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Abstract The article addresses a reappraisal of the famous Ward–Tordai equation describing the

equilibrium of surfactants at air/liquid interfaces under diffusion control. The new derivation is

entirely developed in the light of fractional calculus. The unified approach demonstrates that this

equation can be clearly reformulated as a nonlinear ordinary time-fractional equation of order

1/2. The work formulates versions with different isotherms. A simple solution of the case with

the Henry’s isotherm and a discussion of a Cauchy problem involving the Freundlich isotherm

are provided.
ª 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Surfactants are broadly encountered in aqueous systems used
as cleaning and wetting agents, dispersants stabilizers, lubri-
cants, foam stabilizers, catalysts, as well as to stabilize pharma-

ceutical, cosmetic and agrochemical formulations, etc. (Davies
and Rideal, 1963; Lenzi et al., 2005; Gaines, 1966; Gosh,
2009). In such systems molecules attempt to be at a position

in the fluid where there are forces of attraction in as many
directions as possible thus attaining local dynamic equilibria.
For the molecules located at the surface, however, there exist

forces directed inwards to the fluid which are not balanced out-
wards. As a result, the fluid attempts to minimize the free area
due to resisting expansion. This cohesive feature of the fluid

can be measured as a force per unit of length of the interface,
and it is known as surface tension. The dynamics of the surface
tension depends on the amount of molecules of surfactant
accumulated (adsorbed) at the interface. The classical equation

of Ward and Tordai (1946) describes the transient in the sur-
face adsorption of surfactant when the supply of surfactant
molecules is under diffusion control from the fluid to the

fluid-air interface. This work stresses the attention on a unified
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re-formulation of the Ward–Tordai equation in a straightfor-
ward manner entirely in the light of the fractional calculus.

1.1. Physical background

The amount of surfactant adsorbed at an air/water interface is
usually calculated indirectly from interfacial tension measure-

ments (Dudnik and Lunkenheimer, 2000; Dannov et al.,
2000). The surfactant concentration of the liquid bulk C0

and its equilibrium surface tension re corresponds to the equi-

librium amount at the interface G1 are interrelated by the
Gibbs equation (Gaines, 1966).

drT;P ¼ �
X
i

G1idci ð1Þ

where dr is the change in surface tension of the solvent, G1i is

the surface excess of the ith component in the system and dci is
the change in chemical potential of the ith component.
Commonly this quantity is denoted as C1 but the present
analysis involves the Euler gamma function Cð�Þ and changing

the symbol we avoid potential ambiguities. For solutions con-
taining only one solute the Gibbs equation is often given in the
form:

G ¼ � 1

kRT

�
dr

d lnC

�
T

ð2Þ

The factor k depends on the number of species constituting the
surfactant and adsorbing at the interface: For a nonionic sur-
factant or a uni-univalent ionic surfactant with excess of elec-

trolyte k ¼ 1, while in the absence of electrolyte k ¼ 2. If the
surface tension is measured then Eq. (2) may be applied to
obtain an equilibrium adsorption isotherm GðtÞ. There are

many methods available for the determination of surface ten-
sion including force methods, among them (Davies and
Rideal, 1963; Gaines, 1966; Frances et al., 1996): Wilhelmy

plates (Kwok and Neumann, 1999; Gosh, 2009), du Nouy ring
(Gosh, 2009), shape methods (pendant drop) (Saad et al.,
2011), or pressure methods (maximum bubble pressure)
(Christov et al., 2006). Depending on the adsorption isotherm

at the interface the relationship between the surface tension
and the amount of the adsorbed surfactant is given by a
corresponding equation of state (Eastoe and Dalton, 2000);

examples are summarized in Table 1.
Initially the surface is cleaned so that the initially adsorbed

amount G0 ¼ 0 at t ¼ 0 and the surface tension is that of the

solvent r0. The system is out of equilibrium and will return
to the equilibrium state. In this context, let us consider an
aqueous surfactant solution in equilibrium with its air–water

interface. The surfactant concentration is C0 and its
Table 1 Principle isotherms and equations of states used in analysis

accordance with: Chang and Frances (1995), Eastoe and Dalton (20

Isotherm

Henry G ¼ KHCs0

Langmuir GðtÞ ¼ G1
aCs0

1þbCs0

Frumkin Cs0 ¼ 1
KF

GðtÞ
GðtÞ�G1 exp �bðGðtÞG1

Þ
h i

Freundlich GðtÞ ¼ kfðCs0Þ
1
N

Volmer Cs0 ¼ KVð G
G1�GÞ expð

G
G1�GÞ
equilibrium surface tension re corresponds to the equilibrium
surfactant concentration denoted as G1, interrelated by the
Gibbs Eq. (2). The system is out of equilibrium and will return

to the equilibrium state. Hence, the surfactant molecules will
be transported to the surface by diffusion (Ward and Tordai,
1946; Baret, 1968; Mysels, 1982; Li et al., 1994; Campanelli

and Wang, 1998; Liu and Messow, 2000; Liu et al., 2009).

1.2. Ward–Tordai equation: the common approach at a glance

Consider a process entirely controlled by the diffusion trans-
port through the stagnant fluid (Ward and Tordai, 1946;
Baret, 1968; Mysels, 1982; Borwankar and Wasan, 1983; Li

et al., 1994, 2010; Campanelli and Wang, 1998; Liu and
Messow, 2000; Liu et al., 2009) and instantaneous adsorption
of the surfactant molecules at the interface. When the diffusion
through the bulk of the liquid is linear, then the Fick’s second

law describes the transfer of the surfactant to the surface, with
initial and boundary conditions presented by the model.

@C

@t
¼ D0

@2C

@x2
ð3aÞ

Cðx; tÞ ! C0; x!1 Cð0; tÞ ¼ Cs0 ð3bÞ

The problem at issue considers time-evolution of the surface

concentration at x ¼ 0, so the mass balance following from
(3a) at x ¼ 0 reads:

@C

@t

����
x¼0
¼ D0

@C

@x

����
x¼0
) @G

@t
¼ D0

@C

@x

����
x¼0
; GðtÞ ¼ Cð0; tÞ ð4Þ

The final solution of the model (3) with help of (4) and the

imposed boundary and initial conditions at t! 0 (short times)
is (Ward and Tordai, 1946; Baret, 1968; Liu and Messow,
2000; Liu et al., 2009; Li et al., 2010).

GðtÞ ¼ 2C0

ffiffiffiffi
D
p ffiffiffi

p
p

ffiffi
t
p
�

ffiffiffiffi
D
p ffiffiffi

p
p

Z t

0

Cs0ðsÞ
ðt� sÞ1=2

ds; Cs0ðt! 0Þ–0

ð5aÞ

Dividing both sides of (5a) by G1 we get the dimensionless

form of the Ward–Tordai equation (Ward and Tordai, 1946).

h ¼ 2
C0

G1

ffiffiffiffi
D
p ffiffiffi

p
p

ffiffi
t
p
� 1

G1

ffiffiffiffi
D
p ffiffiffi

p
p

Z t

0

Cs0ðsÞ
ðt� sÞ1=2

ds; h ¼ GðtÞ=G1;

0 6 h 6 1 ð5bÞ

The development of the Ward–Tordai equation (5a) is fre-
quently referred to a solution of the model (3) by the Laplace
transform (Hansen, 1960; Borwankar and Wasan, 1983;
Chang and Frances, 1995; Kralchevsky et al., 2008) which
of the dynamic surface tensions (in terms of the present article). In

00) and Li et al., (2010).

Equation of state

r� r0 ¼ kRTG

r� r0 ¼ �kRTG1 lnð1� G
G1
Þ

r� r0 ¼ �kRTG1 lnð1� G
G1
Þ � kRT

2 G1ð GG1Þ
2

r� r0 ¼ kNRTG

r� r0 ¼ kRTð G2
1

G1�GÞ
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differs from the original approach of Ward and Tordai (1946)
and underlying solution of Carslaw (1921) using Green func-
tions. Some specific point will be commented next.

In order to be correct, it is worthy to mention that Ward
and Tordai (1946) have started the solution by directly apply-
ing the result developed by Carslaw (1921) for a problem in

heat transfer analogous to the model (3) and involving a con-
volution integral (like that in (5a). For the readers familiar
with the book of Carslaw and Jaeger (1959), Ward and

Tordai used the solution of problems 2.5 and 14.2, exactly
equation (2) in section 14.2. Further, looking for an expression
of the gradient of the subsurface concentration ð@C=@xÞx¼0
from this solution Ward and Tordai applied Maclaurin’s
theorem. Consequently the subsurface gradient was expressed
as:�
@C

@x

�
x¼0
¼ FðtÞ � 1

2
ffiffiffiffiffiffiffi
pD
p

Z t

0

/ðtÞffiffiffiffiffiffiffiffiffiffi
t� z
p dz ð6aÞ

The function /ðtÞ denotes the surface concentration in the

terms used by Ward and Tordai.
Ward and Tordai represented the right-hand side of (6a) as

FðtÞ ¼ Cð1=2ÞD�1=2/ðtÞ involving differentiation and integration
of fractional order (sic!), without a reference source. Because

the solution needed to find the time-derivative of FðtÞ, they
applied the operator D1 ¼ d=dz (sic!) to FðtÞ that led to:

F0ðtÞ ¼ d

dt

Z t

0

/ðtÞffiffiffiffiffiffiffiffiffiffi
t� z
p dz ¼ Cð1=2ÞD1D�1=2/ðtÞ

¼ Cð1=2ÞD1=2/ðtÞ ¼ �ð1=2Þ
Z t

0

/ðtÞffiffiffiffiffiffiffiffiffiffi
t� z
p dz ð6bÞ

This step of their solution obviously uses the Riemann–
Liouville fraction derivative (the Caputo derivative was
invented about 25 years later). Hence, a small element of frac-

tional calculus exits is the original work. We especially men-
tion the point of the original solution with traces of
fractional calculus because it is long and cumbersome, and
to some extent unclear for people working on surfactants

and surface tension problems without broad mathematical
knowledge and skills. This personal statement is confirmed
by the fact that all the works cited in this article (and the refer-

ences therein) attack the problem with the tools of the conven-
tional integer-order calculus resulting in intractable
expressions and formulae. The situation has a simple explana-

tion: even existing from about 300 years, the fractional calcu-
lus is most popular among the mathematicians rather than
among the scholars working in the fields of chemical engineer-
ing where the Ward–Tordai equation is applied. To some

extent, the presence of a convolution integral in the original
Ward–Tordai equation is the principle obstacle in the solution
procedures. In this context, for example, Noskov (1996) stated

that the equation is not sufficient for the calculation of the
kinetic dependency of the adsorption because it contains an
unknown function ~cðt� sÞ (sic!). This indicates a misunder-

standing of the role of the convolution integral which describes
the reduction in time of the rate to transport surfactant to the
interface.

The first independent solution of the model (3) has been
developed by Sutherland (1952) with a linear relationship

G ¼ �MC where �M is average defined as �M ¼ 1
C1
R C1
0
ðG
C
Þdc

G ¼ �MC and considered independent of concentration. Then

the boundary equation becomes:
@Cs

@t
¼ D0

�M

@Cs

@x
; x ¼ 0; t > 0 ð7Þ

with boundary and initial conditions:

C ¼ 0; x ¼ 0; t ¼ 0; C ¼ C0; x > 0; t ¼ 0 ð8a; bÞ

The solution is simple (Sutherland, 1952) (sic!)

C

C0

� �
x¼0
¼ 1� exp

D0t
�M2

� �
erfc

ffiffiffiffiffiffiffiffi
D0t
p

�M

� �
ð9Þ

Alternatively, a solution based on the reflection and linear
superposition has been developed independently by Mysels

(1982). Many attempts have been applied to develop the
Ward–Tordai equation (Petrov and Miller, 1977) and to solve
it for various adsorption isotherms (as well as to solve the

original model (3)) among them: analytical solutions by series
presentation of the convolution integral (Hansen, 1960; Petrov
and Miller, 1977; Ziller and Miller, 1986), orthogonal colloca-

tion (Ziller and Miller, 1986) and numerically by an implicit
difference method (Miller, 1981; Borwankar and Wasan,
1983; Chang et al., 2006; Li et al., 2010), finite element method

(Fenandez and Muniz, 2011; Fenandez et al., 2012a,b). A com-
prehensive review of the existing models and possible analyti-
cal solutions is provided by Chang and Frances (1995).

The equation of Ward and Tordai is not enough to describe

the adsorption process at the air–water interface because it
relates two unknown functions GðtÞ and Cs0ðtÞ. In fact,
Cs0ðtÞ is a function of h at the relationship depending on the

equilibrium isotherm EhðhÞ describing the process at the air–
water interface (see Table 1).

Besides, Eq. (5b) cannot be considered as a simple Abel

equation (Linz, 1985), because of the nonlinearity imposed
by the function Cs0ðtÞ ¼ EhðhÞ. The main problem in the solu-
tion of the Ward–Tordai equation and the proper evaluation
of GðtÞ comes from the fact that Cs0 is in a convolution integral

with a weakly singular kernel and simultaneously depends on
h. If the subsurface concentration is known independently
through the adsorption process, then GðtÞ can be calculated

immediately. In this context, Johansen et al. (1991), for
instance, have suggested empirical forms of the subsurface
concentration expressed by exponential functions:

Cð0; tÞ ¼ C0½1� expð�b1tÞ� and Cð0; tÞ ¼ C0½1� expð�b1tÞþ
expð�b2tÞ�. The parameters b1 and b2 are overall measures
of the diffusion, adsorption, and desorption rates and are

determined from the transients in equilibrium adsorption
experiments.

1.3. Aim and article structure

This article presents a reappraisal of the model (3) in light of
the fractional calculus that finally yields a nonlinear time-frac-
tional ordinary equation of order 1/2. The article demonstrates

an alternative derivation of the Ward–Tordai equation by
using time fractional semi derivatives of Riemann–Liouville
(Section 2). Further, the analysis in Section 3 allows develop-

ing a time-fractional nonlinear ODE analogous to the Ward–
Tordai equation with a non-linear term depending on the type
of the adsorption isotherm describing the equilibrium at the

surface. Section 4 deals with the derived time-fractional equa-
tion in case of the Henry isotherm and analyses possible solu-
tions. Section 5 addresses the general Cauchy problem
pertinent to the formulated fractional ODE and the case of
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the Freundlich isotherm. The discussion section analyzes the
results developed and formulates new problems.

2. New development of the Ward–Tordai equation by time-

fractional semiderivatives

Now, we present an alterative solution of the model (3) by the

tools of the fractional calculus only, directly leading to the
Ward–Tordai equation. The transport of the surfactant from
the bulk to the surface is described by Eq. (3a) which can be

represented as (Babenko, 1984):

@C

@t
�D0

@2C

@x2
¼ @1=2C

@t1=2
�

ffiffiffiffiffiffi
D0

p @C

@x

 !
@1=2C

@t1=2
þ

ffiffiffiffiffiffi
D0

p @C

@x

 !
¼ 0

ð10Þ

@1=2C
@t1=2

is a fractional-time derivative of Riemann–Liouville sense

(left RL derivative) of order 1/2, defined as:

@1=2CðtÞ
@t1=2

¼ RLD
1=2
t CðtÞ ¼ 1

Cð1=2Þ
d

dt

Z t

0

CðsÞffiffiffiffiffiffiffiffiffiffi
t� s
p ds;

Cð1=2Þ ¼
ffiffiffi
p
p

ð11aÞ

Hereafter we will use the notation @1=2C=@t1=2 instead of

RLD
1=2
t CðtÞ to avoid misunderstanding with the symbol of

diffusivity D0. Alternatively, the time-fractional Riemann–
Liouville integral is defined as:

@�1=2CðtÞ
@t1=2

¼ RLD
�1=2
t CðtÞ ¼ I1=2CðtÞ ¼ 1

Cð1=2Þ

Z t

0

CðsÞffiffiffiffiffiffiffiffiffiffi
t� s
p ds

ð11bÞ

In (10) only the second term has a physical reasoning x ¼ 0
(Oldham and Spanier, 1974) and, therefore, the diffusion in
the fluid bulk can be described by the fractional (half-time)

subdiffusion equation:

@1=2C

@t1=2
¼ �

ffiffiffiffiffiffi
D0

p @C

@x
ð12Þ

Eq. (12) is equivalent to the integer-order counterpart close to
the interface x ¼ 0 (Oldham and Spanier, 1974). Moreover,
Eq. (12) relates the bulk concentration and the gradient at

any point of the medium (Agrawal, 2004), and allows
expressing it at x ¼ 0, precisely expressing Cðx! 0Þ ¼ Cs0,
as:

@1=2Cs0

@t1=2
¼ �

ffiffiffiffiffiffi
D0

p @C

@x

� �
x¼0

ð13Þ

Hence, we have two coupled Eqs. (14a,b) describing the
process of surfactant accumulation at the surface, namely:

@1=2Cs0

@t1=2
¼ �

ffiffiffiffiffiffi
D0

p @C

@x

� �
x¼0

ð14aÞ

@G

@t
¼ D0

@C

@x

� �
x¼0

ð14bÞ

Eliminating the gradient ð@C=@xÞx¼0 from (14a) and (14b) we

get:

D0

@C

@x

� �
x¼0
¼ �

ffiffiffiffiffiffi
D0

p @1=2Cs0

@t1=2
ð15aÞ
Then, from (4) we read:

@G

@t
¼ �

ffiffiffiffiffiffi
D0

p @1=2Cs0

@t1=2
ð15bÞ

Expressing the Riemann–Liouville fractional derivative in the
RHS of (15b) through the fractional integral, we have:

@G

@t
¼ �

ffiffiffiffiffiffi
D0

p ffiffiffi
p
p d

dt

Z t

0

Cs0ðsÞ
ðt� sÞ1=2

� C0ffiffiffiffiffi
pt
p

" #
ð16Þ

In (16) we take into account that the initialization (the lower

limit in the convolution integral) in RLD
1=2
t is zero and the

initial condition is Cð0; tÞ ¼ Cs0ðt ¼ 0Þ ¼ C0 (i.e., a uniform
surfactant profile across the liquid layer). This is the principle
equation describing the time evolution and the accumulation

of the surfactant GðtÞ at the interface. Applying the operator

D�1t ¼
R t

0
dt to both sides of (16) we get:

GðtÞ ¼ 2
C0

ffiffiffiffiffiffi
D0

pffiffiffi
p
p

ffiffi
t
p
�

ffiffiffiffiffiffi
D0

p 1ffiffiffi
p
p

Z t

0

Cs0ðsÞ
ðt� sÞ1=2

ð17aÞ

This is the Ward–Tordai (WT) equation (1946). For t! 0
when Cs0ðtÞ � 0 the short-time solution (Kralchevsky et al.,
2008) can be approximated as:

GðtÞt!0 � 2
C0

ffiffiffiffiffiffi
D0

pffiffiffi
p
p

ffiffi
t
p

ð17bÞ

The long-time solutions of (14a, b) as well as of (17a) with
various non-linear relationships Cs0ðtÞ are special, not straight-
forward resolvable tasks, and some of them will be discussed

next. However, a simplification for t!1 can be expressed
as (Hansen, 1960; Daniel and Berg, 2001; Kralchevsky et al.,
2008):

Cs ¼ Csðt!1Þ ¼
G1 � G0ffiffiffiffiffiffiffiffi

pDt
p ð17cÞ

Certainly, the new approach to derive the Ward–Tordai
equation presented in this section is straightforward, starts
from the basic model (3) and does not use underlying solutions

of similar problems taken from other sources. Moreover, it is
entirely developed by the tools of the fractional calculus.

3. Formulation of a unified nonlinear fractional equation

Even though we have developed the Ward–Tordai equation in
a simple manner, the equation of the adsorption isotherm has

to be accounted for in order to accomplish the solution of the
problem. Moreover, since we stress the attention on applica-
tion of fractional calculus, this section demonstrates that it is

possible to create a unified time-fractional equation describing
the time evolution of the surfactant adsorbed at the interface.
This equation is equivalent to the Ward–Tordai equation but

now it is in a form which is ‘‘readable’’ by people solving frac-
tional calculus models.

Now, starting from Eq. (17a) and taking into account that
the relationship Cs0½GðtÞ� ) Cs0ðtÞ ¼ f½GðtÞ� is the adsorption

isotherm, we read:

GðtÞ ¼ 2
C0

ffiffiffiffiffiffi
D0

pffiffiffi
p
p

ffiffi
t
p
�

ffiffiffiffiffiffi
D0

p
RLD

�1=2
t Cs0 ð18Þ

For readers inexperienced in fractional calculus it is better to
know some basic relationships with fractional semiderivatives:



Table 2 Time-fractional differential equations in cases of various isotherms. Unified presentations in accordance with the general

construction of Eq. (20a).

Equations Coefficients

Henry @1=2

@t1=2
hþ BH0h ¼ AH0 AH0 ¼ A0 ¼ ðC0

G1
Þ
ffiffiffiffiffi
D0

p ffiffi
p
p , BH0 ¼ B0

KH
¼

ffiffiffiffiffi
D0

p

KH

Langmuir @1=2

@t1=2
hþ BL0

h
1�h ¼ A0 AL0 ¼ A0; BL0 ¼

ffiffiffiffiffi
D0

p

a , for a ¼ b

Frumkin @1=2

@t1=2
hþ BF0

h
1�h expð�bhÞ ¼ AF0 AF0 ¼ A0, BF0 ¼

ffiffiffiffiffi
D0

p

KF
¼ B0

KF

Freundlich @1=2

@t1=2
hþ Bf0h

1
N ¼ Af0 Af0 ¼ A0, Bf0 ¼

ffiffiffiffiffi
D0

p

ðkfG1Þm ¼
B0

ðkfG1Þm, m ¼
1
N

Volmer @1=2

@t1=2
hþ BV0ð 1

1�hÞ expð 1
1�hÞ ¼ AV0

AV0 ¼ A0BV0 ¼ KV

ffiffiffiffiffiffi
D0

p
¼ KVB0

Common coefficients: A0 ¼ ðC0=G1Þð
ffiffiffiffiffiffi
D0

p
=
ffiffiffi
p
p
Þ ¼ h0ð

ffiffiffiffiffiffi
D0

p
=
ffiffiffi
p
p
Þ ½s�1=2�; B0 ¼

ffiffiffiffiffiffi
D0

p
½ms�1=2�.
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0D
1=2
t ð1=

ffiffi
t
p
Þ ¼ 0 and 0D

1=2
t ð

ffiffi
t
p
Þ ¼

ffiffiffi
p
p

=2. Therefore, dividing

both sides of (17a) by G1 (the saturation surface excess) and

at the same time applying the operator D1=2 to both sides of
(17a) we get:

@1=2

@t1=2
GðtÞ
G1

� �
¼ C0

G1

� � ffiffiffiffiffiffi
D0

p
�

ffiffiffiffiffiffi
D0

p Cs0ðtÞ
GðtÞ

� �
GðtÞ
G1

� �
ð19Þ

Denoting h ¼ GðtÞ=G1 and Eh ¼ ½Cs0ðtÞ=GðtÞ�h we may
express (19) in a general form as:

@1=2

@t1=2
hþ B0Eh ¼ A0; A0 ¼

C0

G1

� � ffiffiffiffiffiffi
D0

p
; B0 ¼

ffiffiffiffiffiffi
D0

p
ð20a; b; cÞ

The function Eh ¼ Cs0½GðtÞ=G1� depends on the adsorption
isotherm used to describe the equilibrium. With different
adsorption isotherms we obtain different fractional ODEs

about h and Table 2 summarizes various versions of
Eq. (20a). In this table only the Frumkin isotherm considers
interaction between the adsorbed molecules that leads to a

relation of the adsorption process instead of the assumption
of the instantaneous adsorption. For b ¼ 0 this isotherm
reduces to the Langmuir model.

4. Solution examples

4.1. The Henry isotherm

Even though this is the simplest case we will use it to demon-
strate how the new developed time-fractional ordinary

equation (20a) relates to existing solutions. With G ¼ KHCs0

and C ¼ G=KH we have Eh ¼ ðCS0=G1Þh ¼ h=KH and
h ¼ ðCS0=G1ÞKH equation (20a) reads:

@1=2

@t1=2
hþ BH0h ¼ AH0; AH0 ¼ A0; BH0 ¼

ffiffiffiffiffiffi
D0

p

KH

ð21Þ
4.1.1. Zero initial condition

With initially clean interface, that is h0 ¼ 0 and applying the
Laplace transform to Eq. (21) we get:

HðpÞ ¼ AH0

pð ffiffiffipp þ BH0Þ
and L�1½HðpÞ� )

hðtÞ ¼ A0

BH0

1� expðB2
H0tÞerfcðBH0

ffiffi
t
p
Þ

� 	
ð22a; bÞ
Expressing A0H and B0H by the constants of the process and
taking into account that G0 ¼ KHC0 we have:

hðtÞ ¼ G0

G1

� �
1� exp

D0

K2
H

t

� �
erfc

ffiffiffiffiffiffi
D0

p

KH

ffiffi
t
p� �� �

ð23Þ

Thus, we simply derived the first known solution of the

Ward–Tordai equation (Sutherland, 1952), (see Eq. (9)):

GðtÞ
G0

¼ 1� exp
D0

K2
H

t

� �
erfc

ffiffiffiffiffiffi
D0

p

KH

ffiffi
t
p� �� �

ð24Þ

Denoting sD ¼ K2
H=D0 as a time scale, then Eq. (24) can be

rewritten as:

hðtÞ ¼ G0

G1

� �
1� exp

t

sD

� �
erfc

ffiffiffiffiffi
t

sD

r� �� �
ð25Þ
4.1.2. Non-zero initial condition

When an amount of surfactant �Go � G1 exists at the inter-

face, then we have hð0Þ ¼ h0 ¼ �Go=G1–0. In that case, the

semiderivative of surface excess of surfactant is 0D
1=2
t h�

h0=
ffiffiffiffiffi
pt
p

(Oldham and Spanier, 1974) and we have:

@1=2

@t1=2
hþ BH0h ¼ AH0 þ

h0ffiffiffi
p
p 1ffiffi

t
p ð26Þ

The Laplace transform to (26) yields:

HðpÞ ¼ 1

½ ffiffiffipp þ BH0�
AH0

1

p
þ h0ffiffiffi

p
p

� �
ð27Þ

The inverse Laplace transform of (27) gives:

hðtÞ ¼ G0

G1

� �
1� expðB2

H0tÞerfcðBH0

ffiffi
t
p
Þ

� 	
þ h0 expðB2

H0tÞerfcðBH0

ffiffi
t
p
Þ ð28Þ

For h0 ¼ 0 we get the solution (25). The second term in (28) is
responsible for the contribution of h0 in short-time processes

since it decays rapidly in time.

4.1.3. Short time solution

The widely used short-time approximation of the

Ward–Tordai equation is presented by (17b). Now, using the
Laplace transform solution of the problem with zero initial
condition (22a) we may develop an asymptotic series

(restricted to 3 terms only for seek of simplicity of the
analysis), namely:
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HðpÞp!1 � AH0

1

p

� �3=2

� BH0

1

p2
þ B2

H0

1

p

� �5=2

þO
1

p3

� �" #

ð29aÞ

The inverse Laplace transform of (29a) gives the short-time
approximation:

hðtÞt!0 � 2AH0

ffiffi
t
pffiffiffi

p
p � BH0tþ

4

3
ffiffiffi
p
p B2

H0t
3=2 ð29bÞ

From (29b) it is clear that only the first term matches the

expressions (17b). However, taking into account that

BH0 ¼
ffiffiffiffiffiffi
D0

p
=KH and D0 are commonly of order of magnitude

10�10 to 10�12 m2/s (Johansen et al., 1991), then reasonably
only the first term of (29b) has a practical significance thus
confirming the common rule to use the approximation (17b).

5. Formulation as a Cauchy problem and the case of the

Freundlich isotherm

Certainly, the original Ward–Tordai equation (5a) is a Cauchy
problem determining locally and uniquely the solution of the
model (3). As commented by Baret (1968), the solution of

(3a) and the Ward–Tordai equation (5a) are, in fact, the com-
patibility relations between the Cauchy’s condition and the
condition (3d).

Let us consider the linear fractional differential Eq. (20a)
with the Freundlich isotherm expressed in the form:

@1=2

@t1=2
hþ Bf0h

m ¼ Af0; Af0 ¼ A0; Bf0 ¼
ffiffiffiffiffiffi
D0

p

ðkfG1Þm
¼ B0

ðkfG1Þm
;

m ¼ 1

N
ð30Þ

For N ¼ 1 we have the linear case solved in the previous sec-
tion. Especially, for the Freundlich isotherm N > 1 (m < 1Þ
we have convex isotherms, while for N < 1ðm > 1Þ the iso-

therms are concave in shape. Eq. (30) can be represented in
a more general form (Kilbas et al., 2006) (example 3.3-p. 177
in this book) as:

Dl
aþhðtÞ ¼ kðt� aÞb½hðtÞ�m; t > a;m > 0;m–1 ð31Þ

with real k; b 2 Rðk–0Þ.
It was proved by Kilbas et al. (2006) that if the condition:

bþ l
ð1�mÞ > �1 ð32Þ

is satisfied, then Eq. (31) has an explicit solution

hðtÞ ¼
C bþl

m�1þ 1

 �

kC bþlm
m�1 þ 1

 �

" # 1
m�1

ðt� aÞ
bþa
1�m ð33Þ

Denoting

g ¼ bþ lm
m� 1

; g� l ¼ bþ l
m� 1

ð34b; cÞ

In the present case we have a ¼ 0, b ¼ 0. Therefore, g ¼ l m
m�1,

g� l ¼ l
m�1 and Eq. (33) is simplified as:

hðtÞ ¼ Cðg� lþ 1Þ
kCðgþ 1Þ

� � 1
m�1

t
l

1�m ð35Þ
The conditions imposed to the parameters when 0 < l < 1

(especially l ¼ 1=2 in the problem at issue) (Kilbas et al.,
2006) are:

m > 1;�ml < b < m� 1�ml; that is

�m=2 < 0 < m� 1�m=2 ð36aÞ

0 < m < 1; �1=2 6 0 < �m=2 ð36bÞ

For l ¼ 1=2 the condition ðbþ lÞ=ð1�mÞ > �1 is valid since
1=2ð1�mÞ > �1 for m > 1, especially for m > 2 ðN < 0:5Þ.

In general, it is proved (Kilbas et al., 2006) that the condi-
tion (32) is equivalent to:

b < m� l� 1; for m > 1; or m� 1� l < b for 0 < m < 1

ð37a; bÞ

In the specific case with l ¼ 1=2 and b ¼ 0 we have from (37a)
that 0 < m� 3=2 for m > 1, precisely for m > 3=2, that is for
N < 2=3. Otherwise, for 0 < m < 1, that is for N > 1, the con-
dition (37b) is m� 3=2 < 0, precisely m < 3=2 and N > 2=3.
Then, the solution (35) can be expressed as:

hðtÞl¼1
2
¼ Cðgþ 1=2Þ

kCðgþ 1Þ

� � 1
m�1

t
1

2ð1�mÞ; g ¼ m

2ðm� 1Þ ð38a; bÞ

Equation excludes the case of m ¼ 1 as it is stated by (37b)
due to a singularity in g, but this case corresponds to Henry’s

isotherm and the straightforward solution is presented by (25)
and (28).

Moreover, for m ¼ 2, for instance, that is N ¼ 0:5
representing a convex Freundlich isotherm, we have from
(38b) that g ¼ 1 and then the solution (38a) is a simple
square-root law of the time, namely

hðtÞl¼1
2;m¼2

¼ Cð3=2Þ
kCð2Þ

� �
t
1
2 ¼ 1

k

ffiffiffi
p
p

2

ffiffi
t
p

ð39Þ

Further, for m ¼ 0:5, for example, that is N ¼ 2 we have a
concave Freundlich isotherm. Since for 0 < m < 1 (see 37b)

the condition m� 1� l < b is obeyed then for l ¼ 1=2 and
b ¼ 0 (see the comments about Eqs. (34) and (35) we get
m� 1� l ¼ �1 < 0. However, in this case we have

from (38b) that g ¼ �1 that leads to a singularity in the
pre-factor of (38a) because Cð�1þ 1Þ ¼ 0. Therefore, the
solution (38a) is adequate for convex isotherms (m > 1

and N < 1) such as the power-law Freundlich isotherm
which is a specific case of the more general Langmuir
equation for low h.
6. Conclusions

The article performed a reappraisal of the famous Ward–

Tordai equation entirely developed in terms of fractional
calculus. The unified approach demonstrates that Ward–
Tordai equation can be clearly reformulated as a nonlinear
ordinary time-fractional equation of order 1/2. In addition,

the approach used allowed to formulate versions with dif-
ferent isotherms. The simple solution of the case with the
Henry’s isotherms is provided. The Cauchy problem

involving an example with the Freundlich isotherm is
discussed.
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