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Abstract This research is aimed to find the optimal values of four variables (n, h, L, k) that min-

imize the cost of integrated system approach to process control from considering the basis of the

EWMA control chart integrated model (Charongrattanasakul and Pongpullponsak, 2009, 2011)

and Kolmogorov–Smirnov (KS) control chart Khrueasom and Pongpullponsak (2014). The pro-

posed mathematical model is used to analyze the cost of the integrated model before the genetic

algorithms (GA) approach is carried out in order to calculate the optimal values of four variables

(n, h, L, k) that minimize the hourly cost. Subsequently, they are subjects to the nonparametric lin-

ear regression test in order to confirm the optimal values of four variables. A comparison between

four policies of integrated model KS and other models indicates that the integrated KS model has a

better economic behavior when it is distribution-free. Finally, the performance or average run

length (ARL) obtained from the KS model is greater than that of the general model.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the first control chart was provided in 1924 by Dr. She-
whart, the concept of the control chart has been considered in
many models from past to present, and currently the quality

control is widely used in various industry areas. One popular
application on control chart used in manufacturing is eco-

nomic design of control charts. Montgomery (2009) stated that
the economic design of control charts refers to the control
charts that have been designed with respect to statistical crite-

ria only. This usually involves selecting sample size and control
limits such that the average run length (ARL) of the chart to
detect a particular shift in the quality characteristic and the
ARL of the procedure when the process is in control are equal

to specified values. Practically, frequency of sampling is con-
sidered from factors including production rate, expected fre-
quency of shifts to an out-of-control state, and possible

consequences of such process shifts in determination of sam-
pling interval. In many cases, statistical criteria and practical
experience have been used in setting up general guidelines for
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the design of control charts. One thing that should be noted in
designing a control chart is the choice of control chart param-
eter can cause economic consequences. For this reason, an eco-

nomic viewpoint such as costs of sampling and testing, costs
associated with investigating out-of-control signals and possi-
bly correcting assignable causes, and costs of allowing noncon-

forming units to reach a consumer should be taken into
account in the design of a control chart.

In recent years, considerable research has been devoted to

economic models of control charts. Duncan (1956) used opti-
mum methodology to establish design parameters including
subgroup size (n), sampling interval (h), and control-limit
width (±L standard deviations) for minimizing the loss cost,

where the cost items include a sampling and testing cost, an
increasing cost from out-of-control process, false alarm cost,
and searching and repairing cost. Pongpullponsak et al.

(2009) studied a chart in conjunction with an age replacement
preventive maintenance policy. From the report, they also
introduced an economic model established using the Shewhart

method and determined the efficiency of the control chart
when the data were in skewed distributions. Saniga (1977) pro-
posed a joint economic design of and R control charts based

on two assignable causes in production process. In this model,
one assignable cause results in a shift of the process mean
whereas the other one results in a shift of the process variance.
Yu et al. (2010) studied the possibility in economic statistical

design of control charts by considering only one assignable
cause. In fact, multiple assignable causes such as machine
problem, material deviation, human errors, etc. can occur dur-

ing the production process so for this research, establishment
of an economic-statistical model of control chart will be
extended from consideration of single, in the original research,

to multiple assignable causes for a real application. Zhou and
Zhu (2008) established an economic statistical design of con-
trol chart from integrating the concepts between Statistical

Process Control (SPC) and Maintenance Management
(MM), which are in science and business practice, respectively.
The integrated model was then used to find the optimal values
of policy variables (n, h, L, k) that minimize hourly cost, sub-

sequently optimal product quality, little downtime, and cost
reduction can be achieved by controlling variances in the pro-
cess. The effects of cost parameters on the solution of the

design were investigated using a numerical experiment.
Generally, the process in construction of control chart

includes gathering the sampling properties of monitoring

statistic, determining the chart’s behavior, and comparing its
performance with other existing charts. In most cases, the data
are treated as normality but in some occasions, the underlying
population distribution or the necessary sampling properties

could not be ruled out. Some researchers have proposed rea-
sonable alternative as a solution. For instance, Yang et al.
(2011) introduced a nonparametric approach, namely a non-

parametric EWMA sing control chart for dealing with such sit-
uations. The Kolmogorov–Smirnov (KS) control chart is
another good example. The knowledge of sampling distribu-

tion is useful for nonparametric statistics inference because
the exact sampling distributions are considerably easier to cal-
culate compared with that for distribution-free statistic ðDnÞ,
or Kolmogorov–Smirnov one-sample statistic (Gibbons,
1971). Pongpullponsak and Jayathavaj (2014) considered
distribution-free statistics when the population from which
selected samples are not normally distributed or normality
cannot be met was used. Additionally, there are several non-
parametric tests that have been further applied in case of nom-

inal or ordinal data. Bakir (2012) introduced a modified
version of the two – sample Kolmogorov–Smirnov test statistic
where the difference of the reference and test empirical distri-

bution function are maximized only over the training sample
values. Khrueasom and Pongpullponsak (2014) developed
the distribution-free or unknown distribution quality control

chart based on the KS.
This research is aimed to find the optimal values of four

variables (n, h, L, k) that minimize the cost of integrated sys-
tem approach to process control and maintenance model on

the basis of the distribution-free/KS – control chart.

2. Materials and methods

2.1. Nomenclature

Cycle time (E [T])

T0 expected time searching for a false alarm

TP the expected time to identify maintenance requirement

and to perform a planned maintenance

TA the expected time to determine occurrence of assignable

causes

TR the expected time to identify maintenance requirement

and to perform a reactive maintenance

TC the expected time to perform a compensatory

maintenance

s the mean elapse time from the last sample before the

assignable cause to the occurrence of the assignable

ARL1 the average run length during the in-control period

ARL0 the average run length during the out-of- control period

E the expected time to sample and chart one item

Cycle cost (E [C])

CI the cost of quality loss per unit time (the process is in an

in-control state)

C0 the cost of quality loss per unit time (the process is in an

out-of-control state)

CP the cost of performing planned maintenance

CR the cost of performing reactive maintenance

CC the cost of performing compensatory maintenance

CF the fixed cost of sampling

CV the variable cost of sampling

Cf the cost to investigate a false alarm

The indicator variable equals 1 if production continues during

planned maintenance (cP), reactive maintenance (cR),
compensatory maintenance (cC), validate assignable cause (cA)
or 0 otherwise

PI
i

the probability that run length of control chart equals i

during in-control period PI
i ¼ a 1� að Þi�1

P0
i

the probability that run length of control chart equals i

during out-of- control period P0
i ¼ b 1� bð Þi�1

Optimal variable

n the sampling size (n* for optimal)

h the interval between sampling (h* for optimal)

L the width of control limit in units of standard deviation

(L* for optimal)

K the number of samples taken before planned

maintenance (k* for optimal)
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2.2. Problem statement and assumptions
Fig. 1 shows the framework in development of integrated
model. The process starts with an in-control state with a pro-

cess failure mechanism that is distribution-free or follows an
unknown distribution. The best-known test is the KS, the
cumulative distribution function (cdf) of the sample, called
the empirical distribution function (edf), may be considered,

and an estimate of the population and Dn can be written as
follows:

Dn ¼ sup
x

SnðxÞ � FX xð Þj j ð1Þ

For the random variable Sn(x), which is the edf of a ran-
dom sample X1, X2, Xn, a distribution FX can be derived from
‘‘Nonparametric statistical Inference” by Gibbons (1971),

P Sn xð Þ ¼ i

n

� �
¼ n

i

� �
FX½ �i 1� FX½ �n�i; i ¼ 0; 1; :::; n ð2Þ

Define the indicator random variables as below;

di tð Þ ¼
1 if Xi 6 t

0 otherwise

�
ð3Þ

The d1ðtÞ; d2ðtÞ; . . . dnðtÞ constitutes a set of n independent
random variables from the Bernoulli distribution with param-
eter h, where h ¼ P diðtÞ ¼ 1½ � ¼ PðXi 6 tÞ ¼ FXðtÞ. Therefore,
we obtain

Sn xð Þ ¼ 1

n

Xn
i¼1

di xð Þ ð4Þ

The random variables nSnðxÞ is the sum of n independent

Bernoulli random distribution, which follows the binomial dis-
tribution with parameter h ¼ FXðxÞ.

From Eqs. (2)–(4), we consider a sequence of t independent

Bernoulli trials, where the probability of the event is k and the
probability of the non-event is 1 � k. If we consider the event
to be the elimination of the player, then its absence over n trials
can be described as their survival. The probability of this sur-

vival throughout t trials will be given by the binomial mass
function B (x; t, k) when x= 0 (Pollock, 2007), which is

Bð0; t; kÞ ð5Þ
Figure 1 Four monitoring – maintenan
Likewise, in the case of the non-occurrence of eliminating
event over a continuous finite period of time the model of sur-
vival or elimination can be converted through Bernoulli trials

into similar model in which the events are distributed ran-
domly in time. To achieve this, a Poisson’s process in continu-
ous time should be depicted as a limiting case of a binomial

process. It can be carried out by taking, as the departure point,
the special case of the binomial given under Eq. (5) and consid-
ering that of each trial representing a single unit of time. Sub-

sequently, the probability of the occurrence of the eliminating
event within a single period can be denoted by k. Also, it is
assumed that the probability of the occurrence of two such
events within the same interval is vanishingly small or zero.

Then

Bð0; t; kÞ ¼ 1� k
n

� �n� �t
� 1� kð Þt; ð6Þ

where the approximation is obtained by taking the first two
terms of the binomial expansion.

1� k
n

� �n

¼ 1� kð Þ þ n� 1ð Þ
2n

k2 � n� 1ð Þ n� 2ð Þ
n23!

k3 þ . . . ð7Þ

In the limit, when the number of subdivisions increases
indefinitely, we have

lim
n!1

1� k
n

� �n

¼ e�k ð8Þ

At this point, the probability of survival in the period 0, t
can be described by

SðtÞ ¼ e�kt ð9Þ
which is the continuous-time analog of Eq. (5). The probability
of being eliminated during the period [0, t] or a cdf is written as

1� S tð Þ ¼ F tð Þ ¼
Z t

0

f sð Þds ¼ 1� e�kt ð10Þ

Next, the corresponding density function, defined over the
set of times at which elimination might occur, or a probability

density function is

fðtÞ ¼ ke�kt ð11Þ
ce scenarios of the integrated mode.
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which is a cumulative function F(t) in respect of t. This expo-

nential waiting time function is used to describe a duration
distribution.

2.3. Monitoring scenarios

In Scenario 1, the process begins at ‘‘in-control” state. Inspec-
tions start after h hours of monitoring to investigate whether
or not the process has shifted from an ‘‘in-control” to an

‘‘out-of-control” state. An alert signal has been added in the
control chart before the scheduled time when maintenance
should be carried out. But the signal will be false, if the process

is still ‘‘in-control”. In this case, searching and determining
false signal consumes time and incurs cost. Compensatory
Maintenance will be performed.

In Scenario 2, there is an alert signal similar to Scenario 1.
However, for this case the signal is valid and the process shifts
to an ‘‘out-of control” state, consequently Reactive Mainte-
nance is active.

In Scenarios 3 and 4, there is no signal in the control chart
before the scheduled time. For this reason, at the (k + 1)th

sampling interval, appropriate maintenance is assigned. In Sce-

nario 3, since the process is always ‘‘in-control’’, Planned
Maintenance is performed. But when the process shifts to an
‘‘out-of-control’’ state, in Scenario 4, Reactive Maintenance

will be active. Since the ‘‘out-of-control’’ condition happens
before the scheduled time, additional time and expense will
be incurred to identify and solve the equipment problem.

The proposed model which consists of four different sce-
narios has been defined as follows (Fig. 1).

2.4. Economic design of integrated model

2.4.1. Expected cycle time E [T] of each scenario

Scenario 1 (S1), the process begins at an ‘‘in-control” state in

which inspections start after h hours of monitoring to check
whether or not the process has shifted from an ‘‘in-control”
to ‘‘out-of-control” state. An alert signal is added in the con-

trol chart when maintenance should be performed before the
scheduled time. But the false signal might occur sometimes
when the process is still ‘‘in-control”, in this case searching

and determining false signal, which consumes time and incur
cost, will be carried out. Compensatory Maintenance is
performed.

E½TjS1� ¼ h
Xk
i¼0

iPI
i ð1� FðihÞÞ þ T0 þ TC: ð12Þ

The components of the total time of scenario 1 include,

1. The interval time when process is in control, denoted by T1

E½T1� ¼ h
Xk
i¼1

ipIi ð1� FðihÞÞ ð13Þ

2. The interval to search for the assignable cause, denoted by
T2

E½T2� ¼ T0 ð14Þ
3. The interval when the process is in Compensatory Mainte-

nance, denoted by T3

E½T3� ¼ TC ð15Þ
4. The total time of scenario 1 is

E½TjS1� ¼ E½T1� þ E½T2� þ E½T3�

E½TjS1� ¼ h
Xk
i¼1

ipIi ð1� FðihÞÞ þ T0 þ TC:
ð16Þ

Scenario 2 (S2), it assumes that the process shifts to an
‘‘out-of-control” state prior to the planned maintenance, and
the process failure mechanism follows a binomial distribution
whereas the in-control time follows a truncated binomial dis-

tribution as Eqs. (10) and (11).

f t kþ 1ð Þhjð Þ ¼ f tð Þ
F kþ 1ð Þhð Þ ¼

ke�kt

1� e� k kþ1ð Þhð Þ ; h < t 6 kþ 1ð Þh

ð17Þ
Then we have

E½TjS2� ¼
Z kh

0

tfðtjðkþ 1ÞhÞdtþ hARL0 � sþ nEþ TA þ TR;

ð18Þ
where s ¼Pk

i¼0

R ðiþ1Þh
ih

ðt� ihÞfðtjðkþ 1ÞhÞdt, ARL0: the aver-

age run length during out-of-control period, the ARL0 ¼ 1
b,

from Eq. (2) and application of the operating-characteristic
function and average run length calculations are from
Montgomery (2009), therefore b can be described as

b ¼ P p̂ < UCL pjf g � P p̂ 6 LCL pjf g
b ¼ P D < nUCL pjf g � P D 6 nLCL pjf g: ð19Þ

Since D is a binomial random variable with parameters n
and p, the b-error defined by Eq. (19) can be obtained from

the cumulative binomial (see Appendix). The components of
the total time of scenario 2 include,

1. The interval when the process is in control, denoted by T1

E½T1� ¼
Z kh

0

tfðtjkþ 1ÞhÞdt ð20Þ

2. The interval when the process is out of control before the

final sample of the detecting subgroup is taken, denoted
by T4

E½T4� ¼ hARL0 � s ð21Þ
3. The interval to sample, inspect, evaluate and plot the sub-

group results, denoted by T5

E½T5� ¼ nE ð22Þ
4. The interval to search for the assignable cause, denoted by

T2

E½T2� ¼ TA ð23Þ
5. The interval that the process is in Reactive Maintenance,

denoted by T6

E½T6� ¼ TR ð24Þ
6. The total time of scenario 2 is

E½TjS2� ¼E½T1�þE½T4�þE½T5�þE½T2�þE½T6�
E½TjS2� ¼

R kh

0
tfðtjðkþ1ÞhÞdtþhARL0� sþnEþTAþTR:

ð25Þ
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Scenario 3 (S3), no signal occurs in the control chart before
the scheduled time. Thus at the (k+ 1)th sampling interval,
appropriate maintenance should be concerned. Since the pro-

cess is always ‘in-control’’, Planned Maintenance is performed.
The components of the total time of scenario 3 include,

1. The interval when the process is in control, denoted by T1

E½T1� ¼
Z kh

0

tfðtjðkþ 1ÞhÞdt ð26Þ

2. The interval when the process is out of control and no sig-

nal is assigned in the chart, denoted by T7

E½T7� ¼ ðkþ 1Þh�
Z kh

0

tfðtjðkþ 1ÞhÞdt ð27Þ

3. The interval when the process is in Planned Maintenance,
denoted by T8

E½T8� ¼ TP ð28Þ
4. The total time of scenario 3 is

E½TjS3� ¼ E½T1� þ E½T7� þ E½T8�
E½TjS3� ¼ R kh

0
tfðtjðkþ 1ÞhÞdtðkþ 1Þh

�intkh0 tfðtjðkþ 1ÞhÞdtþ TP

¼ ðkþ 1Þhþ TP:

ð29Þ

Scenario 4 (S4), the process begins in control. When the

process shifts to an ‘‘out-of-control’’ state before the scheduled
time, Reactive Maintenance will be active. This leads to addi-
tional time and expense which is used to identify and solve the

equipment problem. The components of the total time scenario
4 include,

1. The interval when the process is in control, denoted by T1

E½T1� ¼
Z kh

0

tfðtjðkþ 1ÞhÞdt ð30Þ

2. The interval when the process is out of control and no sig-

nal is arranged, denoted by T7

E½T7� ¼ ðkþ 1Þh�
Z kh

0

tfðtjðkþ 1ÞhÞdt ð31Þ

3. The interval when the process is in Reactive Maintenance,

denoted by T6

E½T6� ¼ TR ð32Þ
4. The total time of scenario 4 is

E½TjS4� ¼ E½T1� þ E½T7� þ E½T6�
E½TjS4� ¼ ðkþ 1Þhþ TR:

ð33Þ
2.4.2. Expected cycle cost E [C] of each scenario

Similarly, the cycle cost consists of three main components

including the cost of quality loss incurred while operating
the process, the cost of sampling, and the cost of maintenance.
The cost of quality loss includes both C1 and C0, these two

costs can be estimated using the equations given below,
1. The cost of interval when the process is in control, denoted

by C1

E½C1� ¼ CI h
Xk
i¼1

pIi ð1� FðihÞÞ þ cCTC

" #
ð34Þ

2. The cost of sampling, inspection, evaluation and charting,
denoted by C2

E½C2� ¼ ðCF þ nCVÞ
Xk
i¼0

ipIi ð1� FðihÞÞ for scenario 1

E½C2� ¼ 1
h
E½TjS2�ðCF þ nCVÞ for scenario 2

E½C2� ¼ kðCF þ nCVÞ for scenarios 3 to 4

ð35Þ
3. The cost of false alarms, denoted by C3

E½C3� ¼ Cf ð36Þ
4. The cost of Compensatory Maintenance, denoted by C4

E½C4� ¼ CC ð37Þ
5. The cost of interval occurred when the process is out of

control, denoted by C5

E½C5� ¼ C0 ðkþ 1Þh�
Z kh

0

tfðtjðkþ 1ÞhÞdtþ cRTR

� �
ð38Þ

6. The cost of Reactive Maintenance, denoted by C6

E½C6� ¼ CR ð39Þ
7. The cost of Planned Maintenance, denoted by C7

E½C7� ¼ CP: ð40Þ
The total costs for 4 scenarios can be defined as below;

The total cost for scenario 1

E½CjS1� ¼ E½C1� þ E½C2� þ E½C3� þ E½C4�

E½CjS1� ¼ CI h
Xk
i¼0

ipIi ð1� FðihÞÞ þ cCTC

" #

þðCF þ nCVÞ
Xk
i¼0

ipIi ð1� FðihÞÞ þ Cf þ CC

ð41Þ
The total cost for scenario 2

E½CjS2� ¼ E½C1� þ E½C5� þ E½C2� þ E½C6�
E½CjS2� ¼ CI

R kh

0
tfðtjðkþ 1ÞhÞdt

h i
þC0 hARL0 � sð Þ þ nEþ cATA þ cRTR½ �
þ 1

h
E½TjS2�ðCF þ nCVÞ þ CR

ð42Þ
The total cost for scenario 3

E½CjS3� ¼ E½C1� þ E½C2� þ E½C7�
E½CjS3� ¼ CI ðkþ 1Þhþ cPTP½ � þ kðCF þ nCVÞ þ CP

ð43Þ

The total cost for scenario 4

E½CjS4� ¼ E½C1� þ E½C5� þ E½C2� þ E½C6�
E½CjS4� ¼ CI

R kh

0
tfðtjðkþ 1ÞhÞdt

h i
þC0 ðkþ 1Þh� intkh0 tfðtjðkþ 1ÞhÞdtþ cRTR

� �
þkðCF þ nCVÞ þ CR:

ð44Þ



Table 1 Parameter value of initial value in the model.

Parameter Value Parameter Value

E 0.1 CP 3000

CP 200 TA 0.8

CF 10 TA 0.3

CF 100 CI 1

CC 1000 CI 10

k 0.05 T0 0.2

CV 0.1 TC 0.6

CR 2000
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2.4.3. Expected hourly cost E [H]

In this section, determination of the hourly cost E [H] will be

carried out. The model can be considered as a renewal-reward
process; hence, the expected cost per hour E [H] can be
expressed by

E½H� ¼ E½C�
E½T� ð45Þ

where

E½T� ¼ E½TjS1�PðS1Þ þ E½TjS2�PðS2Þ þ E½TjS3�PðS3Þ
þ E½TjS4�PðS4Þ ð46Þ

E½C� ¼ E½CjS1�PðS1Þ þ E½CjS2�PðS2Þ þ E½CjS3�PðS3Þ
þ E½CjS4�PðS4Þ: ð47Þ

and probability for 4 scenarios can be explained through con-
ditional probability as below,

PðS1Þ ¼
Xk
i¼1

PðIn-control and Alert SignalÞ

¼
Xk
i¼1

PðIn-controljAlert SignalÞPðAlert SignalÞ

¼
Xk
i¼1

PI
i ð1� FðihÞÞ:

ð48Þ

PðS2Þ ¼
Xk
i¼1

PðOut-of-control and Alert SignalÞ

¼
Xk
i¼1

PðOut-of-controljAlert SignalÞPðAlert SignalÞ

¼
Xk
i¼1

½FðihÞ � Fði� 1Þh� 1�
Xi�1

j¼1

PI
j

 !Xk�iþ1

l¼1

P0
l :

ð49Þ

PðS3Þ ¼
Xk
i¼1

PðIn-control and No SignalÞ

¼
Xk
i¼1

PðIn-controljNo SignalÞPðNo SignalÞ

¼ ð1� FðkhÞÞ �
Xk
i¼1

PI
i ð1� FðihÞÞ:

ð50Þ

PðS4Þ ¼
Xk
i¼1

PðOut-of-control and No SignalÞ

¼
Xk
i¼1

PðOut-of-controljNo SignalÞPðNo SignalÞ

¼ FðkhÞ �
Xk
i¼1

½FðihÞ � Fði� 1Þh� 1�
Xi�1

j¼1

PI
j

 !Xk�iþ1

l¼1

P0
l :

ð51Þ
3. Results and analysis

In this research, the numerical example and sensitivity analyses
are conducted to study the effect of model parameters in the

solution of economic design of the KS chart. Using the genetic
algorithms (GA) with MATLAB, 7.6.0 (R2009a) software The
Math WorksTM, 2009, the solution procedure is carried out to

obtain the optimal values of ðn�; h�;L�; k�Þ which will be sub-
sequently used to minimize in Eq. (45).

The GA is the stochastic and optimization search technique
of natural selection and natural genetics. The GA solves prob-
lems used the approach to the process of Darwinian evolution.

In recent years, many research have been devoted to the GA
solves problems of economic-statistical, engineering, mathe-
matics, production processes, etc. Current, GA models were

introduced and investigated by Holland (1975). The solution
procedures of GA (e.g., Charongrattanasakul and
Pongpullponsak, 2011; Chou et al., 2006, 2008; Lin et al.,

2009, 2012; Chen and Yeh, 2009; Franco et al., 2012), in this
the research are briefly described below.

Step 1. Initial Population: The procedure starts at randomly
generating 100 solutions that reach the constraint condition of

individual test parameter. Meanwhile, the constraint condition
represented for individual test parameter is set as below,

1 6 n 6 25; 0:1 6 h 6 5; 2 6 L 6 2:5; 20 6 k 6 40

Step 2. Evaluation: This step, is evaluated through the fit-
ness function. Each solution used the expected cost per hour
E [H] in Eq. (45).

Step 3. Selection: The selected function chooses parents
(survivors) for the next generation based on their scaled values
of the fitness scaling function. The four individual solutions
are selected randomly and the best is chosen (For the first gen-

eration the chromosome with the lowest cost is selected to
replace the highest cost chromosome).

Step 4. Crossover: In this step by step 3, generate new chro-

mosomes for the next generation and a pair of parents (sur-
vivors) are selected randomly as shown in this example,
parents (survivors) used for crossover operations to produce

new chromosomes (or children) for the next generation. This
research used crossover rate 0.8 as below,

D1 ¼ 0:8Rþ 0:2M;D2 ¼ 0:2Rþ 0:8M

where D1 is the first new chromosome, D2 is the second new
chromosome, and R and M are the parent (survivors) chromo-
somes. If 30 parents (survivors) are randomly selected, then



Table 3 Model parameter assignment in the L16 orthogonal

array and the corresponding solution.

Trial Model parameter

CI C0 CP CR CC CF CV Cf

1 10 200 3000 2000 1000 10 0.1 100

2 20 200 3000 2000 1000 20 0.2 200

3 10 400 3000 2000 2000 10 0.2 200

4 20 400 3000 2000 2000 20 0.1 100

5 20 200 6000 2000 1000 20 0.2 100

6 10 200 6000 4000 2000 10 0.2 100

7 20 400 6000 2000 1000 10 0.1 200

8 10 400 6000 2000 1000 10 0.2 200

9 20 200 3000 4000 1000 20 0.1 200

10 10 200 3000 4000 2000 20 0.2 100

11 20 400 3000 2000 1000 20 0.2 100

12 10 400 3000 4000 2000 10 0.1 200

13 10 200 6000 4000 2000 10 0.1 200

14 20 200 6000 4000 1000 20 0.1 100

15 10 400 6000 4000 2000 10 0.1 100

16 20 400 6000 4000 2000 20 0.2 200

Solution

n h L k E [H]

1 1.001 0.432 2.192 20.094 83.517

2 1.000 0.653 2.000 20.000 126.442

3 1.000 0.101 2.021 20.000 95.067

4 1.145 0.104 2.357 20.000 143.357

5 1.010 1.186 2.412 26.935 171.505

6 1.081 4.994 2.301 39.930 205.515

7 1.000 0.140 2.492 20.000 113.634

8 1.006 0.133 2.001 20.000 102.569

9 1.405 0.776 2.079 20.000 185.375

10 1.000 1.260 2.010 20.000 209.949

11 1.000 0.100 2.000 20.000 71.692

12 1.000 0.100 2.000 20.000 148.564

13 9.238 5.000 2.363 39.999 206.009

14 2.415 4.997 2.189 20.036 204.619

15 2.331 0.289 2.348 22.233 108.610

16 9.596 0.429 2.235 20.576 169.921

Table 4 Optimal values for model parameters.

Model parameter Trial 8

CI 10

C0 400

CP 6000

CR 2000

CC 1000

CF 10

CV 0.2

Cf 200

Table 2 Eight model parameters and their level planning.

Model parameter Level 1 Level 2

CI 10 20

C0 200 400

C0 3000 6000

CR 2000 4000

CC 1000 2000

CF 10 20

CV 0.1 0.2

Cf 100 200

Table 5 Optimal values for four variables and the optimal

value of the total hourly costs.

Variable Integrated model (KS)

n* 1.006

h* 0.133

L* 2.001

k* 20.000

E [H] 102.569

Table 6 Nonparametric linear regression for four variables

models (n, h, L, k).

Parameter Estimate T P-values

Constant (n) 0.7492 15* 0.012

E [H] 0.0027

Constant (h) �1.0426 33* 0.012

E [H] 0.0122

Constant (L) 1.9910 7.5* 0.012

E [H] 0.0012

Constant (k) 19.6618 25* 0.012

E [H] 0.0034

* The Wilcoxon T statistics: reject H0 when T (calculate) >

T (critical).

Table 7 Nonparametric linear regression optimal values for

four variables and the optimal value of the total hourly cost.

Variable Integrated model (KS)

n* 1.026

h* 0.209

L* 2.114

k* 20.011

E [H] 102.569

188 P. Khrueasom, A. Pongpullponsak
there are 60 children that will be produced. Thus, the popula-
tion size increases to 90 (i.e., 30 parents (survivors) + 60 chil-

dren) in this step.
Step 5. Mutation: Mutation function is the small change of

genes in chromosomes in the population, suppose that the

mutation rate is 0.1, which is also determined by D2 orthogo-
nal array experiment.
In this example, we have 90 solutions and we can randomly
select 9 chromosomes i:e:; 90� 0:1 ¼ 9ð Þ to mutate some

parameters (or genes) in this step.
Step 6. Stopping criteria: Repeat Step 2 to Step 5 until the

stopping criteria is found. In this example, we use ‘‘50 genera-

tions or greater than” as our stopping criteria.



Table 8 Numerical results of four integrated models.

Variable Integrated model

(X-bar)

Integrated model

(EWMA for four variables)

Integrated model

(EWMA for six variables)

Integrated model (KS)

n* 4.000 4.000 6.082 1.026

h* 1.230 1.150 3.008 0.209

L* 2.910 1.100 2.494 2.114

k* 22.000 22.000 20.660 20.011

E [H] 158.32 153.020 194.640 102.569

* Four and Six integrated models from Charongrattanasakul and Pongpullponsak (2009, 2011).

Table 9 ARL performance of models.

ARL for the general ARL for the KS

370 430.96
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The initial values of the necessary parameters are given in
Tables 1 and 2, where eight independent parameters which will

be tested in the sensitivity analysis and their corresponding
level planning are illustrated. Accordingly, the effect of model
parameters on the solution of economic design of the KS chart

can be investigated by conducting numerical example and sen-
sitivity analysis. For the sensitivity determination, L16

orthogonal-array experimental design shown in Table 3 is used

in the test.
After calculation, the best value parameters by L16 orthog-

onal array are obtained as shown in Table 4. From Table 5, the
optimal values of the policy variables that minimize E½H� are
found to be n� ¼ 1:006; h� ¼ 0:133;L� ¼ 2:001; k� ¼ 20:000
and the corresponding hourly cost is E½H� ¼ 102:569.

Table 6 illustrates the output of the nonparametric linear
regression applied in order to fit the regression line according

to Brown and Mood (1951) where Wilcoxon Matched–Pair
Test (Corder and Foreman, 2009) is used in hypothesis testing
at 0.05 significance levels by the statistical software SPSS 15.0.
It is noticed that the sign of the coefficient parameter of con-

stant is often estimated by assuming that the hourly cost E
[H] is positive, which is consistent with the principle of non-
parametric statistical hypothesis testing.

Using nonparametric linear regression test, the numerical
results of the optimal values of the policy variables which min-

imize E½H� are found to be n� ¼ 1:026; h� ¼ 0:209;
L� ¼ 2:114; k� ¼ 20:011 and the corresponding hourly cost is
E½H� ¼ 102:569 (Table 7). In Table 8, the comparison between
four policies of the integrated model (KS) and other models

shows that the model proposed in this study has a better eco-
nomic behavior when it is distribution-free.

Finally, from Table 9, it can be seen that the performance

for ARL of KS control chart, equals to 430.96, is greater than
that of the control chart with the general model which is 370.

4. Conclusion

This research proposes the method used in searching the
appropriate products for the Kolmogorov–Smirnov KS con-

trol chart that is distribution-free. This control chart is suitable
for detection of small changes. In some occasions, small
changes in the process can lead to incredible damage. For this
reason, those factories who produce non-restricted goods using
appropriate control charts would reduce or eliminate unneces-

sary cost. Conclusively, these four control charts shown in
Table 8 are suitable for using in various types of factories
and products; however, selection of appropriate control chart

is recommended in order to reduce unnecessary cost.
The numerical results, when sample size n P 20 is used, are

summarized in Table 8. According to the optimal values of the

policy variables that minimize E [H], this provides evidence
that when it is distribution-free the integrated KS model will
have a better economic behavior than those previously
reported models (Charongrattanasakul and Pongpullponsak,

2009, 2011). Besides, the results show that the performance
for ARL of KS (Table 9), equals to 430.96, is greater than that
of the ARL obtained from the general model which is equal to

370. However, the proposed model may have some defective in
which investigating any weak point and improving for better
performance would be an interesting issue for further study.

5. Future work

For future work, it is of interest to develop integrated eco-

nomic model and control chart for nonparametric multivariate
which is distribution-free or follows an unknown distribution.
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Appendix A

Computation of ARL of the KS control chart

In Eqs. (1) and (2), application of the operating-characteristic
function and ARL calculations from Montgomery (2009) is

considered.

b ¼ P p̂ < UCL pjf g � P p̂ 6 LCL pjf g
¼ P D < nUCL pjf g � P D 6 nLCL pjf g; ðA1Þ

Since D is a binomial random variable with parameters n

and p, the b-error defined in Eq. (A.1) can be obtained from
the cumulative binomial distribution, where p is assumed to

be P Dn > CL=
ffiffiffi
n

pf g, the edf in Eq. (2), in this case

a ¼ 1� b: ðA2Þ
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Then the ARL can be computed by Eq. (2).

ARL ¼ 1=a: ðA3Þ
Example in Eq. (A1) in calculation it is initially needed to

generate the OC curve for a control chart for fraction noncon-

forming with parameters n= 20, CL = 0.06, LCL = 0, and
UCL= 0.13 by considering the concept from the Kol-
mogorov–Smirnov quality control chart. Using these parame-

ters [3] in Eq. (A1), we obtain

b ¼ P p̂ < UCL pjf g � P p̂ 6 LCL pjf g
¼ P p̂ < nUCL pjf g � P p̂ 6 nLCL pjf g
¼ P D < 20ð Þ 0:13ð Þ pjf g � P D 6 20ð Þ 0ð Þ pjf g:

ðA4Þ

Since D must be an integer, it is find that

b ¼ PfD < 2jpg � PfD 6 0jpg ðA5Þ

P D < 2ð Þ ¼
X2
D¼0

20

0

� �
0:01340ð1� 0:0134Þ20�0

þ 20

1

� �
0:01341ð1� 0:0134Þ20�1

þ 20

2

� �
0:01342ð1� 0:0134Þ20�2

P D < 2ð Þ � 0:9977 ðA6Þ

where a ¼ 1� 0:9977; the ARL ¼ 1=ð1� 0:9977Þ � 430:96#

ðA7Þ
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