg; fa; dgg;

Fc ðUÞ ¼ Fb ðUÞ ¼ P OðUÞ
12 12 rl

¼ fU;/; fag; fdg; fa; bg; fa; dg; fa; cg; fa; b; cg;
� fb; dg; fa; b; dg; fa; c; dgg:

Definition 3.2. Let (U,R) be a generalized approximation
space and X ˝ U. Then the general lower (briefly k12 lower)

of X denoted by k12(X) for all k12 2 {S12, P12, b12, a12, c12} is
defined by: k12(X) = [ {G 2 Fk12(U), G ˝ X}.

Definition 3.3. Let (U,R) be a generalized approximation space
andX ˝ U. Then the general upper ofXdenoted by k12ðXÞ for all
k12 2 {S12, P12, b12, a12, c12} is defined by k12ðXÞ ¼ \fH 2
Fkc

12ðUÞ;H � Xg.

Definition 3.4. Let (U,R) be a generalized approximation space.
Then for all k12 2 {S12, P12, b12, a12, c12} the topological general
lower and topological general upper approximations of any sub-
set X ˝ U are defined as: Rk12ðXÞ ¼ k12ðXÞ;Rk12ðXÞ ¼ k12ðXÞ.

Proposition 3.2. Let (U,R)be a generalized approximation space

generated by any binary relation R. Then for any subset X ˝ U:

(i) RsxRðX Þ# Ra12ðX Þ# RS12
ðX Þ# Rc12ðX Þ# Rb12ðX Þ# X #

Rb12ðX Þ# Rc12ðX Þ# RS12
ðX Þ # Ra12ðX Þ# RsxRðX Þ.

(ii) RsRxðX Þ# Ra12ðX Þ# RP12
ðX Þ# Rc12ðX Þ# Rb12ðX Þ# X #

Rb12ðX Þ# Rc12ðX Þ# RP12
ðX Þ# Ra12ðX Þ# RsRxðX Þ.
Proof.

ðiÞ RsxR ðXÞ ¼ [fG 2 sxR : G#Xg# [ fG 2 Fa12ðUÞ : G#Xg
# [ fG 2 FS12ðUÞ : G#Xg# [ fG 2 Fc12ðUÞ : G#Xg
# [ fG 2 Fb12ðUÞ : G#Xg#X# \ fH 2 Fbc

12ðUÞ : X#Hg
# \ fH 2 Fcc12ðUÞ : X#Hg# \ fH 2 FSc

12ðUÞ : X#Hg
# \ fH 2 Fac

12ðUÞ : X#Hg# \ fH 2 scxR : X#Hg:

Hence, RsxRðXÞ#Ra12ðXÞ#RS12
ðXÞ#Rc12ðXÞ#Rb12ðXÞ#

X#Rb12ðXÞ# Rc12ðXÞ#RS12ðXÞ#Ra12ðXÞ#RsxRðXÞ.

(ii) By the same manner as (i). h

Example 3.2. According to Example 3.1, if X= {a,b} and
Y= {d}. Then Ra12ðXÞ ¼ fag;RP12

ðXÞ ¼ fa; bg;Ra12ðYÞ ¼
fb; c; dg and RP12

ðYÞ ¼ fdg. So Ra12ðXÞ � RP12
ðXÞ and RP12

ðYÞ � Ra12ðYÞ.

Proposition 3.3. Let (U, R) be a generalized approximation
space generated by any binary relation R. Then for any two sub-

sets X,Y ˝ U we have for all k12 2 {S12, P12, b12 , a12, c12}:

(i) Rk12ð/Þ ¼ Rk12ð/Þ ¼ / and Rk12ðUÞ ¼ Rk12ðUÞ ¼ U .
(ii) If X ˝ Y, then Rk12ðX Þ# Rk12ðY Þ.
(iii) If X ˝ Y, then Rk12ðX Þ# Rk12ðY Þ.
(iv) Rk12ðX [ Y Þ � Rk12ðX Þ [ Rk12ðY Þ.
(v) Rk12ðX [ Y Þ � Rk12ðX Þ [ Rk12ðY Þ.
(vi) Rk12ðX \ Y Þ# Rk12ðX Þ \ Rk12ðY Þ.
(vii) Rk12ðX \ Y Þ# Rk12ðX Þ \ Rk12ðY Þ.
(viii) Rk12ðX cÞ ¼ ðRk12ðX ÞÞ

c
.

(ix) Rk12ðX cÞ ¼ ðRk12ðX ÞÞ
c
.

Proof. By using the properties of k12 and k12 for all k12 2 {S12,
P12, b12, a12, c12} the proof is complete. h

The following example, at k12 = a12 illustrates that the in-
verse of Property (iv) in the above proposition in general does
not hold for all k12 2 {S12, P12, b12, a12, c12}.

Example 3.3. According to Example 3.1 if X= {a}

andY = {c,d}, then Ra12ðXÞ ¼ fag;Ra12ðYÞ ¼ fdg, and Ra12

ðX [ YÞ – Ra12ðXÞ [ Ra12ðYÞ.

The following example shows that the inverse of the
Properties (v) and (vi) in Proposition 3.2, in general are not
true for all k12 2 {S12, P12, b12, a12, c12}, we consider k12 = b12.
Example 3.4. According toExample3.1, ifX1 = {a},X2 = {d},

Y1 = {a,b} and Y2 = {b,d}, then Rb12ðX1Þ ¼ fa; cg;Rb12

ðX2Þ ¼ fdg;Rb12ðX1 [ X2Þ ¼ U;Rb12ðY1Þ ¼ fa; bg;Rb12ðY2Þ ¼
fb; dg, andRb12ðY1 \ Y2Þ ¼ /, henceRb12ðX1 [ X2Þ – Rb12ðX1Þ
[Rb12ðX2Þ, and Rb12ðY1 \ Y2Þ – Rb12ðY1Þ \ Rb12ðY2Þ.

The following example shows that the Property (vii) in
Proposition 3.2, in general are not true for all k12 2 {S12, P12,

b12, a12, c12}, we consider here k12 = P12.

Example 3.5. According to Example 3.1, if X= {a,c,d} and
Y= {b,c,d}. Then RP12

ðXÞ ¼ U;RP12
ðYÞ ¼ fb; c; dg and RP12

ðX \ YÞ ¼ fc; dg, hence RP12
ðX \ YÞ– RP12

ðXÞ \ RP12
ðYÞ.

Proposition 3.4. Let (X,R)be a generalized approximation space
defined on any binary relationR. Then for all k12 2 {S12,P12 , b12,
a12, c12}, and for any X ˝ U, the following properties do not hold:

(i) Rk12ðRk12ðX ÞÞ ¼ Rk12ðRk12ðX ÞÞ ¼ Rk12ðX Þ.
(ii) Rk12ðRk12ðX ÞÞ ¼ Rk12ðRk12ðX ÞÞ ¼ Rk12ðX Þ.

The following example illustrates the above proposition, using

k12 = b12.

Example 3.6. According to Example 3.1, if X= {a} and
Y= {c,d}. Then Rb12ðXÞ ¼ fag;RbrlRbrlðAÞ ¼ fag;RbrlRbrlðAÞ
¼ fa; cg;RbrlðBÞ ¼ fc; dg;RbrlRbrlðBÞ ¼ fc; dg, and Rb12ðRb12

ðYÞÞ ¼ fdg, hence Rb12 ðRb12ðXÞÞ– Rb12ðRb12ðXÞÞ, and
Rb12ðRb12ðYÞÞ – Rb12ðRb12ðYÞÞ.

Lemma 3.1. Let (U, R) be a generalized approximation space,
and for any X ˝ U, then ðClk12ðXÞÞ

c ¼ intk12ðXcÞ for all k12 2
{S12, P12, b12 , a12, c12}.

Proof. Let X ˝ U, then for all k12 2 {S12,P12, b12, a12, c12}, we
get:

ðClk12ðXÞÞ
c ¼ U�Clk12ðXÞ
¼ U�\fF#U : F is k12 upper set and X#Fg
¼ [fðU� FÞ#U : ðU� FÞ is k12 lower set; ðU� FÞ
# ðU�XÞ ¼ intk12ðU�XÞ:
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Thus ðClk12ðXÞÞ
c ¼ intk12ðXcÞ. h

Proposition 3.5. Let (U, R) be a generalized approximation

space defined on any binary relation R for any two subsets
X,Y ˝ U we have: Rk12ðX� YÞ#Rk12ðXÞ � Rk12ðYÞ, for all
k12 2 {S12,P12, b12, a12 , c12}.

Proof. As X � Y= X \ Yc, then:

Rk12ðX� YÞ ¼ intk12ðX� YÞ
¼ intk12ðX \ YcÞ# intk12ðXÞ \ intk12ðYcÞ:

By Lemma 3.1, we have:

Rk12ðX� YÞ# intk12ðXÞ \ ðClk12ðYÞÞ
c

¼ intk12ðXÞ � Clk12ðYÞ# intk12ðXÞ � intk12ðYÞ

Thus Rk12ðX� YÞ#Rk12ðXÞ � Rk12ðYÞ.

The next example illustrates that the inverse of Proposition
3.5, in general does not hold with respect to k12 = b12. h

Example 3.7. According to Example 3.1, if X= {a,b} and

Y= {a}, then Rb12ðYÞ ¼ fag;Rb12ðXÞ ¼ fa; bg; and Rb12ðX�
YÞ ¼ /, thus Rb12ðX� YÞ – Rb12ðXÞ � Rb12ðYÞ.
4. Topological generalizations of rough concepts

In this section we introduce and study some topological gener-

alizations for some concepts of the rough set theory by using
the k12 lower and k12 upper approximations.

Definition 4.1. Let (U,R) be a generalized approximation
space defined on any binary relation R. Then for all k12 2 {S12,

P12, b12, a12, c12} and for any X ˝ U we define:

(i) X is totally topologicalk12-definable (k12-exact) set if Rk12

ðX Þ ¼ Rk12ðX Þ ¼ X .
(ii) X is internally topological k12-definable set if Rk12ðX Þ
¼ X ; and Rk12ðX Þ– X .

(iii) X is externally topological k12-definable set if Rk12ðX Þ –
X ; and Rk12ðX Þ ¼ X .

(iv) X is topologically k12-indefinable (k12-rough) set if Rk12–
ðX Þ A; and Rk12ðX Þ– X .
Example 4.1. According to Example 3.1, for subsets X= {d}

and Y= {c, d},X is topologicallyb12-exact set, X is topologi-
cally internally a12-definable set, Y is topologically S12-rough
set, and Y is topologically externally P12-definable set.

Definition 4.2. Let (U,R) be a generalized approximation space

defined on any binary relationR. Thenwe can introduce the gen-
eralized accuracy measure for any set X ˝ U as the following:

Acck12ðXÞ ¼
Rk12ðXÞj j
Rk12ðXÞ
�
�

�
�
; Rk12ðXÞ – /;

where k12 2 {S12,P12, b12, a12, c12},and ŒXŒ denoted the cardi-
nality of the set X.

The number Acck12of the above definition is a measure of the
degree of exactness of any subset X ˝ U. So by this measure we
will determine,what is the best of ourdefinitions for the k12 lower
and k12 upper approximations. We can notice that:

(i) 0 6 AccsxRðX Þ 6 Acca12ðX Þ 6 AccS12
ðX Þ 6 Accc12ðX Þ 6

Accb12ðX Þ 6 1.
(ii) 0 6 AccsxRðX Þ 6 Acca12ðX Þ 6 AccP12

ðX Þ 6 Accc12ðX Þ 6
Accb12ðX Þ 6 1.

So the best definition here is k12 = b12.
The next example studies the comparison between b12 and

S12.

Example 4.2. According to Example 3.1, we have the following
table:

Set X AccS12
Accb12

{d} 1/3 1

{a,c} 1/2 1

{b,d} 2/3 1

{a,b,c} 1/3 1
By using the definitions of rough concepts at k12 = b12 we
can tends to exactness of many sets. This will lead to accurate
results in many data reduction applications using new topolog-

ical approaches. Next works shall deal with more types of
applications in data reductions, data processing, image pro-
cessing and rule extraction.

Definition 4.3. Let (U,R) be a generalized approximation

space defined on any binary relation R. Then for all
k12 2 {S12, P12, b12, a12, c12} and for any X,Y ˝ U we define:

(i) X �
�k12

Y if Rk12ðX Þ# Rk12ðY Þ.
(ii) X ~�k12Y if Rk12ðX Þ# Rk12ðY Þ.The illustration of the facts

of the above definition are given as below example.
Example 4.3. According to Example 3.1, let X1 = {a,c,d},
X2 = {b,c,d}, X3 = {b,d} and X4 = {c,d}, then we have:

X4 �
�p12

X3;X2 ~�s12X1 and X2 ~�b12X1.

Definition 4.4. Let (U,R) be a generalized approximation
space defined on any binary relation R. For any subset
X ˝ U and any element x 2 U, for all k12 2 {S12, P12, b12,
a12, c12}, we define:

(i) x 2
�k12

X if x 2 Rk12ðX Þ.

(ii) x ~2k12X if x 2 Rk12ðX Þ.
Proposition 4.1. Let (U, R) be a generalized approximation
space defined on any binary relation R. For any subset X ˝ U

and any element x 2 U, for all k12 2 {S12, P12, b12 , a12, c12},
we have:

(i) if x 2
�k12

X then x 2 X.
(ii) if x~Rk12X then x R X.
Proof. The proof is direct from definitions. h

The following example shows that the inverse of Proposi-

tion 4.1, in general does not hold.
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Example 4.4. According to Example 3.1, let X= {a,b,c} and

Y= {a,d}, then we have b 2 X, but b R
�s12

X and b R
�a12

X. Also,

we have b R Y, but b ~Rs12Y; b ~Ra12Y; b
~RprLD; b ~Rc12Y and b ~Rb12

Y.
5. Conclusions

One of the main contributions of this paper is in the area of
topological classifications. Based on topological space, we pre-
sented an underlying theory to explain how classifications of
rough sets topologically may be performed.

We conclude that the intermingling of topology in the con-
struction of some approximation space concepts will help to
get results with abundant logical statements. That is discover-

ing hidden relationships among data and, moreover, probably
helps in producing accurate programs (Duntsch et al., 2001;
Lipski, 1981).
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