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Abstract In this paper, homotopy analysis method (HAM) is used to obtain numerical and ana-

lytical solutions for two-dimensional diffusion with an integral condition. Comparisons with exact

solution show that the HAM is a powerful method for the solution of non-linear equations.
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1. Introduction

Parabolic partial differential equations with non-classic
boundary conditions arise in modelling of various physical
phenomena occurring in areas such as chemical diffusion, ther-

moelasticity, heat conduction processes, control theory and
medical science (Capasso and Kunisch, 1988; Day, 1982; Can-
non and Yin, 1989; Wang and Lin, 1989). The one-dimen-
sional diffusion (or parabolic) problem was studied by

Cannon et al. (1990), Liu (1999) and Ang (2002). In this paper,
we consider the two-dimensional diffusion problem.

ut ¼ uxx þ uyy: ð1Þ
5151290.

om (S.T. Mohyud-Din).

y. Production and hosting by

Saud University.
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The existence, uniqueness and continuous dependence on
data of solution of this initial-boundary value problem have

been considered in Day (1982), Cannon and Yin (1989) and
Lin (1988). A number of numerical methods for solving several
types of two dimensional diffusion problems were given in
Dehghan (2000), Dehghan (2002), Cannon et al. (1993) and

Hashim (2006). In particular, Dehghan (2002) presented a
fourth-order finite-difference method for solving (1) subject
to some standard boundary conditions, together with another

condition in the form of the integral,
Z 1

0

Z s xð Þ

0

u x; y; tð Þdxdy ¼ m tð Þ; 0 � x; y � 1; ð2Þ

where s and m are known functions.
Recently, Dehghan (2004a) and Dehghan (2004b) applied

the Adomian decomposition method (ADM) to the one-

dimensional parabolic and hyperbolic problems with non-local
boundary specifications, respectively. The application of the
ADM was extended to a specific two-dimensional diffusion

problem subject to non-standard boundary conditions by
Dehghan (2004c). The present work is motivated by the desire
to obtain approximate analytical and numerical solutions to

two-dimensional diffusion problems with an integral boundary
condition using the homotopy analysis method (HAM) and to
compare its reliability and efficiency with exact solution.
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The HAM is developed in 1992 by Liao (1992, 1995, 1997,

1999, 2003a,b, 2004) and Liao and Campo (2002). This method
has been successfully applied to solve many types of non-linear
problems in science and engineering by many authors (Ayub
et al., 2003; Hayat et al., 2004a; Hayat et al., 2004b; Abbas-

bandy, 2007a; Abbasbandy, 2007b; Abbasbandy, 2007c; Batai-
neh et al., in press), and references therein. By the present
method, numerical results can be obtained with using a few

iterations. The HAM contains the auxiliary parameter �h;
which provides us with a simple way to adjust and control
the convergence region of solution series for large values of

t. Unlike, other numerical methods are given low degree of
accuracy for large values of t. Therefore, the HAM handles lin-
ear and non-linear problems without any assumption and

restriction.
2. Homotopy analysis method (HAM)

We apply the HAM (Liao, 1992, 1995, 1997, 1999,
2003,a,bLiao, 2004; Liao and Campo, 2002) to two-dimen-
sional diffusion with an integral condition (1). We consider

the following differential equation

N u x; y; tð Þ½ � ¼ 0; ð3Þ

where N is a non-linear operator for this problem, x, y and t
denote an independent variables, u x; y; tð Þ is an unknown

function.
In the frame of HAM (Liao, 1992, 1995, 1997, 1999,

2003a,b, 2004; Liao and Campo, 2002), we can construct the

following zeroth-order deformation:

1� qð ÞL U x;y; t;qð Þ � u0 x;y; tð Þð Þ ¼ q�hH x;y; tð ÞN U x;y; t;qð Þð Þ;
ð4Þ

where q 2 0; 1½ � is the embedding parameter, �h– 0 is an auxil-
iary parameter, H x; y; tð Þ– 0 is an auxiliary function, L is an
auxiliary linear operator, u0 x; y; tð Þ is an initial guess of
u x; y; tð Þ and U x; y; t; qð Þ is an unknown function on the inde-

pendent variables x, y, t and q.Obviously, when q ¼ 0 and
q ¼ 1; it holds U x; y; t; 0ð Þ ¼ u0 x; y; tð Þ;
U x; y; t; 1ð Þ ¼ u x; y; tð Þ;Uðx; y; t; 1Þ ¼ uðx; y; tÞ; ð5Þ

respectively. Using the parameter q, we expand U x; y; t; qð Þ in
Taylor series as follows:

U x; y; t; qð Þ ¼ u0 x; y; tð Þ þ
X1
m¼1

um x; y; tð Þqm; ð6Þ

where

um ¼
1

m!

@mUðx; y; t; qÞ
@mq

����
q¼0

ð7Þ

Assume that the auxiliary linear operator, the initial guess,
the auxiliary parameter �h and the auxiliary function H x; y; tð Þ
are selected such that the series (6) is convergent at q ¼ 1, then
due to (5) we have

u x; y; tð Þ ¼ u0 x; y; tð Þ þ
X1
m¼1

um x; y; tð Þ ð8Þ

Let us define the vector

~un x; y; tð Þ ¼ u0 x; y; tð Þ; u1 x; y; tð Þ; :::; un x; y; tð Þgf ð9Þ
Differentiating (4) m times with respect to the embedding

parameter q, then setting q ¼ 0 and finally dividing them by
m!; we have the so-called mth-order deformation equation

L um x; y; tð Þ � vmum�1 x; y; tð Þ½ � ¼ �hH x; y; tð ÞRm ~um�1ð Þ; ð10Þ

where

Rmð~um�1Þ ¼
1

ðm� 1Þ!
@m�1NðUðx; y; t; qÞÞ

@m�1q

����
q¼0

ð11Þ

and

vm ¼
0 m � 1;

1 m > 1:

�
ð12Þ

Finally, for the purpose of computation, we will approxi-
mate the HAM solution (8) by the following truncated series:

/m x; y; tð Þ ¼
Xm�1
k¼0

uk x; y; tð Þ: ð13Þ
3. Illustrative examples

In this section we demonstrate the feasibility and efficiency of
the HAM through two examples with closed form solutions.

Comparisons with exact solutions are also made.

3.1. Example 1

Consider the two-dimensional diffusion problem (1) subject to
the initial condition

u x; y; 0ð Þ ¼ 1� yð Þex; 0 � x � 1; 0 � y � 1; ð14Þ

and boundary conditions

u 0; y; tð Þ ¼ 1� yð Þet; 0 � t � 1; 0 � y � 1; ð15Þ

u 1; y; tð Þ ¼ 1� yð Þe1þt; 0 � t � 1; 0 � y � 1; ð16Þ

u x; 1; tð Þ ¼ 0; 0 � t � 1; 0 � x � 1; ð17Þ

u x; 0; tð Þ ¼ exet; 0 � t � 1; 0 � x � 1; ð18Þ

and the integral condition
Z 1

0

Z x 1�xð Þ

0

u x; y; tð Þdxdy ¼ 2 11� 4eð Þet;

0 � x � 1; 0 � y � 1: ð19Þ

According to (4), the zeroth-order deformation can be gi-
ven by

1�qð ÞL U x;y; t;qð Þ�u0 x;y; tð Þð Þ¼ q�hH x;y; tð Þ Ut�Uxx�Uyy

� �
ð20Þ

We can start with an initial approximation u0 x; y; tð Þ ¼
1� yð Þex; and we choose the auxiliary linear operator

L U x; y; t; qð Þð Þ ¼ @U x; y; t; qð Þ
@t

;

with the property

L Cð Þ ¼ 0;

where C is an integral constant. We also choose the auxiliary
function to be

H x; y; tð Þ ¼ 1:
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Hence, the mth-order deformation can be given by

L um x; y; tð Þ � vmum�1 x; y; tð Þ½ � ¼ �hH x; y; tð ÞRm ~um�1ð Þ;

where

Rm ~um�1ð Þ ¼ @ um�1ð Þ
@t

� @
2 um�1ð Þ
@x2

� @
2 um�1ð Þ
@y2

ð21Þ

Now the solution of the mth-order deformation equations
(21) for m � 1 become

um x; tð Þ ¼ vmum�1 x; tð Þ þ �hL�1 Rm ~um�1ð Þ½ �: ð22Þ

Consequently, the first few terms of the HAM series solu-
tion are as follows:

u0 x; y; tð Þ ¼ 1� yð Þex;

u1 x; y; tð Þ ¼ ��h 1� yð Þext;

u2 x; y; tð Þ ¼ ��h 1� yð Þext� �h2 1� yð Þextþ �h2

2
1� yð Þext2;

and so on. Hence, the HAM series solution (for �h ¼ �1Þ is
u x; y; tð Þ ¼ u0 x; y; tð Þ þ u1 x; y; tð Þ þ u2 x; y; tð Þ þ u3 x; y; tð Þ

þ u4 x; y; tð Þ þ u5 x; y; tð Þ þ . . .
Figure 1

iterate of
¼ 1�yð Þexþ 1�yð Þextþ1

2
1�yð Þext2þ1

6
1�yð Þext3

þ 1

24
1�yð Þext4þ 1

120
1�yð Þext4þ�� � ð23Þ
The surface shows the solution u(x, y, t) for Eqs. (1), (14)–(1

HAM) (c) uex � uapp
�� ��.
In the same manner, the rest of the components of the iter-

ation formulae (23) can be obtained using the Maple Package.
Using Taylor series into (23), we have the closed form

solution

u x; y; tð Þ ¼ 1� yð Þexþt: ð24Þ

This is exact solution of 1 with (14)–(19) conditions.
In Fig 1c, we present the absolute error between the exact

solution and 10-iterate of HAM. Fig. 1a and b show the com-
parison between the exact solution and 10-iterate of HAM.
3.2. Example 2

Consider the two-dimensional diffusion problem (1) subject to

the initial condition

u x; y; 0ð Þ ¼ exþy; 0 � x � 1; 0 � y � 1; ð25Þ

and boundary conditions

u 0; y; tð Þ ¼ eyþ2t; 0 � t � 1; 0 � y � 1; ð26Þ

u 1; y; tð Þ ¼ e1þyþ2t; 0 � t � 1; 0 � y � 1; ð27Þ

u x; 1; tð Þ ¼ e1þxþ2t; 0 � t � 1; 0 � x � 1; ð28Þ
9) when t= 1: (a) exact solution (24) (b) approximate solution (10-



Figure 2 The surface shows the solution u(x, y, t) for Eqs.(1), (25)–(30) when t= 1: exact solution (33) (b) approximate solution

(10-iterate of HAM) (c) uex � uapp
�� ��.
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u x; 0; tð Þ ¼ exe2t; 0 � t � 1; 0 � x � 1; ð29Þ

and the integral condition

Z 1

0

Z ex=4

0

uðx; y; tÞdxdy ¼ ð4ee=4 � 4e1=4 � eþ 1Þe2t;

0 6 x 6 1; 0 6 y 6 1: ð30Þ
3.3. We can start with an initial approximation

u0 x; y; tð Þ ¼ exþy; ð31Þ

We can use similar procedures which was used in example 1
and the first few terms of the HAM series solution are as
follows:

u0 x; y; tð Þ ¼ exþy;

u1 x; y; tð Þ ¼ �2�hexþyt;

u2 x; y; tð Þ ¼ �2�hexþyt� 2�h2exþytþ 2�h2exþyt2;

and so on. Hence, the HAM series solution (for �h ¼ �1Þ is

u x; y; tð Þ ¼ u0 x; y; tð Þ þ u1 x; y; tð Þ þ u2 x; y; tð Þ þ u3 x; y; tð Þ
þ u4 x; y; tð Þ þ u5 x; y; tð Þ þ � � �
¼ exþy þ 2exþytþ 2exþyt2 þ 4

3
exþyt3 þ 2

3
exþyt4 þ 4

15
exþyt5 þ � � �

ð32Þ

In the same manner, the rest of the components of the iter-
ation formulae (32) can be obtained using the Maple Package.

Using Taylor series into (32), we have the closed form

solution

u x; y; tð Þ ¼ exþyþ2t: ð33Þ

This is exact solution of (1) with (25–30) conditions.

In Fig 2c, we present the absolute error between the exact
solution and 10-iterate of HAM. Fig. 2a and b show the com-
parison between the exact solution and 10-iterate of HAM.
4. Conclusions

In this work, we employed the HAM for the solutions of two-
dimensional diffusion equations subject to non-standard
boundary specifications. Unlike the traditional techniques used
by other numerical algorithms, the solutions here are given in

series forms which can lead to exact closed form solutions. The
approximate solutions to the equations were computed with-
out any need for transformation techniques, linearization

and discretization, and then compared with exact solutions.



On two-dimensional diffusion with integral condition 125
It was shown that the method is reliable, efficient and requires

less computations.
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