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Roses are well known for commercial floriculture and greatly used in the field of perfumery, soap, cos-
metics, jams & jelly and essential oil production. Due to interspecific hybridization, a large number of
hybrids and cultivated varieties of rose are recognized which reveals distinguishable features in flowers
such as size, shape, and color. Apart from this, the geographical distribution and polyploidy also make
Rose genus more complex. Therefore, the present study was undertaken for the identification and char-
acterization of genetic variation within 29 rose accessions through Start codon targeted polymorphism
(SCoT) markers. Out of 36 primers, 32 revealed polymorphic amplification profile in 29 rose accessions
with amplification ranging from 150 bp to 1.2 kb. A total of 299 polymorphic amplicons were obtained,
ranging from 4 to 19 amplicons with an average of 9.34 amplicons per primer. The polymorphic informa-
tion content (PIC) ranged from 0.42 to 0.92 with an average of 0.78. The dendrogram was constructed to
establish genetic relationship among 29 different accessions using Neighbor-joining and Nei-Li matching
coefficient. The distinguishable genetic background and a high degree of variation in the rose genotypes
successfully exhibited by the SCoT markers may serve as a valuable aid in Rose improvement strategy.
� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rose is considered as ‘‘Queen of the Flowers”, belonging to the
Rosaceae family. It is woody perennial flowering plant grown all
over the globe, especially sub-tropical and temperate regions of
the northern hemisphere (Werlemark and Nybom, 2010). Rose
flowers are large & showy, vary in size & shape and are being uti-
lized for commercial perfumery, essential oils production, com-
mercial cut flower, as landscape plant, for hedging and other
utilitarian purposes (Akond et al., 2012). Generally, the rose petals
are used for rose oil production. About 3000 kg of rose petals can
produce one kg of rose oil (Baser, 1992; Baydar and Baydar,
2005). In addition to rose oil, some important base materials for
the cosmetic industry such as rose concrete, absolute and rose
water are also obtained from Rosa chinensis and Rosa canina
(Baydar et al., 2004). Rose hip seed oil is employed in various skin
care and cosmetic products. Apart from its beautification applica-
tion, there are several uses of rose viz. Rose hips of Rosa canina is
used in making soup, jam, and jelly because of its high vitamin-C
content. Rosa chinensis is used for stomach problems as well as in
controlling cancer growth (www.Pfaf.org).

Through interspecific hybridization, a large number of hybrids
and cultivated varieties have been developed which differ in color
ranging from yellow and white to many shades of red and pink
with single or double blooms. Due to the allopolyploidization
and hybridizations, the number of rose varieties has reached to
approximately 25,000 which make it difficult to classify ‘Rosa’
genus and wild type of some modern roses (Azeem et al., 2012;
Zhang and Gandelin, 2003). Although, Rosa genus has a broad
and overlying territory of morphological deviations that are influ-
enced by the environmental circumstances, so the classification
based on morphological data only, is not sufficient. Many research-
ers classify rose varieties on the basis of their morphological char-
acteristics like flower weight, flower diameter, peduncle length,
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number of petals, number of stamens and oil content (Kaul et al.,
2009; Panwar et al., 2010; Riaz et al., 2011; Tabaei-Aghdaei et al.,
2007; Zeinali et al., 2010).

Moreover, biochemical markers as chemotaxonomic analyses of
roses based on a vast range of polyphenolic compounds have also
been reported in relation to identify rose taxonomy amongst the
different rose species (Mikanagi et al., 1993; Okuda et al., 1992;
Raymond et al., 1995; Sarangowa et al., 2014). While, Isozyme
based marker studies have also been used by some research groups
for the identification and classification of Rosa genus (Kim and
Byrne, 1996; Walker and Werner, 1997). However, the usage of
isozyme markers is limited because of a small number of con-
stantly resolvable loci (Kim and Byrne, 1994). For assessing genetic
diversity which is vital for species survival, molecular markers
with the aid of modern computing facilities are best suited as they
offer fast, cheap and highly discriminating properties between spe-
cies and within species or varieties (Azeem et al., 2012). Informa-
tion to enrich our knowledge on genetic diversity is obtained
from factors such as morphological, biochemical and molecular
markers which lead us to a more meaning taxonomical classifica-
tion (Gonçalves et al., 2009; Mohammadi and Prasanna, 2003;
Sudré et al., 2007).

DNA based markers have been used very commonly in ecolog-
ical, taxonomical, comparative biology, diversity, conservation,
phylogenic and genetic studies amongst plant species (Haq et al.,
2014). After the advent of PCR several advancement and introduc-
tion of new concepts were employed in the improvement of vari-
ous types of molecular marker technologies like, amplified
fragment length polymorphism (AFLP), inter simple sequence
repeats (ISSRs), simple Sequence Repeats (SSR), single sequence
polymorphism (SNP). For distinct genetic applications amongst
diverse plant species different markers have been used by various
researchers in rice (Huang et al. 1997), bread wheat (Gupta et al.,
2003), barley (Varshney et al., 2007), Jatropha curcas (Khurana-
Kaul et al., 2012), Tomato Cultivars (Nawaz et al. 2015), Poaceae
plants (Haq et al., 2016), Citrullus colocynthis (Verma, 2017) etc.

A novel molecular marker known as Start Codon Targeted
(SCoT) polymorphism targets on short ATG start codon in plant
Fig. 1. Pictorial views of twen
genes has been reported (Collard and Mackill, 2009). It has several
advantages over RAPD, ISSR and AFLP, as it is more stable, produce
more reproducible and reliable bands and can be used effectively
for population studies, genetic mapping in different plants and in
the marker assisted selection programs. Similar to RAPD and ISSR
markers, SCoTs are important markers which could be used for dif-
ferent genetic application such as, to assess genetic diversity and
structure, in bulk segregation analyses, quantitative trait loci
(QTL) mapping and DNA fingerprinting. These markers are directly
involved in relation of gene function and can be utilized in geno-
typing and to explore polymorphism (Gorji et al., 2011; Poczai
et al. 2013). SCoT markers have been successfully practiced for
diversity analysis and diagnostic finger-printing in mango (Luo
et al., 2010), peanut (Xiong et al., 2011), grape (Guo et al., 2012),
Jatropha (Mulpuri et al., 2013), orchard grass (Zeng et al., 2014),
Dendrobium species (Feng et al., 2015), kalmegh (Tiwari et al.,
2016), cowpea (Igwe et al. 2017), plantago (Rahimi et al., 2018)
and taxus (Hao et al., 2018). The aim of present study was to eval-
uate the effectiveness of SCoT markers to determine genetic poly-
morphism and diversity amongst 29 rose germplasms.
2. Materials and methods

2.1. Plant material

A set of 29 different cultivars of genus Rosa were collected from
different location of Jaipur District, Rajasthan, India and were used
for genetic polymorphism, diversity and phylogenetic relationships
amongst them using SCoT markers. All the cultivars represented
distinguishable morphological characteristics (Fig. 1) and differed
in flower color, stem height, bloom shape and plant habit (Table 1).
2.2. DNA extraction and purification

Total genomic DNA was extracted from young leaves according
to the CTAB method (Doyle and Doyle, 1990). Leaf samples were
crushed using 5 ml of pre-heated extraction buffer [1% PVP, 1 M
ty-nine rose accessions.



Table 1
List of the Rosa accessions evaluated in this study.

S.no. Cultivar Name Class Bloom Color Bloom Shape Stem Height Collection Site

1 Lovers Meeting Hybrid tea Orange blend Double tea shaped 60–90 cm Durgapura nursery, Jaipur
2 Careless Love Hybrid tea Pink blend, stripes Double cupped 50–90 cm Durgapura nursery, Jaipur
3 Avalanche Floribunda White color with hint of

green around petals
Double bloom 90–120 cm Janta store circle rajendra marg Jaipur

4 Black Lady Hybrid tea Deep red Double bloom 30–50 cm Durgapura nursery, Jaipur
5 Eiffel Tower Hybrid tea Medium pink Double tea shaped 120–180 cm Durgapura nursery, Jaipur
6 Sunset Blend – Lavish orange center warm

coral pink
– 25–70 cm Ram newas bagh nursery jaipur

7 Gold Strike Floribunda Lemon yellow Star-shaped bloom 50–70 cm Ram newas bagh nursery Jaipur
8 Candy Stripe Hybrid tea Pink blend – 90–120 cm

121–180 cm
Ram newas bagh nursery Jaipur

9 Tajmahal Hybrid tea Red – 90–150 cm Janta store circle Jaipur
10 Claude Monet Hybrid tea White medium yellow red

blend
Semi double 90–120 cm Ram newas bagh nursery Jaipur

11 Paradise Hybrid tea Mauve and mauve blend Double bloom 90–120 cm Ram newas bagh nursery Jaipur
12 Double Delight Hybrid tea Red blend Double tea shaped 90–120 cm

90–180 cm
Ram newas bagh nursery Jaipur

13 Kaiser Wilhelm I Hybrid perpetual Purple red Violet shading Double bloom 90–180 cm Ram newas bagh nursery Jaipur
14 Yellow Patio – Rich yellow Double bloom 50 cm Ram newas bagh nursery Jaipur
15 Strawberry Romance Hybrid tea Pink blend Bi color High centered 90–120 cm Ram newas bagh nursery jaipur
16 All Gold Floribunda Golden or Vibrant yellow Semi double cupped 60 cm Ram newas bagh nursery Jaipur
17 Pleasure Cluster flowered

(incl. Floribunda &
Grandiflora)

Medium pink Double bloom 90–120 cm Ram newas bagh nursery Jaipur

18 Love Grandiflora Red reversed silvery white Fully Double 90–120 cm Ram newas bagh nursery Jaipur
19 Tangerine Jewel Hybrid Bracteata Orange blend Single to Semi double 60–90 cm Ram newas bagh nursery Jaipur
20 William Shakespeare English rose Velvety crimson or medium

red
Double Cupped 90–120 cm Ram newas bagh nursery Jaipur

21 Henry Hundson Hybrid rugosa White blend Double flat bloom 60–120 cm Ram newas bagh nursery Jaipur
22 Black Baccara – Black tinged burgundy red/

Dark red
Double tea shaped 120–150 cm Ram newas bagh nursery Jaipur

23 Pope john paul II Hybrid tea White – 120–150 cm Durgapura nursery, Jaipur
24 Radnectar Grandiflora Apricot – 120–150 cm Durgapura nursery, Jaipur
25 Baimir/Kashmir Shrub Dark Red Double tea shaped 90–120 cm Durgapura nursery, Jaipur
26 Apricot nectar Floribunda Apricot or apricot blend Cupped bloom 60–120 cm Durgapura nursery, Jaipur
27 First red Hybrid tea Classic Red – 90–120 cm Durgapura nursery, Jaipur
28 Mundi Old garden (Gallica) Crimson Semi-double bloom 75–120 cm Ram newas bagh nursery Jaipur
29 Mozart Hybrid Musk Deep Pink, white center Continuous 80–150 cm Ram newas bagh nursery Jaipur
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TrisHCl pH 8.0, 5 M NaCl, 2% CTAB, 0.5 mM EDTA, 200 ll bME] and
incubated for 1 h at 65 �C. Then it was treated with equal volume of
Chloroform: Isoamylalcohol mixture (24:1; v/v). DNA was pelleted
with double volume of ice cold Isopropanol and washed twice with
70% ethanol. The isolated DNA was air dried and stored at �20 �C
in TE buffer. The dissolved nucleic acid was treated with RNase
solution and incubated at 37 �C for 1 h. Followed by, purification
was carried out using Phenol: Chloroform: Isoamylalcohol
(25:24:1v/v) solution and upper aqueous phase was collected after
centrifugation. After that 3 M Sodium acetate (0.1v) and 500 ml
absolute alcohol were added into mixture, which was followed
by pellet washing with 70% ethanol then air dried and dissolved
in TE buffer. DNA was stored at �20 �C and concentration was
adjusted via spectrophotometric method.

2.3. PCR amplification for SCoT markers

Total 36 sets of primers were custom synthesized by Operon
Technologies (Almeda, USA) according to Collard and Mackill
(Collard and Mackill, 2009) (Table 2). These were 18-mer primers
having GC content between 50% and 72%. All PCR reactions were
carried out within a total volume of 10 ml in 96 well plate’s thermal
cycler (Bio-Rad.UK) for SCoT primers. Each reaction contains 25 ng
template DNA (1 ml), 1.0 ml of primer (10 pmole/ml), 0.3 ml of 100
mM of dNTPs, 0.5 unit of Taq DNA polymerase, 1.2 ml of 10� PCR
buffer (Bangalore Genei, India). Amplification was performed in
the following conditions – an initial denaturation at 94 �C for
3 min, followed by 35 cycles at 94 �C for 1 min, annealing for
1 min and extension at 72 �C for 2 min with a final extension at
72 �C for 5 min. The PCR conditions mainly for annealing tempera-
tures (varying from 50 �C to 58 �C) were standardized for each pri-
mer and amplified products were stored at 4 �C. All amplified
products were resolved on 1.5% high resolution agarose gel made
in 0.5� TBE buffer then preformed electrophoresis for 3.5 h at 70
V and visualized with ethidium bromide (10 mg/mL). The image
of banding patterns was captured under UV light using gel docu-
mentation system (Bio-Rad).

2.4. Genetic diversity analysis

All PCR amplified SCoT fragments were detected on gels and
scored as binary data, for their presence (1) or absence (0) by visual
observation. In order to ensure credibility only reproducible and
well defined bands were scored. Smeared and weak bands were
excluded. Polymorphic and monomorphic bands were determined
for each SCoT primer. The dendrogram was constructed based on
neighbor-joining and Nei and Li similarity matrix through Free
tree/Tree view software’s (Pavlicek et al., 1999). The genetic diver-
sity displayed among different genotypes were based on their sim-
ilarity matrix which were obtained from binary data existence.
Bayesian clustering was conducted to infer population structure
and assign individuals to populations based on SCoT genotypes
using STRUCTURE 2.3.4 software (Pritchard et al., 2000; Falush
et al., 2003) with different values of the number of clusters (K).
To obtain the optimum K value, the length of the burning period
was 100,000 iterations followed by 200,000 Monte Carlo Markov
Chain replicates. Each K value was run 10 times with values rang-
ing from K 1 to K 10, it was plotted against the mean estimate of

http://S.no


Table 2
Sequence of SCoT primers and GC content (%).

Primer Sequences (50–30) %G/C Primer Sequences (50–30) %G/C

SCoT1 CAACAATGGCTACCACCA 50 SCoT19 ACCATGGCTACCACCGGC 67
SCoT2 CAACAATGGCTACCACCC 56 SCoT20 ACCATGGCTACCACCGCG 67
SCoT3 CAACAATGGCTACCACCG 56 SCoT21 ACGACATGGCGACCCACA 61
SCoT4 CAACAATGGCTACCACCT 50 SCoT22 AACCATGGCTACCACCAC 56
SCoT5 CAACAATGGCTACCACGA 50 SCoT23 CACCATGGCTACCACCAG 61
SCoT6 CAACAATGGCTACCACGC 56 SCoT24 CACCATGGCTACCACCAT 61
SCoT7 CAACAATGGCTACCACGG 56 SCoT25 ACCATGGCTACCACCGGG 67
SCoT8 CAACAATGGCTACCACGT 50 SCoT26 ACCATGGCTACCACCGTC 61
SCoT9 CAACAATGGCTACCAGCA 50 SCoT27 ACCATGGCTACCACCGTG 61
SCoT10 CAACAATGGCTACCAGCC 56 SCoT28 CCATGGCTACCACCGCCA 67
SCoT11 AAGCAATGGCTACCACCA 50 SCoT29 CCATGGCTACCACCGGCC 72
SCoT12 ACGACATGGCGACCAACG 61 SCoT30 CCATGGCTACCACCGGCG 72
SCoT13 ACGACATGGCGACCATCG 61 SCoT31 CCATGGCTACCACCGCCT 67
SCoT14 ACGACATGGCGACCACGC 56 SCoT32 CCATGGCTACCACCGCAC 67
SCoT15 ACGACATGGCGACCGCGA 67 SCoT33 CCATGGCTACCACCGCAG 67
SCoT16 ACCATGGCTACCACCGAC 56 SCoT34 ACCATGGCTACCACCGCA 61
SCoT17 ACCATGGCTACCACCGAG 67 SCoT35 CATGGCTACCACCGGCCC 72
SCoT18 ACCATGGCTACCACCGCC 67 SCoT36 GCAACAATGGCTACCACC 56
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log probability of the data L(K). The real number of sub-population
was identified using the maximum L(K) value. Population structure
was calculated with DK using STRUCTURE Harvester, based on the
second-order rate of change of likelihood distribution mean L (‘‘K”)
and with respect to K estimated (Evanno et al., 2005).
Table 3
Percent amplification (PA), Total number of bands (TNB), Polymorphism information
content (Pic) obtained by SCoT primers in Rosa accessions.

Primer No. PA TNB Pic Value

1 86.66 10 0.8344
2 86.66 14 0.894706
3 80 8 0.5275
4 43.33 7 0.8206
5 83.33 5 0.4289
6 86.66 10 0.7715
8 23.33 8 0.779
10 40 5 0.6113
11 73.33 15 0.89792
12 43.33 9 0.8568
13 63.33 9 0.7953
14 80 11 0.868508
15 90 14 0.912109
16 86.66 7 0.6821
17 66.66 4 0.5899
18 83.33 9 0.8402
19 76.66 13 0.89504
20 63.33 10 0.8686
21 86.66 19 0.929811
22 93.33 4 0.6549
23 83.33 6 0.77
24 40 7 0.7343
25 53.33 7 0.7678
26 80 8 0.8192
28 90 14 0.875743
29 73.33 7 0.7043
30 86.66 10 0.7954
31 66.66 10 0.8339
33 43.33 11 0.901844
34 83.33 9 0.8056
35 93.33 11 0.876509
36 90 8 0.8237
Total average 72.49 299 (9.34) 0.7864
3. Results

The genetic polymorphism, diversity and phylogenetic relation-
ships were established amongst 29 distinct cultivars of Rosa genus
through SCoT markers or polymorphism in short conserved region
flanking the ATG start codon. The cultivars were collected from dif-
ferent location of Jaipur, Rajasthan, India which displayed certain
dissimilarity in their morphological traits. Each rose cultivar had
distinct characteristic differences amongst bloom color (deep red,
lavish orange, white blend etc.), bloom shape (double cupped, dou-
ble flat bloom or double tea shaped) and stem height which range
from 25–190 cm.

A sum of 36 SCoT primers was examined for PCR optimization,
characterization, and their amplification within 29 different Rosa
germplasms. Most of the primers revealed polymorphic and repro-
ducible amplification profiles and yielded 299 unblurred and
bright bands ranging from 150 bp to 1.2 kb in size. While, the num-
bers of bands ranged from four to nineteen, with an average of 9.34
bands per primer and SCoT21 displayed maximum number (19) of
banding patterns and primers while SCoT17 and SCoT22 showed
least number (4) of banding profiles (Table 3). However, primers
SCoT7, SCoT9, SCoT27, and SCoT32 were unable to produce any
amplification with Rose genomic DNA. These results indicated that
a high polymorphism could be disclosed by SCoT markers in Rosa
accessions. Furthermore, the amplification profile generated by
SCoT1, SCoT2, SCoT21 and SCoT28 primers has been presented in
Fig. 2.

The binary matrix was constructed from the amplified bands
obtained from SCoT primers extension. This formulated matrix
was used to unveil genetic affinity and genetic diversity among
29 Rosa germplasms. In the present study, the highest similarity
coefficient was observed between Rosa Black Baccara & Rosa Lovers
Meeting followed by Rosa Careless Love & Rosa Black Baccara and
Rosa Pope John Paul II and Rosa Black Baccara also showed close
occurrence. The lowest similarity was observed between Rosa
Baimir and Rosa Apricot Nectar with the value of 0.24 coefficients
(Supplementary Table 1). Thus these results unveiled the closeness
of Rosa Black Baccara to Rosa Lovers Meeting, Rosa Careless Love and
Rosa Pope John Paul II, while Rosa Baimir and Rosa Apricot Nectar
showed dissimilarity between them.

A dendrogram was constructed amongst 29 distinct rose geno-
types using binary data that was based on Nei-Li similarity
coefficient/Neighbor-joining through free-tree/tree view software.
It was observed that the dendrogram grouped all the cultivars into
two major cluster I and II. While, cluster I included only Rosa
Strawberry Romance and cluster II was subdivided into two groups
A and B. Group A was further divided into two subgroups, IIa and
IIb. The subgroup IIa revealed 14 different rose cultivars in relation
to their closeness and subgroup IIb was with two cultivars i.e. Rosa



Fig. 2. SCoT Amplification Profile of Primer (A) SCoT21 (B) ScoT2 (C) SCoT28 And (D) SCoT1 amongst the 29 Rosa accessions. Lanes marked as 1 to 29 which represent the
accessions according to serial numbers in Table A.1 and M represents 100 bp molecular weight ladder.
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Paradise and Rosa Tajmahal which were distinct from subgroup IIa
and cluster I cultivar. As well, group B was with 12 different rose
cultivars and divided into two subgroups namely; IIc and IId.
While, the IIc was with only one cultivar (Rosa Tangerine jewel)
and IId consisted 11 distinct Rose cultivars (Fig. 3). Bayseian clus-
tering conducted was used to assign the 29 Rosa germplasms with
reference to their population structure. The estimated membership
fraction ranged from K 1 to K 10 and the most reliable probabilities
obtained at K = 3 (Fig. 4). The highest ad hoc measure of delta K
was observed at K = 3 (Fig. 5) which indicates the 29 germplasms
are divided into three subgroups. The membership probability
threshold score was observed 0.78 (Fig. 6). The 29 germplasms
were separately assigned to each subgroup and fractions less than
0.22 score were considered to be admixed.
4. Discussion

Molecular markers are considered to be the best for character-
ization of genetic polymorphism at DNA level, germplasm charac-
terization, genetic diversity analysis, parentage determination,
genetic distance estimation, gene mapping, and marker-assisted
selection (Gupta and Rustgi, 2004; Varshney et al., 2005; Agarwal
et al., 2008; Madhumati, 2014). Till date, a variety of molecular
markers technologies have been developed through innovations
of different new principle and approaches in molecular markers
system. On account of these, different marker technologies have
been investigated in Rosa genus for their genetic characterizations
using distinct types of molecular markers such as simple sequence
repeats (SSR), random amplified polymorphic DNA (RAPD) and
inter-simple sequence repeats (ISSRs) (Akond et al., 2012; Azeem
et al., 2012; Panwar et al., 2015).

The present study, reports the use of utilitarian marker such as
SCoT primers for comparing genetic diversity and for establishing
genetic relationships among 29 Rosa germplasms. SCoT marker
technique used in the current study is simple, low cost, fast, effec-
tive and highly reproducible with requirement of small amount of
DNA in addition to no prior information of DNA sequence. These
markers are very easy to design based on ATG context that is con-
served region surrounding the translation initiation codon, thus
the SCoT marker technique correspond to functional genes and
their correlating characters (Xiong et al., 2011). Disparate from
RAPD, AFLP and ISSR marker system, SCoT is gene targeted marker
with multilocous nature and it can generate more information cor-
related with biological traits and helpful in high genetic polymor-
phism. Evaluation of SCoT markers in diversity analysis and
diagnostic fingerprinting has already been established in Mango
(Luo et al., 2012), Orchid (Bhattacharyya et al., 2013), Date palm
(Al-Qurainy et al., 2015), Diospyros (Deng et al., 2015), Elymus sibir-
icus (Zhang et al., 2015), Vigna unguiculata (Igwe et al., 2017) and
taxus (Hao et al., 2018).

In the present investigation, a set of 36 SCoT primers were used
to examine genetic polymorphism, out of total, 32 SCoT primers
produced unambiguous and reproducible banding profile with
150–1200 bp product size but 4 SCoT primers failed to amplify
the rose genomic DNA. High polymorphism (100%) as reported in
the present study is in compliance with earlier investigations in
rose (Henuka et al., 2015) who reported (98.54% polymorphism)
with RAPD markers. Panwar et al. (2015) who observed 94% of
genetic polymorphism with ISSR markers then Prasad et al.
(2006) who reported 87.5% of polymorphism in fragrant rose culti-
vars with RAPD markers. Our study is comparable to high SCoT
based polymorphism obtained in several other plant species also
viz. 97.10% in Atriplex halimus (Elframawy et al., 2016), 96.68% in
Diospyros (Deng et al., 2015), 95.71% in Quercus brantii (Alikhani
et al., 2014), and 93% in Grape (Guo et al., 2012).

The present study is first report to have shown significant genetic
polymorphism amongst various Rosa germplasm using SCoT mark-
ers. A total of 299 scorable bandswere identified through the ampli-
fication of 32 SCoT primers in 29 diverse rose germplasms. The
amplification ranged from 4 bands to 19 bands with an average of
9.42bands per primerwhich is nearly comparablewith earlier study
by Panwar et al. (2015)who reported an average of 11 bands per pri-
mer in 32 rose cultivarswith ISSRprimerswhile polymorphismgen-
erated by RAPDmarker is not comparable to ourwork as it gave only
6.5bandsperprimer (Henukaet al., 2015).Moreover, anaveragePCR
amplification found to be 72.49% and polymorphic information
content (PIC) ranged from 0.42 (SCoT-5) to 0.92 (SCoT-21) with an
average of 0.78which exhibit similarity to PIC value obtained in pre-
vious studies suchas, 0.72bySSRmarker (Ghose et al., 2013), 0.88by
STMS marker system (Fernández-Romero et al., 2009), while in
RAPD a value (0.38) was obtained by Henuka et al. (2015). Thus,



Fig. 4. Pattern of variation of 29 accessions with 32 SCoT markers, bar length representing the membership probability of accessions belonging to different subgroups at K = 3.

Fig. 3. A dendrogram revealed genetic relationships among 29 different Rosa accessions using SCoT marker.
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the parameters such as primer polymorphism and polymorphic
information content (PIC) used in the present study are found to be
very supportive to examine markers for their usefulness in the
fingerprinting process.
The binary matrix from the PCR amplified product was used for
similarity index/coefficient calculation that was based on Nei-li
matching coefficient. The maximum similarity was identified
between Rosa Careless Love & Rosa Black Baccara, and between Rosa



Fig. 5. Graph of estimated membership fraction for K = 3.

Fig. 6. Population structure of 29 accessions arranged based on inferred ancestry.
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Pope John Paul II & Rosa Black Baccara. Lowest similarity was seen
between Rosa Baimir and Rosa Apricot Nectar. Furthermore, a
genetic relationship amongst 29 distinct rose accessions was eval-
uated by the construction of dendrogram using data of 32 SCoT
markers amplification. Several distinct clusters of rose accessions
were recognized which fell down into various edges of dendrogram
that might be possible of their differences in genetic constitutions
which represent distinct morphological characters and variations
amongst them. Further, this grouping is also supported by Bayseian
clustering algorithm using STRUCTURE software which was con-
ducted amongst different 29 Rosa germplasm (Evanno et al.
2005). The Inference of best K is explained by using the delta K
method which was found to be the best at K = 3 that clearly sepa-
rated the rosa germplasm into major three groups. This method
recognize the true number of clusters (K) in the given individual
collections using an ad hoc statistic DK based on the rate of change
in the log probability of data between successive K values (Evanno
et al., 2005). Moreover, Bayesian clustering approach has the abil-
ity to use genetic information to determine the population mem-
bership of individuals without assuming predefined populations.
They allocate either members or portion of their genome to a num-
ber of clusters based on multilocus genotypes (Chen et al., 2007).
Vukosavljev et al. (2013) also tried to classify garden rose in three
groups- wild, old garden and modern garden rose on the basis of
several morphological parameters. Several earlier studies have
established the genetic relationship amongst rose accessions based
on several morphological traits such as number of petals, stem
width, number of side shoots, or rose hips to diversify rose geno-
types (Gitonga et al., 2014; Riaz et al., 2007). Diverse studies have
been conducted to analyze genetic relationship based on different
marker technologies in rose, like STMS (Fernández-Romero et al.,
2009), AFLP (Pirseyedi et al., 2005), SSR (Akond et al., 2012;
Ghose et al., 2013; Nadeem et al., 2014; Samiei et al., 2010;
Vukosavljev et al., 2013), ISSR (Mirali et al., 2012; Panwar et al.,
2015; Zhou et al., 2009) and RAPD (Agaoglu et al., 2000; Henuka
et al., 2015; Panwar et al., 2015).
5. Conclusion

This is first report of genetic polymorphism on 29 different Rosa
germplasm using SCoT markers technique. It is single primer PCR
based amplification methods which depend on gene-targeted for-
mulation and as a better alternative to RAPD, ISSR, AFLP, SRAP,
and TRAP techniques. Some attributes like higher polymorphism,
high reproducibility, low cost, easy to access, and time saver nature
made SCoT method more reliable and suitable to study genetic
relationship amongst various Rosa germplasm. Our study identified
the polymorphic nature of SCoT marker without facilitating func-
tional validation of genes and established genetic diversity among
different rosa germplasms. Therefore, this practice will be useful
for planning conservation strategies and also helpful in rose
improvement programs such as linkage mapping, QTL mapping,
genotype identification, gene pyramiding and marker assisted
selection.
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