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Quantitative structure-activity relationship (QSAR) and molecular docking studies have been done on 28
isoxazole and thiazole derivatives with anticonvulsant activity in subcutaneous pentylenetetrazole ani-
mal model. Physicochemical parameters obtained from PaDEL-Descriptors were utilized in the study.
Parametric semi-empirical quantum technique PM3 available in Spartan 14 program was used to opti-
mize the molecular structure of the dataset compounds. Genetic function algorithm, Modified-K-
Medoid clustering, correlation analysis and multiple linear regressions were used to search for the best
QSAR model. The model obtained had good statistical parameters (LOF = 0.056, R2 = 0.975, Q2 = 0.959,
F3,15 = 198.058, R2(Pred.) = 0.761, PRESS = 0.058, SEE = 0.062 and cR2

P = 0.887) and can be utilized to predict
the anticonvulsant activity of compounds that are within its chemical space. Molecular docking analysis
showed that the studied compounds had a better binding affinity for c-aminobutyrate aminotransferase
than vigabatrin which is a known inhibitor of c-aminobutyrate aminotransferase.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Convulsion is defined as abnormal violent and involuntary ser-
ies of contractions of the muscles. It characterize epilepsy episodes
which occurs when the process of excitation exceed inhibition in
the central nervous system (Stafstrom, 2006). Epilepsy is a global
phenomenon, affecting about 1% of the world population and
about 60% of affected patients do not have access to appropriate
treatment (Heinzen et al., 2010). Untreated epilepsy often leads
to impaired intellectual function and psychosocial prejudices
(Shindikar et al., 2006). The commonmethod of epilepsy treatment
involves the use of chemical agents (Estrada and Peña, 2000) and a
number of compounds have been reported to possess anticonvul-
sant activity (Ghidini et al., 2006; Thurkauf et al., 1990). There
are about 40 antiepileptic drugs (AEDs) in the market, but, about
30% patients do not respond to them and those who responded
to them usually came up with various side effects like cognitive
dysfunction, ataxia, behavioral disorder est. (Avanzini and
Franceschetti, 2003). All this limitation encourages the search for
more anticonvulsant molecules with improved activity and
reduced side effects.

Some isoxazole and thiazole derivatives were reported to pos-
sess anticonvulsant activity in subcutaneous pentylenetetrazol
(scPTZ) test (Tatee et al., 1986), which is among the main meth-
ods used to determine the anticonvulsant activity of molecules.
These molecules could act as inhibitor of gamma-amino
butyrate-aminotransferase (GABA_AT) (Dimmock et al., 1995).
The objective of the study is to elucidate the molecular properties
that influence the anticonvulsant activity of isoxazole and thia-
zole derivatives using quantitative structure-activity relationship
(QSAR) and molecular docking techniques. QSAR is an method
that establishes a mathematical relationship between numerical
structural properties and numerical biological activity of mole-
cules(Chtita et al., 2013); while molecular docking is a computa-
tional method that helps in understanding the way two molecules
like drug and protein fit together (Sapna Rani and Kumar, 2014).
QSAR and molecular docking have been used in rational drug
design to speed up drug designing process (Sapna Rani and
Kumar, 2014).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2018.03.022&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Materials and methods

2.1. Dataset

The experimental information on the activity of isoxazole and
thiazole derivatives in scPTZ test used in the study were collected
from literature (Tatee et al., 1986). The anticonvulsant activity of
these molecules was reported as ED50 (mg kg�1). The activity was
transformed to ED50 (mol kg–1) and then to Log (1/ED50) in order
to allow their values to approach normal distribution (Tropsha,
2010). The molecular structure, IUPAC name and anticonvulsant
activity of dataset compounds are presented in Table 1.

2.2. Molecular structure optimization and descriptors calculation

Molecular structures of the dataset were drawn and optimized
with parametric semi-empirical (PM3) quantum mechanics
method using Spartan 14 software (Shao et al., 2006). The opti-
mized structures were imported to PaDEL-Descriptors software
(Yap, 2011) for calculation of molecular descriptors.

2.3. Dataset pretreatment

The calculated descriptors and the activity values for the data-
set compounds were arranged in a n�m matrix, where n is the
number of molecule and m is the number of descriptors for the
dataset. In the matrix, all descriptors column with constant values
and variance less than 0.01 were discarded from the descriptors
pool. One out of any two descriptors with correlation coefficient
greater than 0.8 was also discarded, the one retained in this case
had higher correlation coefficient with the activity value.

2.4. Descriptors transformation

Molecular properties are measured in different unit; while
some had big absolute values other had small absolute values. Dur-
ing modeling, descriptors with higher value tend to find their way
into the equation. In order to eliminate this bias and give all the
descriptor equal opportunity to appear in the model, they were
transformed by normalization (Tropsha, 2010):

xn ¼ x� xmax

xmax � xmin
ð1Þ

In Eq. (1), xn is the normalized descriptor value; x is the raw
descriptor value, xmax and xmin are the maximum and minimum
descriptor values respectively in a descriptor column.

2.5. Dataset division

The dataset matrix in Microsoft excel spread sheet was
imported into ModifiedK-Mediod 1.2 software used to divide it
into training and test set using modified-K-mediods method pro-
posed by Park and Jun (2009).

2.6. Model building

Training set data only was used in construction of models in the
study and test set data was used to validate the model produced.
Genetic function algorithm (GFA) module available in Material Stu-
dio 8.0 was used to select several combinations of descriptors that
best explain the variation in activity data of the studied com-
pounds. MLRplusValidation 1.3 (DTC) was used to construct and
validate the models. GFA is a heuristic search method that finds
exact or approximate solutions to any optimization problems
(Rogers and Hopfinger, 1994). It had the advantage of producing
more than one blends of descriptors that can be used to construct
models. It allows the user control over the length of equation and
uses lack of fit (LOF) function to check over-fitting in the models
produced. The lack-of-fit is calculated with the equation below:

LOF ¼ LSE

1þ Cþdp
M

� �2 ð2Þ

In Eq. (2), c is the number of basis functions, d is the smoothing
parameter, M is the number of samples in the training set, LSE is
the least square error and p is the total number of descriptors con-
tained in all basis functions.

2.7. Multi-co-linearity analysis

The presence of high degree of correlation among the descrip-
tors contained in the models was evaluated with variance inflation
factor (VIF). The VIFi for a given descriptor i in a model was calcu-
lated with the equation below:

VIFi ¼ 1
1� R2

ij

ð3Þ

In Eq. (3), R2
ij is the correlation coefficient of the multiple regres-

sion between the descriptor i and the remaining j descriptors in the
model (Beheshti et al., 2016).

2.8. Model goodness of fit and validation

Relationship between the predicted versus actual activity
value and standardized residual produced by the models versus
actual activity values were used to access the goodness of fit of
the models. Various internal and external validation parameters
produced by the MLRplusValidation1.3 software were used to
judge the models. The parameters evaluated include among
others:

(a) Determination coefficient R2:

R2 ¼
PfðYobs � �YobsÞ � ðYpred � �YpredÞg
� �2
P ðYobs � �YobsÞ2 �

P ðYpred � �YpredÞ2
ð4Þ

(b) Adjusted determination coefficient R2
adj,:

R2
adj ¼

ðN � 1Þ � R2 � p
N � 1� p

ð5Þ

(c) Variance ratio F:

F ¼

P
ðYpred��YobsÞ2

pP
ðYobs�YpredÞ2
N�p�1

ð6Þ

(d) Leave one out cross-validation squared correlation coeffi-
cient Q2

Q2 ¼ 1� PRESSP ðYobs � �YobsÞ2
ð7Þ

Where PRESS is the predicted error sum of square obtained
from the equation below:

PRESS ¼
X

ðYobs � YpredÞ2 ð8Þ
In Eqs. (4)(8), Yobs and Ypred are experimental and predicted

activity values respectively, �Yobs is the mean value value for the
training set data, N is the number of molecule in the data, p is
the number of descriptors in the model and N-1-p is the degree
of freedom.



Table 1
Molecular structure, IUPAC name and anticonvulsant activity of dataset compounds.

ID Molecular structure and IUPAC name Exp.
Log(1/ED50)

Pred.
Log(1/ED50)

Residual

1t

(R)-3-(dimethylamino)-2-methyl-N-(3-phenylisoxazol-5-yl)propanamide

3.738 3.907 �0.169

2

(S)-3-(dipropylamino)-2-methyl-N-(3-phenylisoxazol-5-yl)propanamide

4.051 3.995 0.056

3

(S)-2-methyl-N-(3-phenylisoxazol-5-yl)-3-(pyrrolidin-1-yl)propanamide

4.228 4.296 �0.068

4
(S)-3-(diethylamino)-N,2-dimethyl-N-(3-phenylisoxazol-5-yl)propanamide

4.353 4.272 0.081

5

(S)-3-(ethyl(propyl)amino)-N,2-dimethyl-N-(3-phenylisoxazol-5-yl)propanamide

4.397 4.354 0.043

6

(S)-3-(dipropylamino)-N,2-dimethyl-N-(3-phenylisoxazol-5-yl)propanamide

4.087 4.095 �0.007

7t

(R)-N-ethyl-2-methyl-N-(3-phenylisoxazol-5-yl)-3-(piperidin-1-yl)propanamide

4.421 4.235 0.186

8t

(R)-3-(diethylamino)-2-methyl-N-(3-phenylisoxazol-5-yl)-N-propylpropanamide

4.185 4.078 0.107

9t

(R)-2-methyl-N-(3-phenylisoxazol-5-yl)-3-(piperidin-1-yl)-N-propylpropanamide

3.962 4.046 �0.084

10

(R)-3-(dimethylamino)-N-isopropyl-2-methyl-N-(3-phenylisoxazol-5-yl)propanamide

4.451 4.409 0.042

11

(R)-N-((S)-sec-butyl)-2-methyl-N-(3-phenylisoxazol-5-yl)-3-(pyrrolidin-1-yl)propanamide

4.625 4.680 �0.055

12

(S)-3-(diethylamino)-2-methyl-N-phenyl-N-(3-phenylisoxazol-5-yl)propanamide

4.268 4.210 0.059

13

(S)-N,2-dimethyl-N-(3-phenylisoxazol-5-yl)-3-(pyrrolidin-1-yl)propanamide

4.104 4.174 �0.070

14

(S)-3-((2S,5S)-2,5-dimethylpyrrolidin-1-yl)-N,2-dimethyl-N-(3-phenylisoxazol-5-yl)propanamide

4.431 4.385 0.046

15t

(R)-3-(diethylamino)-N-ethyl-2-methyl-N-(3-phenylisoxazol-5-yl)propanamide

3.976 4.173 �0.196

16t

(R)-2-3-(piperidin-1-yl)-1-(p-tolyl)propan-1-one

4.330 3.690 0.640

17

1-(4-([1,10-biphenyl]-4-yl)thiazol-2-yl)pyrrolidin-2-one

4.044 4.114 �0.070

18
5-bromo-2-(2-oxopyrrolidin-1-yl)thiazol-4-yl propionate

4.193 4.160 0.033

19
2-(4-(p-tolyl)thiazol-2-yl)-1H-indene-1,3(2H)-dione

3.893 3.949 �0.056

20

2-(4-(4-bromophenyl)thiazol-2-yl)-4,5,6,7-tetrachloro-1H-indene-1,3(2H)-dione

3.448 3.367 0.081
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Table 1 (continued)

ID Molecular structure and IUPAC name Exp.
Log(1/ED50)

Pred.
Log(1/ED50)

Residual

21

(R)-N-benzyl-3-(dimethylamino)-2-methyl-N-(3-phenylisoxazol-5-yl)propanamide

3.751 3.812 �0.061

22

(S)-N-benzyl-3-(diethylamino)-2-methyl-N-(3-phenylisoxazol-5-yl)propanamide

4.204 4.203 0.001

23

(R)-N-benzyl-2-methyl-N-(3-phenylisoxazol-5-yl)-3-(pyrrolidin-1-yl)propanamide

3.391 3.445 �0.054

24

1-(4-(3,4-dimethoxyphenyl)thiazol-2-yl)pyrrolidin-2-one

3.549 3.594 �0.045

25

1-(4-(naphthalen-2-yl)thiazol-2-yl)pyrrolidin-2-one

3.578 3.532 0.046

26t

2-(4-phenylthiazol-2-yl)-1H-indene-1,3(2H)-dione

3.443 3.641 �0.198

27t

4,5,6,7-tetrachloro-2-(4-(p-tolyl)thiazol-2-yl)-1H-indene-1,3(2H)-dione

3.573 3.416 0.157

28t

4,5,6,7-tetrachloro-2-(4-(3,4-dimethoxyphenyl)thiazol-2-yl)-1H-indene-1,3(2H)-dione

3.655 3.905 �0.250

Test set compounds are highlighted in red and designated with superscript (t).

A. Oluwaseye et al. / Journal of King Saud University – Science 32 (2020) 116–124 119
(e) Randomization parameters �Q2
r ;
�R2
r and cR2

p:

The response values of the training set data were randomly per-
muted without making any change to the descriptor matrix. Mul-
tiple linear regression analysis was performed on the permuted
dataset and new R2

r and Q2
r values were obtained for the new model

produced. The process was repeated severally with the computation
Table 2
Single column statistics for the dataset activity value.

Training set Test set

Maximum 4.625 4.421
Minimum 3.391 3.443
Mean 4.055 3.920
Standard deviation 0.362 0.344
Range 1.233 0.978

Fig. 1. Dissimilarity analysis of dataset compounds.
of R2
r and Q2

r for each randomization runs. At the end, averages �R2
r

and �Q2
r were computed. In addition randomization parameter CR2

p

proposed by (Roy, 2007) was computed:

cR2
p ¼ R2 � ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2 � �R2

r j
q

Þ ð9Þ
In Eq. (9), R2 is the square correlation coefficient for the regres-

sion analysis of non-randomized model and �R2
r is the average of the

squared correlation coefficient for the regression analysis of all
randomization runs.
Table 3
Correlation matrix, variance inflation factor, and t-statistics.

Descriptors VR1_Dzp RDF35s P2u VIF t-stat.

VR1_Dzp 1 1.420 11.944
RDF35s 0.215 1 1.132 18.239
P2u 0.543 0.340 1 1.533 �19.725

Fig. 2. Plot of standardized residual against experimental activity value.
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(f) Squared correlation coefficient for test set R2
Pred:

R2
pred ¼ 1�

P ðYobsðtestÞ � YpredðtestÞÞ2P ðYobsðtestÞ � �YobsÞ2
ð10Þ

In Eq. (10), Yobs(test) and Ypred(test) are experimental and pre-
dicted activity values for the test set data respectively, �Yobs is as
defined above.

(g) Golbraikh and Tropsha criteria parameters for a predictive
model: R2

pred > 0.6; Q2 > 0.5; r2 � r20/r2 < 0.1 and 0.85 � k �
1.15 or r2 � r02/r2 < 0.1 and 0.85 � k0 � 1.15; and |r20 � r

02
0 | <

0.3. In the criteria, r2 and r20 are regression coefficient of the
plot of observed against predicted response for the test set
data with and without intercept respectively, while k is the
slope of this plot without intercept. r02 and r020 are regression
coefficient of the plot of predicted against observed response
for the test set data with and without intercept respectively
and k0 is the slope of this plot without intercept.

2.9. Model applicability domain

The applicability domain (AD) of a QSAR model is the combi-
nation of the activity and descriptors space of the training set
on which the model was constructed (Netzeva et al., 2005). It is
only the activity of compounds in this space that can be predicted
reliably by the model. The extent of extrapolation approach
which is based on leverage (hi) values of the study compounds
Fig. 3. Relationship between experimental and predicted activity by the model.

Table 4
Model goodness of fit and validation parameters.

Parameters Model scores Threshold

R2 0.975 R2 > 0.5
R2
adj 0.971 R2

adj > 0.5
F3,15 198.053 Large
Q2 0.959 Q2 > 0.5
SEE 0.062 Low
|R2 � Q2| 0.016 |R2 � Q2| < 0.3
R2
Pred 0.761 R2

pred > 0.6
r2 0.707 r2 > 0.6
r02 0.707
r
02
0 0.575
|r02 � r002| 0.132 |r02 � r002| < 0.3
k 0.986 0.85 < k < 1.15
(r2 � r02)/r2 0.0002 ((r2 � r02)/r2) < 0.1
k0 1.013 0.85 < k0 < 1.15
(r2 � r002)/r2 0.187 ((r2 � r’02)/r2) < 0.1

Random model

�Rr 0.462 �Rr < 0.5
�R2
r 0.259 �R2

r < 0.5

barQ2
r

�0.285 �Q2
r < 0.5

cRp
2 0.887 cRp

2 > 0.5
was used to define the AD of the QSAR model in the study. Com-
pounds leverages (hi) are obtained as the diagonal element of hat
matrix H:

H ¼ XðXTXÞ�1 � XT ð11Þ
In Eq. (11), X is the descriptor matrix and XT is the transpose of

X. A warning leverage h⁄ is computed for a given model:

h� ¼ 3ðkþ 1Þ
n

ð12Þ

In Eq. (12), k is the number of descriptors in the model and n is
the number of compounds that made up the training set. The plot
of the standardized prediction residual for each compounds activ-
ity data against their leverage value (Williams plot) gives a quick
visual assessment of the AD of a model. The standardized predic-
tion residual is computed:

SDR ¼ �y� yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ð�y�yÞ2
n

r ð13Þ

In Eq. (13), y is the observe activity value for either the training
or the test set, ŷ is the predicted activity value of the model and n is
the number of molecules in the dataset set. Usually, the domain of
acceptable prediction for any compound is defined by the
boundary 0 < hi < h⁄ and �3 < SDR < 3. Therefore any compounds
with SDR < �3 or >3 is considered an outlier in the response
variable space and any compound with leverage value greater than
h⁄ is considered an influential compound alien to the majority of
compounds used in building the model (Netzeva et al., 2005).
3. Results and discussion

3.1. Dataset structure

Single column statistics performed on both training set and test
set activity values showed that the maximum for test set was less
than the maximum for the training set and the minimum for test
set was greater than the minimum for training set. In addition,
similarities existed in the values of mean and standard deviation
of the activity values for both set (Table 2). These results indicated
that the test set activity profile was obtained within the range of
Comments Refs.

Passed Tropsha (2010)
Passed Tropsha (2010)
Passed Tropsha (2010)
Passed Tropsha (2010)
Passed Damme and Bultinck (2007)
Passed Eriksson et al. (2003)
Passed Tropsha (2010)
Passed Golbraikh and Tropsha (2002)

Passed Golbraikh and Tropsha (2002)
Passed Golbraikh and Tropsha (2002)
Passed Golbraikh and Tropsha (2002)
Passed Golbraikh and Tropsha (2002)
Passed Golbraikh and Tropsha (2002)

Passed Tropsha et al. (2003)
Passed Tropsha et al. (2003)
Passed Tropsha et al. (2003)

Passed Roy (2007)



Fig. 4. Williams plot for the model.

Table 5
Model descriptors definition and mean effect.

Descriptors Definition MFi

VR1-Dzp Randic-like eigenvector-based index from
Barysz matrix/weighted by polarizabilities

1.617

P2u 2nd component shape directional WHIM
index/unweighted

3.026

RDF35s Radial distribution function – 035/weighted
by relative I-state

�3.642
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the training set activity profile and the variations in the activity
distribution for both datasets were similar. Dissimilarity study
was performed on the two set further expatiated that the test set
data were obtained with the descriptors space of the training set
data (i.e. the test set was interpolative of the training set) (Fig. 1).

3.2. The QSAR model and its quality

The best GFA QSAR model produced in the study is presented
below:

Log (1/ED50) = 3.885(±0.035) + 0.689(±0.057)VR1_Dzp + 0.969
(±0.053)RDF35s � 1.772(±0.089)P2u (14)

In Eq. (14), values in the parenthesis are the standard deviation.
The model is a trimetric equation obtained from 19 training set
compounds. The models Topliss ratio is 6.333, therefore, the model
obeyed the QSAR semi-empirical rule of thumb (Damme and
Bultinck, 2007). Correlation and VIF analysis performed on descrip-
tors contained showed that the highest correlation coefficient
between any two descriptors in the model was 0.543 and the high-
est VIF value for any of the descriptors was 1.533 (Table 3). These
values indicated the model is acceptable, stable and void of the
multi-co-linearity problem (Beheshti et al., 2016). In addition, the
t-statistics for all the descriptors are greater than 2, indicating that
these descriptors contributed significantly to explain the variation
in anticonvulsant activity of the studied compounds at 95% level.
Fig. 2 showed that the distribution of the prediction standardized
residual was even at the opposite sides of the line SDR = 0, indicat-
ing absence of systematic error in the model. In addition, linear
relationship existed between the experimental and predicted
activity values by the model for both training and test set data
(Fig. 3).

3.3. Model validation

Detailed Validation parameters produced by MLRplusValidation
1.3 for the model are presented in Table 4. In the table, values for
R2; R2

adj; Q2; cRp
2 and R2

pred were greater 0.6. These results showed
that the explained variance by the model was higher than the unex-
plained one (Tropsha, 2010); the model had good internal and exter-
nal predictive ability and it is not a product of chance correlation
(Tropsha, 2010). The models SEE was less than the standard devia-
tion of the training set activity data (0.362) (Table 1), this showed
that model was not over-fitted (Damme and Bultinck, 2007). This
was further supported by the absolute value of the difference
between R2 and Q2 that was less than 0.3 (Eriksson et al., 2003).
The model variance ratio F was greater critical F-value (3.29) for 3,
15 degree of freedom at 95% level. This meant that the probability
that the model is significant at 95% was high. Furthermore, the
model passed all Golbraikh and Tropsha (2002) criteria for a predic-
tive model (Table 4).

3.4. Models applicability domain and outlier detection

The extent of extrapolation used to define AD in the study
showed that the warning leverage for the model h⁄ was 0.63.
Therefore, the AD of the model is defined by a square area bounded
by 0 < h < 0.63 and �3 < SDR < 3 as presented by the models Wil-
liams plot (Fig. 4). The figure showed that all the training set and
test set data had leverage values and standardized residual values
within AD boundary except for compound 16 with leverage value
(0.639) > h⁄. Indicating only one influential compound exist in
the dataset. In summary, the model reported in the study had good
internal and external predictive ability and can be used to screen
test set compounds or a set of new chemicals in silico that are
within its applicability domain.
3.5. Interpretation of descriptors

The degree of contribution of each descriptor to the model was
evaluated with mean effect value (MFj):

MFj ¼
bj
Pi¼n

i¼1dijPm
j bj

Pn
i dij

ð15Þ

In Eq. (15), bj is the coefficient of descriptor j in the model, dij is
the value of the descriptor j in the descriptor matrix for each mole-
cule in the training set, m is the number of descriptors that appear
in the model, and n is the number of molecule that made up the
training set (Habibi-Yangjeh and Danandeh-Jenagharad, 2009).
Brief definition for each of the models descriptor and their mean
effect values are presented in Table 5.

VR1-Dzp is the first descriptor in the model and it had positive
mean effect. This meant that increase in the value of VR1-Dzp
increases the anticonvulsant activity of the studied compounds.
The value of this descriptor is proportional to the electronegativity
value of added substituent (Todeschini and Consonni, 2009)). P2U
is the second descriptor in the model and it also had positive mean
effect. The value of this descriptor increases with increase in linear-
ity of molecules which can be enhanced by the addition of new
chain, addition of atoms with higher molecular weight and mini-
mizing the presence of CH3 (Todeschini and Gramatica, 2002).
RDF50s is the last descriptors in the model and had negative mean
effect. Its occurrence in the model indicated that a linear relation-
ship existed between 3Dmolecular distributions of inductive effect
at a radius of 3.5 Å from a specific geometrical center of the mole-
cule. The greater the effect of induction at this radius, the greater
the RDF value (Todeschini and Consonni, 2009).

3.6. Molecular docking studies

Optimized 3D structure of compounds with lowest and highest
activity value in the training and test set (compounds 7, 11, 23 and
26) were saved as .sdf file and were imported into pyrx software,
where they were converted to PDBQT file. PM3 semi-empirical
method available in Spartan 14 software was used to optimize
the studied compounds. Crystal structure of c-aminobutyrate
aminotransferase (GABA_AT) (PDB:1OHV) was downloaded from
protein data bank. The downloaded .pdb file was prepared using



Table 6
Molecular docking result for the selected designed molecule.

Molecule Molecule structure and IUPAC names BA (kcal mol�1) HB AC Hydrophobic interaction

AC Type

7

(R)-N-ethyl-2-methyl-N-(3-phenylisoxazol-5-yl)-3-(piperidin-1-yl)propanamide

�18.322 Arg192; Thr353 Phe189; Phe351; p-p

Ile72 R-R
Hie44; Tyr69; His206; Tyr348 p-R

11

(R)-N-((S)-sec-butyl)-2-methyl-N-(3-phenylisoxazol-5-yl)-3-(pyrrolidin-1-yl)propanamide

-10.228 Arg192; His206 Ile72 R-R

Phe189;His206;Tyr348;Phe351;
Ile72; Ile105

p-R

23

(R)-N-benzyl-2-methyl-N-(3-phenylisoxazol-5-yl)-3-(pyrrolidin-1-yl)propanamide

�15.170 Gln301; Lys329;
Thr353

Phe189 p-p

Val300; Ile72 R-R
Phe189; Phe351; Val300 p-R

26

2-(4-phenylthiazol-2-yl)-1H-indene-1,3(2H)-dione

�16.201 Hie44; Lys203;
His206; Gly438

His206 X-X

Arg445 p-C+

Glu270 p-A-

Lys203; Ile72; Ile105 R-R
His206;Tyr348Phe351; Ile426 p-S

Vigabatrin

4-aminohex-5-enoic acid

�10.97 Tyr69, Tyr348,
Glu270

His206 p-R

Note: BA is binding affinity; HB is hydrogen bonding, AC is amino acid and R-R, X-X, p-R represents alkyl-alkyl, halogen-halogen and pi-alkyl interractions respectively.
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Fig. 5. 2D Docking pose for (a) molecule 7; (b) molecule 11; (c) molecule 26 and (d) molecule 23 with GABA_AT.
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Discovery Studio software by removing its water molecules and
other unwanted chain and heteroatam. The cleaned .pdb file was
imported into pyrx software, where it was converted to PDBQT file.
Autodock vina present in the pyrx was used to dock the prepared
studied molecule (ligands) with the prepared GABA_AT (target).
Autodock vina uses Lamarckian genetic algorithm for the docking
exercise (Trott and Olson, 2010).

The docking result presented in Table 6 showed that com-
pounds with increase linearity and highly electronegative atoms
had higher binding energy. As can be seen with compounds 26
had the highest binding affinity. This may be attributed to it bind-
ing with His 206 in a halogen-halogen interaction; Arg445 in a p-
cation interaction and Glu270 in a p-anion interaction. This is in
tandem with the conclusion of the proposed model. Also, almost
all the molecule had binding affinity greater than that of vigabatrin
(a known inhibitor of GABA_AT). The studied compounds bonded
with a target via varying amino acids and their bonding were not
similar to that of vigabatrin. Hence the study compounds may inhi-
bit GABA_AT via a different mechanism. Presented in Fig. 5 are the
docking pose for the compounds showing the atoms that were
involved hydrogen bonding and other interactions

4. Conclusion

Quantitative structure-activity relationships study on the
studied isoxazole and thiazole derivatives revealed that VR1-Dzp,
P2u, and RDF35s molecular descriptors had a significant influence
on the anticonvulsant activity of the studied compounds. These
descriptors showed that increasing the linearity of the molecule
and presence of an electronegative element in the molecular
system enhances the anticonvulsant activity of the studied
compounds. Molecular docking analysis result was in phase with
the QSAR result. The QSAR model was statistically reliable,
predictive, and robust with a well-defined applicability domain.
Sufficient interpretation was provided for the model descriptors.
The model is suitable for designing new derivative of the
studied compounds with the view of optimizing their
anticonvulsant activity
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