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A B S T R A C T

In a ground breaking endeavor, we investigate a fundamental quantum property of fermions, specifically
electrons, within a non-uniform quantized magnetic field, unveiling novel insights into shear Alfve’n waves in
the relativistic realm of quantum plasma, particularly within the context of a degenerate Fermi gas. Employing
the quantum magnetohydrodynamic model, we delve into the profound implications of the Landau quantization
effect. This quantum phenomenon holds paramount importance across diverse fields such as condensed matter
physics, astrophysics, and quantum information. Our study focuses on a plasma composed of degenerate
relativistic electrons coexisting with cold fluid ions, which are non-degenerate particles. The findings of this
research reveal substantial modifications in the thermodynamic, kinetic, and dispersion relation characteristics
of shear Alfve’n waves when subjected to a non-uniform quantized magnetic field. This exploration offers
a pioneering perspective on the intricate interplay between quantum physics and plasma dynamics, with
implications for a wide array of scientific disciplines.
1. Introduction

Quantum plasma physics has emerged as a captivating and highly
relevant field, garnering significant attention from the scientific com-
munity. Its significance spans diverse realms, from super dense as-
trophysical plasmas, such as those found in neutron stars and white
dwarfs, to the burgeoning applications in modern technology, including
nanoplasmonic devices, quantum X-ray lasers, spintronics, nanotubes,
quantum dots, and quantum wells (El-Taibany et al., 2012). A funda-
mental characteristic that distinguishes quantum plasmas is their high
number density, which leads to degeneracy, a state where the average
inter-electron distance 𝑛−1∕3𝑒 becomes comparable to or less than the
De Broglie wavelength 𝜆𝐵 associated with electrons, as expressed by
𝑛𝑒𝜆3𝐵 ≥ 1. Here, 𝜆𝐵 is defined as 𝜆𝐵 = ℏ

(2𝜋𝑚𝑒𝑘𝐵𝑇 )1∕2
. Moreover, when the

temperature of the system is comparable to or less than the electron’s
Fermi temperature 𝜒 = 𝑇𝐹𝑒

𝑇 = 1
2

(

3𝜋2𝑛𝑒𝜆3𝐵
)2∕3 ≥ 1, quantum effects

become pronounced and cannot be disregarded(Malay Kumar Ghorui
et al. 2013; El-Labany et al., 2020; Passot et al., 2005). This introduces
intriguing quantum phenomena, with magnetic fields playing a crucial
role in shaping the behavior of degenerate plasmas. While the signif-
icance of magnetic fields in degenerate plasmas has been somewhat
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overshadowed in the past, recent research has underscored their pivotal
role across a spectrum of natural and astrophysical systems, spanning
both microscopic and macroscopic scales. Magnetic fields, particularly
strong or superstrong ones, influence a multitude of astrophysical
environments. They are instrumental in processes ranging from the for-
mation of stars to the generation of stellar winds, cosmic rays, accretion
disks, and the production of jets in X-ray binaries and active galactic
nuclei. Notably, the influence of strong magnetic fields extends beyond
astrophysics; they also impact the properties of atoms, molecules, and
condensed matter systems. To achieve these transformative effects, a
condition must be met where ℏ𝜔𝑐𝑒 ≫ 𝑘𝐵 𝑇 , ensuring that the electron
cyclotron energy vastly exceeds the Coulomb energy.

The interaction of a strong magnetic field with a degenerate Fermi
gas introduces fascinating quantum phenomena, such as Landau Quan-
tization and Geometric Phase. Even in the presence of a weak magnetic
field, the electron gas exhibits two distinct forms of magnetization:
paramagnetic and diamagnetic. This arises from the fact that moving
charges, whether through spin or orbital motion, generate a magnetic
field and possess a magnetic moment along their axis of rotation. In
degenerate plasma, the ambient magnetic field’s strength influences
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electron motion in two primary ways. Firstly, it impacts the unpaired
spin of electrons, giving rise to Pauli Paramagnetism. Secondly, it influ-
ences the orbital motion of paired electrons, leading to the formation
of Landau Diamagnetism/Quantization (Shah et al., 2012).

The phenomenon of Landau quantization is inherently quantum in
nature and lacks a classical counterpart. When charged particles move
along magnetic field lines, they remain largely unaffected by external
magnetic fields. However, the mean energy of the system, within the
Landau levels, increases due to the application of an external mag-
netic field (Landau and Lifshitz, 2013; Sumera et al., 2017); (Shaukat,
2017). In this context, extensive research has been conducted on both
linear and nonlinear electromagnetic waves in quantum plasmas. A
recent study by (Rozina et al., 2020) delved into the characteristics
of magnetized, weakly ionized linear and nonlinear fast magnetosonic
waves within pulsar environments. This research illuminated how the
orbital and spinning motion of electrons significantly influences the
dispersion relations of electrostatic longitudinal waves in degenerate
Fermi gases (Tsintsadze, 2010).

Furthermore, Tsintsadze and Tsintsadze (2012) explored the ther-
modynamic properties of magnetized quantum electron gases under the
influence of strong magnetic fields. They successfully derived a new
type of sound velocity, termed the quantum magnetosound velocity,
which adds to the understanding of the dynamics of these complex
systems. Shukla and Rahman (1996) delved into the profiles of both
shear Alfve’n waves and magnetosonic waves in classical plasmas,
employing the plasma fluid model to gain insights into these wave
phenomena. Salimullah and Rosenberg (1999) were pioneers in ana-
lytically exploring low-frequency dust kinetic Alfve’n waves in dusty
plasmas, marking a significant milestone in the study of these waves,
especially in their applications to comets and planetary rings. More-
over, Reddy et al. (1996) contributed to the field by investigating
low-frequency Alfve’n waves in multibeam dusty plasmas, uncovering
their relevance in astrophysical contexts such as comets and planetary
rings. Lastly, Masood et al. (2010) made substantial progress by study-
ing both linear and nonlinear electromagnetic waves in astrophysical
systems, establishing a robust theoretical framework for calculating
the magnetoacoustic speed in white dwarfs. This work considered
electrons in both relativistic and non-relativistic regimes, expanding
our understanding of the intricate interplay between quantum effects,
magnetic fields, and plasma dynamics in these celestial objects.

In this paper, we build upon these foundational studies to explore
the behavior of shear Alfve’n waves in the context of quantum plasmas,
considering the Landau quantization effect. We aim to deepen our
comprehension of the interplay between quantum phenomena and
magnetic fields in degenerate relativistic plasmas, shedding light on
their implications for astrophysical and technological applications.

2. A realtivistic multifluid model

The work of Nodar L. Tsintsadze and Levan N. Tsintsadze has
been instrumental in advancing our understanding of the relativistic
thermodynamic properties of degenerate Fermi gases when subjected
to super strong magnetic fields. In their research, they meticulously
considered the quantized motion of particles, specifically their motion
in planes perpendicular to the magnetic field. Their ground breaking
contributions led to the development of a novel relativistic thermody-
namic potential that sheds light on the intricate behavior of matter in
these extreme conditions.

In the realm of astrophysical investigations, notable researchers
such as Landstreet (1967), Shapiro and Teukolsky (2008), and Lipunov
(1987) have meticulously examined various astrophysical environ-
ments, accumulating invaluable data sets replete with rich information.
According to their meticulous calculations, the magnetic fields encoun-
tered on the surfaces of neutron stars typically range from 1011 to 1013

Gauss, with the potential for even more staggering intensities exceeding
10155Gauss within the interior regions of neutron stars or possibly
2

even higher. Notably, Bisnovatyi-Kogan (1970) has expounded on the
intriguing phenomenon whereby the rotation of stars can augment
the strength of magnetic fields by factors ranging from 103 to 104.

his underscores the profound influence of rotation on the magnetic
haracteristics of celestial bodies. It is imperative to recognize that
ithin the confines of such super strong magnetic fields, the dynamics
nd thermodynamic properties of degenerate electron gases undergo
rofound transformations. The interplay between quantum effects and
he overwhelming magnetic field strengths gives rise to novel and in-
riguing phenomena. These phenomena have far-reaching implications,
ot only in the context of astrophysical environments like the interiors
f white dwarfs, neutron star magnetospheres, and magnetars but also
n the domain of modern technology. The newly formulated relativis-
ic thermodynamics model for magnetized electron gases has found
idespread application in elucidating the behavior of matter within

hese extreme conditions. This model has become an indispensable
ool for unraveling the enigmatic secrets of degenerate environments,
ffering insights into the exotic physics at play in neutron stars and
hite dwarfs. Furthermore, its relevance extends to modern technol-
gy, where the knowledge gleaned from astrophysical investigations
an be harnessed for technological advancements. Consequently, the
tudy of relativistic thermodynamics in the presence of super strong
agnetic fields stands as a crossroads between fundamental astro-
hysical research and cutting-edge technological innovation. Nodar L.
sintsadze and Levan N. Tsintsadze paved a way for researcher to crack
he hidden secrets of plasma by calculating many phenomenon such
s, they calculated the thermodynamic potential 𝛺𝑇 for degenerate
lectron gas in the relativistic limit i.e. 𝜇 ∼ ℏ𝜔𝑐 ≫ 𝑘𝐵𝑇 .

𝑇 = −
𝑉 𝑚𝑒𝑐2𝐷
12𝜆3𝑐

(
𝑘𝐵𝑇
𝑚𝑒𝑐2

)2
{

�̄�
√

�̄�2 − 1
+

2�̄�
√

�̄�2 − 1 −𝐷
𝐷

}

(1)

Where �̄� = 𝜇
𝑚𝑒𝑐2

=
√

1 + 2𝐸𝐹
𝑚𝑒𝑐2

, 𝐷 = 2ℏ𝜔𝑐
𝑚𝑒𝑐2

𝜇 is chemical potential, 𝐷 is Landau quantization, while, 𝐸𝐹 , 𝑚𝑒, 𝑐, ℏ,
𝑐 , 𝜆𝑐 , 𝑘𝐵 , 𝑇 is Fermi energy, mass of electrons, speed of light, Dirac

constant, cyclotron frequency of electrons, Compton wavelength, Boltz-
mann constant and thermal temperature of plasma species respectively.
The expression for relativistic pressure can be constructed by using
the equation 𝑃 = −𝛺𝑇

𝑉 . The most astonishing fact is that the Landau
quantization 𝐷 is appearing in the relativistic pressure and thus we do
not need to write separate part of Landau quantization.

𝑃 = −
𝛺𝑇
𝑉

=
𝑚𝑒𝑐2𝐷
12𝜆3𝑐

(
𝑘𝐵𝑇
𝑚𝑒𝑐2

)2
{

�̄�
√

�̄�2 − 1
+

2�̄�
√

�̄�2 − 1 −𝐷
𝐷

}

(2)

Simplification leads us to the following form,

𝑃 =
𝑘2𝐵𝑇

2

12𝜆3𝑐

1
𝑚𝑒𝑐2

[

2𝛽𝑛
2
3 + 1

]

Where 𝛽 = 3
2
3 𝜋

4
3 ℏ2

𝑚2
𝑒 𝑐2

is a parameter.

𝛁𝑃𝑒 = 𝑁𝑇 𝑛
− 1

3
𝑒 𝛁𝑛𝑒 (3)

For our simplification, we have supposed 𝑁𝑇 =
𝑘2𝐵𝑇

2

9𝜆3𝑐

1
𝑚𝑒𝑐2

𝛽
Now, keeping the higher order in the expansion of pressure term,

the N𝑇 will be replaced by N𝐿 which has been defined separately from
Eq. (3).

𝑁𝐿 = 1
12𝜆3𝑐

(

𝑘𝐵𝑇
)2

𝑚𝑒𝑐2𝛽

{

4
3
𝛽2 + 1

6
𝑛
− 4

3
𝑒0

(

1 +𝐷2)
}

In the present work, we aim to investigate the exotic physics of shear
Alfve’n waves in an in homogeneous two component collisionless quan-
tum electron ion plasma in the presence of strongly spatially variable
quantized magnetic field via Landau quantization in the atmosphere of
white dwarf. The orientation of ambient magnetic field is taken along
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z-axis i.e 𝐁 = 𝐵0�̂�, 𝐵0 is magnetic field strength, �̂� is unit vector in
he Cartesian coordinate system. The lighter particles, electrons, are
reated as relativistic, quantized and magnetized particles. On the other
and, ion population is magnetized but do not behave as degenerate
pecies due to their tenuous mass as compared to electrons. Brodin
nd Marklund were the first who developed spin- 12 quantum mag-

netohydrodynamic model (QMHD) for description of magnetoplasma
(hydrodynamic waves) and applied this model for various quantum
plasma systems such as, astrophysical plasma, solid state plasma and
dusty plasma (Brodin and Marklund, 2007; Marklund and Brodin,
2007). The quantum magnetohydrodynamic model (QMHD) or hydro-
dynamic model (MHD) is just an extension of classical fluid model
with incorporated quantum effects and thus,describe the microscopic
variables of plasma system (Manfredi, 2005; Sutar et al., 2022; Ahmad
and Qamar, 2009). The trajectories of plasma particles can be find out
by using the equation of motion. For our theoretical description, the
governing equation of motion for degenerate relativistic electrons is
given by

𝑚𝑒𝑛𝑒(
𝜕𝛾𝐯𝑒
𝜕𝑡

) = 𝑞𝑒𝑛𝑒(𝐄 + 1
𝑐
𝛾𝐯𝑒 × 𝐁) − 𝛁𝑃𝑒 (4)

here 𝛾 =
(

1 − 𝑣2

𝑐2

)− 1
2 is relativistic effect introduced through velocity

f wave. 𝛾𝑒 = 𝛾𝑒1 =
(

1 −
𝑣2𝑒1
𝑐2

)−1∕2
≃ 1 is linearized form of relativistic

ffect. The coordinate system for propagation of wave vector is chosen
long xz-plane i.e 𝐤 = (𝑘𝑥, 0, 𝑘𝑧) such that 𝑘𝑥 = 𝑘 sin 𝜃 and 𝑘𝑧 = 𝑘 cos 𝜃
here 𝜃 represents the angle between wave vector and positive z-
irection. The magnitude of wave vector is related with wavelength as
= 2𝜋

𝜆 . The propagation vector 𝐤 and electric field 𝐄 of low frequency
electromagnetic) shear Alfve’n waves are assumed in same plane, thus,
𝑦 = 0. The x and z components of velocity for electrons is determined

rom Eq. (4) Where 𝜔𝑐𝑒 = 𝑒𝐁0
𝑚𝑒0𝑐

represents the cyclotron frequency of
lectrons. Finally, x and z component of velocity are following,

𝑒1𝑥 = −𝑖 𝑒
𝜔𝑚𝑒0

𝛽1

(

1
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

)

𝐸𝑥 − 𝑖 𝑒
𝑚𝑒0𝜔

𝛽2𝜉𝑘𝑥𝑘𝑧𝐸𝑧 (5)

𝑣𝑒1𝑧 = −𝑖
𝑒𝜉𝑘𝑥𝑘𝑧
𝜔𝑚𝑒0

𝛽2𝐸𝑥 − 𝑖 𝑒
𝜔𝑚𝑒0

𝛽3𝐸𝑧 (6)

here variables are 𝜉 = 𝑁𝑇

𝑚𝑒0𝑛
1∕3
𝑒0

for first order expansion of pressure

erm and 𝜉 = 𝑁𝐿

𝑚𝑒0𝑛
1∕3
𝑒0

in case of higher order expansion in order to
sustain Landau quantization term and

𝛽1 =
𝜉2𝑘2𝑥𝑘

2
𝑧
(

𝜔2 − 𝜉𝑘2𝑥
)

(𝜔2 − 𝜉𝑘2𝑥 − 𝜉𝑘2𝑧)
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

+ 𝜔2

𝛽2 =

(

𝜔2 − 𝜉𝑘2𝑥
)

(𝜔2 − 𝜉𝑘2𝑥 − 𝜉𝑘2𝑧)
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

𝛽3 =

(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
) (

𝜔2 − 𝜉𝑘2𝑥
)

(𝜔2 − 𝜉𝑘2𝑥 − 𝜉𝑘2𝑧)
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

The governing equation of motion for non-quantum particles i.e for ions
is given by

𝑚𝑖𝑛𝑖
(

𝜕𝑡 + 𝐯𝑖.𝛁
)

= 𝑛𝑖𝑒
(

𝐸1 +
1
𝑐
𝐯𝑖 × 𝐁

)

− 𝛾𝑘𝐵𝑇𝛁𝑛𝑖 (7)

here 𝛾 is an adiabatic factor defined as 𝛾 = 𝑁+2
2 , 𝑁 represents the di-

ensions of the system. We use equation of continuity for determining
he density.
𝜕𝑛𝑖
𝜕𝑡

+ 𝛁.𝑛𝑖𝐯𝑖 = 0 (8)

fter linearization, we get
𝑛𝑖1 =

𝐤 ⋅ 𝐯𝑖1 (9)
3

𝑛𝑖0 𝜔
Substituting the value of 𝑛𝑖1
𝑛𝑖0

in Eq. (8). Thus, required x and z-
component of velocity of ions is

𝑣𝑖1𝑥 =

𝑖𝜔𝑒
𝜔2 − 𝑣2𝑇 𝑖𝑘

2
𝑥.𝑚𝑖0

{

1 +
𝛺2

𝑐𝑖
(

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥 −𝛺2

𝑐𝑖
)

×

⎛

⎜

⎜

⎜

⎜

⎝

1 +
(
𝑣4𝑇 𝑖
𝜔2 )

(

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥
)

𝑘2𝑥𝑘
2
𝑧

[

(

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥 − 𝑣2𝑇 𝑖𝑘

2
𝑧
) (

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥 −𝛺2

𝑐𝑖
)

−
𝛺2
𝑐𝑖𝑣

4
𝑇 𝑖𝑘

2
𝑥𝑘2𝑧

𝜔2

]

⎞

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝐸𝑥

+ 𝑖𝜔
𝜔2 − 𝑣2𝑇 𝑖𝑘

2
𝑥

𝑒
𝑚𝑖0

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣4𝑇 𝑖
(

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥
)

𝜔2
[

(

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥 − 𝑣2𝑇 𝑖𝑘

2
𝑧
) (

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥 −𝛺2

𝑐𝑖
)

−
𝛺2
𝑐𝑖𝑣

4
𝑇 𝑖𝑘

2
𝑥𝑘2𝑧

𝜔2

]𝑘2𝑥𝑘
2
𝑧

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝐸𝑥

+𝑖
𝑒𝑣2𝑇 𝑖

(

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥
)

𝜔𝑚𝑖0

[

(

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥 − 𝑣2𝑇 𝑖𝑘

2
𝑧
) (

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥 −𝛺2

𝑐𝑖
)

−
𝛺2
𝑐𝑖𝑣

4
𝑇 𝑖𝑘

2
𝑥𝑘2𝑧

𝜔2

]𝑘𝑥𝑘𝑧𝐸𝑧

(10)

𝑣𝑖1𝑧 = 𝑖
𝑒𝑣2𝑇 𝑖

(

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥

)

𝜔𝑚𝑖0

[

(

𝜔2 − 𝑣2𝑇 𝑖𝑘2𝑥 − 𝑣2𝑇 𝑖𝑘2𝑧
) (

𝜔2 − 𝑣2𝑇 𝑖𝑘2𝑥 −𝛺2
𝑐𝑖
)

− 𝛺2
𝑐𝑖𝑣

4
𝑇 𝑖𝑘

2
𝑥𝑘2𝑧

𝜔2

]
𝑘𝑥𝑘𝑧𝐸𝑥

+ 𝑖 1
𝜔𝑚𝑖0

𝑒
(

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥

) (

𝜔2 − 𝑣2𝑇 𝑖𝑘
2
𝑥 −𝛺2

𝑐𝑖

)

[

{

𝜔2 − 𝑣2𝑇 𝑖(𝑘2𝑥 + 𝑘2𝑧)
} (

𝜔2 − 𝑣2𝑇 𝑖𝑘2𝑥 −𝛺2
𝑐𝑖
)

− 𝛺2
𝑐𝑖𝑣

4
𝑇 𝑖𝑘

2
𝑥𝑘2𝑧

𝜔2

]
𝐸𝑧 (11)

Where 𝑣𝑇 𝑖 =
(

𝛾𝑘𝐵𝑇𝑖
𝑚𝑖

)
1
2 is thermal velocity of ions. Since shear

Alfve’n wave is low frequency (but longer wavelength) electromagnetic
wave, thus, it is necessary to execute the conditions 𝜔2 ≪ 𝛺2

𝑐𝑖. The
ion particles are treated as cold particles which implies that thermal
velocity of ions will be zero i.e 𝑣𝑇 𝑖 = 0. Then above equation assume
the following form.

𝑣𝑖𝑥𝑧 = 𝑣𝑖𝑧𝑥 = 0 (12)

𝑣𝑖𝑧𝑧 =
𝑖𝑒

𝜔𝑚𝑖0
𝐸𝑧 (13)

𝐉 = 𝑒𝑛𝑖0𝑣𝑖1 − 𝑒𝑛𝑒0𝑣𝑒1

𝐉 =
(

𝐽11 𝐽12
𝐽21 𝐽22

)

.
(

𝐸𝑥
𝐸𝑧

)

(14)

here current components of Eq. (14) given in matrix are defined as

11 = 𝑖
𝑒2𝑛𝑒0
𝜔𝑚𝑒0

⎡

⎢

⎢

⎣

𝜉2𝑘2𝑥𝑘
2
𝑧
(

𝜔2 − 𝜉𝑘2𝑥
)

(𝜔2 − 𝜉𝑘2𝑥 − 𝜉𝑘2𝑧)
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

+ 𝜔2
⎤

⎥

⎥

⎦

×

(

1
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

)

𝐽12 = 𝑖
𝑒2𝑛𝑒0
𝜔𝑚𝑒0

𝜉𝑘𝑥𝑘𝑧
⎛

⎜

⎜

⎝

𝜔2 − 𝜉𝑘2𝑥

(𝜔2 − 𝜉𝑘2𝑥 − 𝜉𝑘2𝑧)
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒𝑧

)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

⎞

⎟

⎟

⎠

𝐽21 = 𝑖
𝑒2𝑛𝑒0
𝜔𝑚𝑒0

𝜉𝑘𝑥𝑘𝑧
⎛

⎜

⎜

⎝

𝜔2 − 𝜉𝑘2𝑥

(𝜔2 − 𝜉𝑘2𝑥 − 𝜉𝑘2𝑧)
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

⎞

⎟

⎟

⎠

𝐽22 = 𝑖
𝑒2𝑛𝑖0
𝜔𝑚𝑖0

+ 𝑖
𝑒2𝑛𝑒0
𝜔𝑚𝑒0

⎛

⎜

⎜

(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
) (

𝜔2 − 𝜉𝑘2𝑥
)

2 2 2
(

2 2 2
) 𝜔2

𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

⎞

⎟

⎟

⎝
(𝜔 − 𝜉𝑘𝑥 − 𝜉𝑘𝑧) 𝜔 − 𝜉𝑘𝑥 − 𝜔𝑐𝑒 −

𝜔2 ⎠
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The wave equation in tensor form is defined as following

−𝐤𝐤.𝐄 + 𝑘2𝐈.𝐄 − 𝜔2

𝑐2
𝐄 = 4𝜋𝑖𝜔

𝑐2
𝐉 (15)

y substituting the value of 𝐉 in Eq. (15) leads the equation to following
orm

−𝐤𝐤 + 𝑘2𝐈 − 𝜔2

𝑐2
𝜖
]

.𝐄 = 𝟎

𝐈 is identity tensor. Unit Dyadic product is defined as 𝐤𝐤 =
(

𝑘𝑥𝑥 𝑘𝑥𝑧
𝑘𝑧𝑥 𝑘𝑧𝑧

)

, and 𝜖 =
(

𝐈 − 4𝜋𝑖
𝜔

)

is dielectric tensor. The 𝜖(𝜔) is

known as dielectric function for any varying value of frequency and
this function will be known as dielectric constant for specific value of
frequency. It is worthy to note that 𝜖(𝜔) and 𝝈(𝜔) are simple scaler
functions of wave frequency in unmagnetized plasma (isotropic media)
but these quantities assume the form of tensors in magnetized plasma
due to anisotropy (different motion along and across the magnetic
field). Moreover, above equation can be written as

𝐃.𝐄 = 0 (16)

The non vanishing solution for electric field 𝐄 ≠ 𝟎 is only possible if
determinant of matrix becomes zero. The dispersion relation 𝐃(𝝎,𝐤) can
be decoded from determinant condition which is the implicit function
of both frequency and wave number.

𝐷𝑒𝑡(𝐃)=
(

𝑘2𝑧 −
𝜔2

𝑐2
𝜖𝑥𝑥 −𝑘𝑥𝑘𝑧 −

𝜔2

𝑐2
𝜖𝑥𝑧

−𝑘𝑧𝑘𝑥 −
𝜔2

𝑐2
𝜖𝑧𝑥 𝑘2𝑥 −

𝜔2

𝑐2
𝜖𝑧𝑧

)

= 0 (17)

The polarization current is produced by wiggling motion of electrons
and ions that specifies the plasma as a dielectric medium. The specific
properties of plasma are encoded in the elements of dielectric tensor.
The distinct components of medium response function are

𝜖𝑥𝑥 = 1 +
𝜔2
𝑝𝑒

𝜔2

⎡

⎢

⎢

⎣

𝜉2𝑘2𝑥𝑘
2
𝑧
(

𝜔2 − 𝜉𝑘2𝑥
)

(𝜔2 − 𝜉𝑘2)
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

+ 𝜔2
⎤

⎥

⎥

⎦

× 1
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

𝜖𝑥𝑧 = 𝜖𝑧𝑥 =
𝜔2
𝑝𝑒

𝜔2
𝜉𝑘𝑥𝑘𝑧

⎛

⎜

⎜

⎝

𝜔2 − 𝜉𝑘2𝑥

(𝜔2 − 𝜉𝑘2𝑥 − 𝜉𝑘2𝑧)
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

⎞

⎟

⎟

⎠

𝑧𝑧 = 1 +
𝜔2
𝑝𝑖

𝜔2
+

𝜔2
𝑝𝑒

𝜔2

⎛

⎜

⎜

⎝

(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
) (

𝜔2 − 𝜉𝑘2𝑥
)

(𝜔2 − 𝜉𝑘2)
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

⎞

⎟

⎟

⎠

The low frequency oblique shear Alfve’n wave has both 𝐤 and 𝐄 in
ame plane. By executing the condition 𝐸𝑦 = 0 and further this low

frequency wave demands the implications of 𝜔2 ≪ 𝜔2
𝑐𝑒 and 𝜔2 ≪ 𝜉𝑘2𝑥.

The modified form medium response functions after the applications of
conditions,

𝜖𝑥𝑥 = 1 −
𝜔2
𝑝𝑒

𝜔2

⎡

⎢

⎢

⎣

−𝜉3𝑘4𝑥𝑘
2
𝑧

𝜉𝑘2
(

𝜉𝑘2𝑥 + 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

+ 𝜔2
⎤

⎥

⎥

⎦

1
𝜉𝑘2𝑥 + 𝜔2

𝑐𝑒

𝜖𝑥𝑧 = 𝜖𝑧𝑥 = −
𝜔2
𝑝𝑒

𝜔2

𝜉2𝑘4𝑥𝑘𝑧

(𝜔2 − 𝜉𝑘2𝑥 − 𝜉𝑘2𝑧)
(

𝜔2 − 𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

𝜖𝑧𝑧 = 1 +
𝜔2
𝑝𝑖

𝜔2
+

𝜔2
𝑝𝑒

𝜔2

⎛

⎜

⎜

⎝

𝜉𝑘2𝑥
(

𝜉𝑘2𝑥 + 𝜔2
𝑐𝑒
)

𝜉𝑘2
(

𝜉𝑘2𝑥 + 𝜔2
𝑐𝑒
)

− 𝜔2
𝑐𝑒𝜉2𝑘2𝑥𝑘2𝑧

𝜔2

⎞

⎟

⎟

⎠

The determinant of 𝐃 is
2 (𝜖𝑥𝑥𝜖𝑧𝑧 − 𝜖2𝑥𝑧

)

− 2𝑐2𝑘𝑥𝑘𝑧𝜖𝑥𝑧 − 𝑐2𝑘2𝑥𝜖𝑥𝑥 − 𝑐2𝑘2𝑧𝜖𝑧𝑧 = 0 (18)

After substituting the values of 𝜖𝑥𝑥, 𝜖𝑥𝑧 and 𝜖𝑧𝑧 in above equation, we
obtain a biquadratic equation at

𝜔2
𝑝𝑖

𝜔2
𝑐𝑖
= 𝑐2

𝑣2𝐴𝑖
,

𝜔4 + 𝐵𝜔2 + 𝐶 = 0 (19)
4

here

= 𝜉𝑘2𝑥𝑘
2
𝑧

𝜔2
𝑝𝑒

𝜉𝑘2𝑥 + 𝜔2
𝑐𝑒

(

𝜔2
𝑐𝑒 + 𝜉𝑘2𝑥

)

+ 𝜔2
𝑝𝑒𝑘

2
𝑥
(

𝜉𝑘2𝑥 + 𝜔2
𝑐𝑒
)

− 𝜔4
𝑝𝑒𝑘

2
𝑥 − 𝜔2

𝑐𝑒𝜉𝑘
2
𝑥𝑘

2
𝑧

𝐵 = 𝑐2𝜔2
𝑐𝑒𝜉𝑘

4
𝑥𝑘

2
𝑧 + 𝑐2𝜔2

𝑐𝑒𝜉𝑘
2
𝑥𝑘

4
𝑧 +

𝜔2
𝑝𝑒

𝜉𝑘2𝑥 + 𝜔2
𝑐𝑒
𝜉𝑘2𝑥𝑘

2
𝑧

×
(

𝜔2
𝑝𝑖𝜔

2
𝑐𝑒 − 𝜔2

𝑐𝑒𝑐
2𝑘2𝑥 − 𝑐2𝜉𝑘4𝑥

)

− 𝜔2
𝑐𝑖

𝑐2

𝑣2𝐴𝑖
𝜉𝑘2𝑥𝑘

2
𝑧𝜔

2
𝑐𝑒 −

𝜔2
𝑝𝑖𝜔

2
𝑝𝑒

𝜉𝑘2𝑥 + 𝜔2
𝑐𝑒
𝜉2𝑘4𝑥𝑘

2
𝑧 + 𝜔2

𝑝𝑒𝑐
2𝑘2𝑥𝑘

2
𝑧
(

𝜉𝑘2𝑥 − 𝜔2
𝑐𝑒
)

𝐶 = 𝑐2𝜔2
𝑐𝑖

𝑐2

𝑣2𝐴𝑖
𝜔2
𝑐𝑒𝜉𝑘

2
𝑥𝑘

4
𝑧

The solution of Eq. (20) becomes as in Box I.

3. Discussion

𝜔2 = −

⎡

⎢

⎢

⎢

⎣

𝑣2𝐴𝑒
(

𝑘2 − 𝜔2
𝑐𝑖

𝑣2𝐴𝑖

)

(

2 + 𝜂 − 𝑣2𝐴𝑒
𝑐2

)

+

(

𝜔2
𝑐𝑖

𝑣2𝐴𝑒𝑐
2

𝑣2𝐴𝑖
𝑘2𝑧

{

2 + 𝜂 − 𝑣2𝐴𝑒
𝑐2

}

+ 𝑣2𝐴𝑒
(

𝑘2 − 𝜔2
𝑐𝑖

𝑣2𝐴𝑖

){

𝑐2𝑘2𝑥 + 𝛿
(

𝜔2
𝑝𝑖 − 𝑐2𝑘2𝑥 − 𝜉𝑘2𝑥𝜎

)})

(

2 + 𝜂 − 𝑣2𝐴𝑒
𝑐2

) [

−𝑣2𝐴𝑒
(

𝑘2 − 𝜔2
𝑐𝑖

𝑣2𝐴𝑖

)

+ 𝜔2
𝑐𝑒

𝜉𝑘2𝑥+𝜔2
𝑐𝑒

(

𝜔2
𝑝𝑖 − 𝑐2𝑘2𝑥 − 𝜉𝑘2𝑥𝜎

)

+ 𝑐2𝑘2𝑥
]

⎤

⎥

⎥

⎥

⎦

(21)

Where

𝜔2
𝑐𝑒

𝜉𝑘2𝑥 + 𝜔2
𝑐𝑒

= 𝛿,
𝜔2
𝑐𝑒 − 𝜔2

𝑝𝑒

𝜉𝑘2𝑧
= 𝜂,

𝑐2𝑘2𝑥 + 𝜔2
𝑝𝑖

𝜔2
𝑐𝑒

= 𝜎

This long manifestation of dispersion relation Eq. (21) was obtained by
using the thermodynamic potential 𝛺𝑇 coined by Nodar L. Tsintsadze
and Levan N. Tsintsadze. Then thermodynamic potential played vital
role for determining the relativistic pressure in degenerate relativis-
tic plasma which purely depends upon number density and thermal
temperature of electrons. The relation between 𝜔 and 𝐤 illustrates
the possible wavelengths and frequencies of shear Alfve’n waves in
degenerate relativistic plasma.

After dong some straightforward calculations, we obtain a disper-
sion relation which depicts the modified relation with quantum effect
i.e. Landau quantization in degenerate relativistic plasma, which is ge-
ometry dependent and plays no role for parallel propagation. However,
it is worthy to note that only electrons are contributing in the quantum
effects but ion species exhibit classical behavior due to their ignorable
De Broglie wavelength but these ions are treated as magnetized and
cold particles. Eq. (21) shows that frequency of shear Alfve’n waves
depends upon plasma and cyclotron frequencies of electrons and ions,
Alfve’n speed of electrons and ions and angle between magnetic field
and propagation vector.

4. Numericalanalysis

In a low thermal temperature and high density plasma systems
microscopic quantum features modify the macroscopic properties sig-
nificantly. The number densities in certain dense astrophysical plasmas
are about 1030−1032 cm−3 and magnetic field about 109−1011𝐺 (Shah
et al., 2011; Deka and Dev, 2020). Quantum effects are significant in
these severe astrophysical conditions. We select some common param-
eters seen in the interiors of neutron stars, magnet stars, and white
dwarfs,

𝑛𝑒0 = 𝑛𝑖0 = (2.5 ↦ 8.5) ×1031cm−3,B0 = (4.2 ↦ 6.2) ×1011G,T
=(2.1 ↦ 4.1) ×107k, Ti = (2.1 ↦ 4.1) ×107k, x=120 (Deka and Dev,
2020).

This research present a numerical investigation of the normal-
ized dispersion relation for Shear Alfven waves within a degenerate
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𝜔2 =

−𝑣2𝐴𝑒

(

𝑘2 −
𝜔2
𝑐𝑖

𝑣2𝐴𝑖

)

−

(

𝜔2
𝑐𝑖

𝑣2𝐴𝑒𝑐
2

𝑣2𝐴𝑖
𝑘2𝑧

{

2+
𝜔2𝑐𝑒−𝜔

2
𝑝𝑒

𝜉𝑘2𝑧
−

𝑣2𝐴𝑒
𝑐2

}

+𝑣2𝐴𝑒

(

𝑘2−
𝜔2𝑐𝑖
𝑣2𝐴𝑖

){

𝑐2𝑘2𝑥+
𝜔2𝑐𝑒

𝜉𝑘2𝑥+𝜔
2
𝑐𝑒

(

𝜔2
𝑝𝑖−𝑐

2𝑘2𝑥−𝜉𝑘
2
𝑥

(

𝑐2𝑘2𝑥+𝜔
2
𝑝𝑖

𝜔2𝑐𝑒

))})

[

−𝑣2𝐴𝑒

(

𝑘2−
𝜔2𝑐𝑖
𝑣2𝐴𝑖

)

+ 𝜔2𝑐𝑒
𝜉𝑘2𝑥+𝜔

2
𝑐𝑒

(

𝜔2
𝑝𝑖−𝑐

2𝑘2𝑥−𝜉𝑘2𝑥

(

𝑐2𝑘2𝑥+𝜔
2
𝑝𝑖

𝜔2𝑐𝑒

))

+𝑐2𝑘2𝑥

]

(

2 +
𝜔2
𝑐𝑒−𝜔2

𝑝𝑒

𝜉𝑘2𝑧
−

𝑣2𝐴𝑒
𝑐2

) (20)

Box I.
Fig. 1. Relationship of (𝜔, 𝑘) at 𝑛 = (2.5𝑡𝑜8.5) ×1031cm−3 , 𝐵0 = 5.2 × 1011𝐺, 𝑇 = 2.1 × 107𝑘,𝑋 = 12𝑜.
relativistic quantum plasma, incorporating the effects of Landau quanti-
zation. Our study, depicted through Figs. 1 to 5, unveils a rich spectrum
of phenomena, elucidating how these waves behave under a range of
distinct conditions and parameter configurations.

Fig. 1 illustrates the propagation characteristics of Shear Alfve’n
waves within a degenerate relativistic quantum plasma, with a focus on
varying number density while keeping other parameters constant. The
blue dotted line depicts the (𝜔, 𝑘) relationship at a reference number
density of 𝑛 = 2.5×1031cm−3, where we observe that as wavevector
k increases, 𝜔 correspondingly increases while the phase speed re-
mains constant. In contrast, the dashed red line 𝑛 = 5.5×1031cm−3

and solid black line 𝑛 = 5.5×1031cm−3 demonstrate a noteworthy
trend: an increase in number density leads to a decrease in the phase
speed of shear Alfve’n waves within the degenerate relativistic quan-
tum plasma. Notably, at a specific number density, the phase speed
exhibits consistent behavior. In the context of electromagnetic Shear
Alfve’n wave propagation, the behavior of charged particles within the
plasma is crucial. When the gyro scales (Larmor Radius) are shorter
than the anticipated dimension of interplanetary magnetic fields, these
particles become bound to the magnetic field lines (Fitzpatrick, 2022;
Casse et al., 2001). This entrapment results in a combined motion
of both particles and field lines, preventing their crossing and giving
rise to the phenomenon known as ‘‘frozen-in flow’’. This phenomenon
is responsible for magnetic compression and rarefaction (Matteucci,
2020). However, as particle density increases in the relativistic plasma
regime while keeping other parameters constant, particles may diffuse
across the magnetic field lines threading through the plasma. Conse-
quently, magnetic field lines weaken, making it challenging to generate
effective magnetic compressions and rare factions within the Landau-
quantized relativistic density regime, thus lowering the phase speed.
5

In contrast, in non-relativistic plasmas, phase speed reduction usually
occurs due to the breaking of magnetic field lines through collisional
processes (Huber et al., 2013; McCubbin et al., 2022).

Fig. 2 offers insights into the behavior of phase velocity in Shear
Alfve’n waves within a degenerate relativistic quantum plasma, with
a focus on varying the strength of the DC magnetic field while hold-
ing other parameters constant. The blue dotted line corresponds to a
magnetic field strength of 𝐵0 = 4.2 × 1011G, the dashed red line to
𝐵0 = 5.2×1011 G, and the solid black line to 𝐵0 = 6.2×1011G. Alongside
these lines, one can observe a uniform phase speed at the corresponding
magnetic field values. However, an intriguing trend emerges: as the
magnetic field strength increases, the phase speed steadily decreases.
This behavior can be understood from a physical perspective. In the
context of relativistic quantized plasmas, a stronger magnetic field
leads to a higher normalized Alfve’n speed. Importantly, the phase
speed exhibits an inverse relationship with this normalized Alfve’n
speed (Safdar et al., 2020). As a result, an increase in magnetic field
strength corresponds to a decrease in phase speed, as indicated in the
presented results. This observation underscores the intricate interplay
between magnetic field strength and phase velocity in the context of
magnetosonic waves within degenerate relativistic quantum plasmas.

Fig. 3 delves into the influence of electron and ion thermal tempera-
tures on the propagation of Shear Alfve’n waves within the degenerate
relativistic quantum plasma. The range considered spans from 𝑇 = 2.1×
107𝑘 to 4.1 × 107𝑘, with all other parameters held constant. Notably, at
a typical thermal temperature for electrons and ions, we observe a uni-
form slope, signifying a constant phase speed. Interestingly, it becomes
evident that increasing the thermal temperature exerts no discernible
impact on the propagation characteristics. This phenomenon can be
elucidated by the nature of the system under study. In this scenario,
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Fig. 2. Relationship of (𝜔, 𝑘) at 𝑛 = 5.5×1031 cm−3 , 𝐵0 = (4.2𝑡𝑜6.2) × 1011𝐺, 𝑇 = 2.1 × 107𝑘,𝑋 = 12𝑜.
Fig. 3. Relationship of (𝜔, 𝑘) at 𝑛 = 5.5×1031 cm−3 , 𝐵0 = 5.2 × 1011𝐺, 𝑇 = (2.1𝑡𝑜4.1) × 107𝑘,𝑋 = 12𝑜.
electrons and ions are treated as degenerate and relativistic, rendering
thermal effects negligible within the quantum plasma. As a result, alter-
ations in the thermal temperatures of electrons and ions do not induce
significant changes in the behavior of Shear Alfve’n waves (Mazzi et al.,
2020). This observation underscores the unique characteristics of wave
propagation in the context of a degenerate relativistic quantum plasma,
where quantum effects dominate and thermal considerations take a
backseat.

Fig. 4 provides a comprehensive view of the impact of varying
the angle of Shear Alfve’n waves on their phase velocity within the
degenerate relativistic quantum plasma. The angle of interest ranges
from 𝑋 = 12◦ to 𝑋 = 18◦ with all other parameters held constant. A
clear trend emerges as the angle between the x and z axes increases:
the phase velocity of Shear Alfven waves steadily decreases. This
intriguing behavior can be attributed to several factors. Firstly, the
thermal temperature influences ion movement, prompting ions to move
more rapidly, thereby enhancing the phase speed. However, the critical
aspect to note is that Shear Alfven waves propagate more slowly when
they are perpendicular to the magnetic field compared to when they
6

align parallel to it. This anisotropy in phase velocity is a fundamen-
tal characteristic of magnetohydrodynamic (MHD) waves in plasma
physics and is rooted in the intricate interplay between the wave and
the magnetic field (Mazzi et al., 2020). The observations presented
in Fig. 4 underscore the significance of this phenomenon within the
context of degenerate relativistic quantum plasmas and its relevance in
understanding wave behavior in extreme plasma environments.

The Fig. 5 depicts the behavior of phase speed of shear Alfvén
waves when Landau quantization, in incorporated through higher order
term defined in the expression of N𝐿. We know Landau quantization is
based upon the external magnetic field. Physically on increasing the
magnetic field, the phase speed is suppressed significantly as shown
in figure from Dashed Red, Dotted Blue and Black. It is because the
gyro frequency contributes inversely for the landau quantization which
reduces the phase speed

In this comprehensive study, we investigate the intricate influence
of Landau quantization on Shear Alfve’n waves within a degenerate
relativistic plasma environment characterized by an ambient magnetic
field aligned parallel to the z-axis. Within this framework, both elec-
trons and ions are treated as relativistic entities, while the wavevector
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Fig. 4. Relationship of (𝜔, 𝑘) at 𝑛 = 5.5× 1031cm −3 , 𝐵0 = 5.2 × 1011𝐺, 𝑇 = 2.1 × 107𝑘,𝑋 = (12 − 18𝑜).
Fig. 5. Relationship of (𝜔, 𝑘) at 𝑛 = 1.0516×1031cm−3 , 𝐵0 = (1.08 − 1.58) × 1013𝐺, 𝑇 = 2.1 × 107𝑘,𝑋 = 10𝑜.
is oriented perpendicularly to the applied magnetic field, along the y-
axis, which is orthogonal to the uniform magnetic field. Employing the
Quantum hydrodynamic model, we consider the interplay of fermi gas
pressure, incorporating certain thermal effects and the Landau quan-
tization phenomenon, within the context of relativistic plasma. Our
analytical investigation unravels compelling insights into the modified
dispersion relation arising from the coexistence of relativistic quantum
electrons and classical thermal ions. The graphical representations of
our findings emphasize the substantial impact of several key parame-
ters, including the number density of plasma species, the strength of
the ambient magnetic field, and the thermal temperatures of both ions
and electrons. Notably, we observe that while the thermal temperature
of relativistic electrons exerts minimal influence on the phase speed of
magnetosonic waves, the angle between the wave vector (k) and the
magnetic field emerges as a significant factor shaping wave behavior.
Our research contributes to a deeper understanding of wave dynamics
in extreme plasma conditions, shedding light on the complex inter-
play between quantum and thermal effects in the presence of Landau
quantization.

Shear Alfve’n waves play a crucial role in various astrophysical
and laboratory plasma environments. In space physics, they contribute
to the transport of energy and momentum in magnetized plasmas,
7

such as the solar wind and Earth’s magnetosphere, influencing space
weather and geomagnetic disturbances (Robertson et al., 2020). In
controlled fusion experiments, Alfve’n waves are used for heating and
stabilizing high-temperature plasmas in devices like tokamaks and
stellarators (Kryzhanovskyy et al., 2022). Furthermore, they find ap-
plications in diagnostics, helping scientists probe and study plasma
properties. Additionally, Alfve’n waves are relevant in understanding
astrophysical phenomena, like the behavior of magnetic fields in stars
and the interstellar medium (Melnikov, 2019). Their versatility in
interacting with magnetized plasmas makes shear Alfve’n waves a valu-
able tool for both fundamental plasma physics research and practical
applications in energy generation and space exploration.
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