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A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏̃𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 
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One of the most common types of cancer globally is skin cancer. Quick identification of this cancer plays a 
significant role in patient treatment and successful recovery. It is a condition characterized by the uncontrolled 
growth of skin cells. Skin cancer consists of two broad categories: melanoma and non-melanoma, each with 
distinct characteristics and treatment approaches. Recently, deep convolutional techniques have contributed 
high-quality models to the automation system for the segmentation, visualization, and detection of skin cancer. 
A deep convolutional neural network architecture, known as U-shaped encoder-decoder network (U-net), is 
used in various fields, mainly in medical image segmentation. It is also used for various tasks like image 
processing and computer vision. We proposed a customized extended deep U-net architecture with configured 
layer dissemination for the classification and segmentation of each image with an affected area and visually 
explainable visibility of skin cancer consisting of two categorical data samples: melanoma and non-melanoma. 
The model achieved high accuracy.

1. Introduction

Worldwide, skin cancer is a public health concern, with the most 
prevalent types being melanoma and non-melanoma (Sander et al., 
2003). Melanoma begins in the body cells with melanocytes, which 
produce the characteristic color of the skin. It develops due to 
unrepaired DNA damage (Rodriguez-Rocha et al., 2011) leading to 
uncontrolled cell growth in the body’s tissues. Non-melanoma skin 
cancers (Madan et al., 2010) include squamous cell carcinoma (SCC) 
and Basal cell carcinoma (BCC). The global incidence of skin cancer 
has shown varying trends. From 1990 to 2019, the annual estimated 
increase in percentage is 1.78%. Predictions based on a study (Hu et 
al., 2022) suggest that between 2020 and 2044, the number of deaths, 
new cases, and disability-adjusted life years attributable to NMSC (non-
melanoma skin cancer) will increase by at least 1.5 times. According to 
the World Cancer Research Fund International, melanoma is the most 
diagnosed cancer globally, ranking 17th with over 150,000 new cases 
in 2020. The highest rates of melanoma have been found in Australia 
and New Zealand. Early detection and identification of both melanoma 
(Hendrix et al., 2003) and NMSC (Samarasinghe and Madan, 2012) is 
crucial to prevent their progression and improve outcomes. To reduce 
the risk of developing skin cancer, it is important to regularly examine 
the skin, wear protective clothing, and avoid excessive sun exposure. 
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Treatment options for skin cancer include surgical removal (Roenigk 
and Roenigk, 1990), radiation and chemotherapy (DeHaven, 2014), 
immunotherapy, and targeted therapy, depending on the stage of the 
cancer. It is important for individuals to be aware of the symptoms and 
signs of skin cancer and to seek medical attention for early detection and 
identification. A proposal for image classification and segmentation, as 
well as a visually explainable system of skin cancer using deep learning 
methods and gating mechanisms can aid early detection. Such types of 
other medical section diagnosis assessments take part in a significant 
way in some specific diseases like breast cancer detection with deep 
learning (Muduli et al., 2022) and machine learning approaches (Muduli 
et al., 2021), diabetes monitoring system (Sharma et al., 2023), etc.

Other researchers have explored FCNs (Fully Convolutional 
Networks) and DeepLabV3+, which incorporate dilated convolutions 
and atrous spatial pyramid pooling (ASPP) to capture multiscale 
contextual information. GAN-based segmentation models, such as 
SegAN, have also been proposed to refine segmentation boundaries. 
In recent years, deep learning has significantly advanced skin cancer 
detection and segmentation, with U-Net and its variations being widely 
adopted. Many existing works combine U-Net with either encoding-
decoding mechanisms or attention mechanisms, while some rely solely 
on customized U-Net architectures. However, these models primarily 
focus on segmentation without incorporating classification or visual 
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explanation. Our proposed approach integrates U-Net with both 
attention mechanisms and encoding-decoding techniques, enhancing 
feature extraction and segmentation precision. Unlike previous studies, 
our work extends beyond segmentation by including classification and 
visual explanations, providing a comprehensive framework for skin 
cancer analysis. This holistic approach improves interpretability and 
supports better clinical decision-making.

Bindhu et al. (2023) proposed an MFO-Fuzzy U-net model that 
processes skin cancer images using IoT-connected Raspberry Pi, with 
bilateral filtering for noise removal. The Fuzzy U-net segments the 
affected area, optimized by the May Fly Optimizer to enhance accuracy. 
The model achieves a high accuracy of 97.57%, outperforming 
traditional networks like U-net, LinkNet-B7, and FCNs by 0.83%, 
3.43%, and 9.21%, respectively. Additionally, they discussed various 
challenges such as data imbalance, model robustness, and domain 
adaptation. In another work, Cai et al. (2024) proposed BiADATU-Net, 
based on Transformer U-Net, which integrates deformable attention 
Transformer and bidirectional attention blocks for precise skin lesion 
segmentation. Evaluated on ISIC (2016), ISIC2017, ISIC (2018) (Cassidy 
et al., 2022), and PH2 datasets, the model achieves an accuracy of 
over 96%, outperforming state-of-the-art methods. Nazi et al. (2018) 
proposed a method that employs U-Net for skin lesion segmentation, 
utilizing spatial dropout to prevent overfitting and data augmentation 
for increased training samples. Transfer learning was applied to enhance 
performance, achieving a mean dice score of 0.87 and a Jaccard index 
of 0.80 on ISIC 2018, and 0.93 and 0.87 on PH2, respectively. For 
melanoma classification, a DCNN-SVM model was used, achieving 92% 
accuracy on the PH2 dataset. Narayanamurthy et al. (2018) proposed 
unique non-invasive techniques for skin cancer detection. They utilized 
non-invasive diagnostic methods such as dermoscopy-aided analysis in 
their study. In another work, Nasrin et al. (2019) employed a recurrent 
residual U-Net (R2U-Net) based autoencoder model for denoising 
medical images, including digital pathology, dermoscopy, MRI, and 
CT scans. The model demonstrates promising accuracy in denoising 
tasks and transfer domain applications between MRI and CT images 
using publicly available datasets. Karimi et al. (2023) proposed a 
Dual-Encoder U-Net (DEU-Net) with convolutional and transformer 
encoders to extract both local features and global context for skin 
lesion segmentation, enhanced with test-time augmentation. The model 
achieved Dice coefficients of 92.90% (ISIC 2016), 87.16% (ISIC 2017), 
90.81% (ISIC 2018), and 95.65% (PH2), surpassing most state-of-the-
art methods. Mohakud et al. (2022) introduced a deep learning model 
called the fully convolution encoding decoding network (FCEDN) with 
the Exponential Neighborhood Grey Wolf Optimization (EN-GWO) 
algorithm for hyperparameter tuning. They achieved high accuracy 
in segmenting skin cancer disease with Jaccard coefficient values of 
98.32% and 95.25%. They used the ISIC (International Skin Imaging 
Collaboration) 2016 and ISIC 2017 datasets and compared their model 
with other deep learning models such as SegNet, FCN, Link-Net, and 
U-Net. Alahmadi et al. (2022) proposed that Multi-Scale Attention U-Net 
(MSAU-Net) enhances U-Net by incorporating an attention mechanism 
at the bottleneck and a Bidirectional Convolutional LSTM (BDC-
LSTM) to refine feature representation. Evaluated on ISIC 2017, ISIC 
2018, and PH2 datasets, the model outperforms existing segmentation 
methods. Yin et al. (2023) proposed method utilizes a dual-branch 
interactive U-Net with vertical and horizontal structures, integrating a 
dual-channel symmetric convolution block (DCS-Conv) and a residual 
fuse-and-select (RFS) module with self-attention for precise melanoma 
segmentation. Evaluated on ISIC2016 and PH2 datasets, the model 
outperforms previous approaches in segmentation accuracy and overall 
performance.

In our study, we proposed an extended deep U-net architecture 
consisting of three blocks: encoding, decoding, and an attention 
gate mechanism, connected with each other individually for the 
segmentation and classification process. After prediction, we also 
explored the visual explainable visibility with the extended deep 
U-net model prediction architecture. We used a customized set of two 
categorical images of melanoma and non-melanoma from the DermIS 
and DermQuest databases. Our proposed U-net architecture directly 
follows the convolutional neural network (CNN) theory, using different 
sections in our model. Finally, we achieved a high level of accuracy 

in the segmentation and classification performance of our proposed 
model, with 97.99% and 92.75% over the ISIC (2016) dataset based on 
the set of collected customized data samples.

The key points of our whole study: 

•	 We introduced an enhanced U-Net architecture rooted in a deep 
CNN that eschews traditional handcrafted feature extraction maps.

•	 The model, comprising encoding, decoding, and gating mechanisms, 
is designed to mitigate overfitting while striving for optimal image 
segmentation.

•	 We gathered two sets of categorical images of melanoma and 
nonmelanoma, along with their masks, from the DermIS and 
DermQuest databases. Additionally, we sourced another dataset 
from ISIC (2016). To ensure consistency, we organized the images 
in ascending order based on their indices. All data samples are 
publicly accessible in the DermIS and DermQuest databases. We 
also compared our findings with the ISIC (2016) dataset, which is 
available on a public platform.

•	 Our research endeavor seeks to accomplish classification, 
segmentation, and visual explainability for two skin cancer datasets. 
In tackling the associated challenges, we effectively executed 
segmentation utilizing image masks and enhanced classification 
efficacy by integrating deep attention networks with our proposed 
U-Net architecture.

The remaining sections are structured as follows: Section 2: A 
detailed description of our proposed U-net architecture, including its 
three-block connection and block diagram. Section 3: Discussion of 
the dataset, graphical analysis, model performance, and experimental 
results. Section 4: Analysis of image segmentation, image prediction, 
and the process of predicted image masks. Section 5: Summary of our 
entire paper study and insights into future work.

2. Methodology

The proposed image segmentation framework is based on a U-Net 
architecture enhanced with attention mechanisms. The process 
begins with image preprocessing, where input images are resized and 
normalized to ensure consistency. Image augmentation is applied, 
incorporating transformations like flipping and rotations to enhance 
the model's generalization. The encoding stage consists of multiple 
EncoderBlocks, where convolutional layers extract hierarchical features, 
followed by dropout for regularization. MaxPooling reduces spatial 
dimensions while preserving essential patterns. The bottleneck layer 
further compresses features, serving as a transition to decoding.  The 
attention mechanism is integrated through Attention Gates, which refine 
feature selection by emphasizing important regions and suppressing 
irrelevant details. This enhances segmentation accuracy. The decoding 
stage employs DecoderBlocks, which use upsampling and concatenation 
with skip connections to restore spatial details. The final output layer 
applies sigmoid activation to generate segmentation masks. The model 
is compiled with the Adam optimizer and binary cross-entropy loss, 
ensuring efficient learning. Training is performed with a batch size 
of 8, leveraging callbacks to monitor progress, including GradCAM 
visualization for interpretability. Fig. 1 illustrates the block diagram 
of the bidirectional process, outlining the classification of melanoma 
and nonmelanoma skin cancer, followed by the segmentation of the 
classified images for precise lesion analysis. The use of extended U-Net 
is justified by its capacity to capture fine-grained details necessary for 
precise segmentation, especially in complex skin lesions.

2.1 U-Net

The model proposed is a powerful architecture designed for 
the segmentation process using biomedical image samples, known 
as the U-net architecture (Sanjar et al., 2020). Our extended deep 
convolutional U-net architecture, depicted in Fig. 2 consists of three 
main blocks: encoding-decoding block (Wu et al., 2021) and attention 
gate mechanism function (Wu et al., 2021). The detailed configuration 
has been illustrated in Fig. 3(a). The block diagram of the proposed 
extended U-net in Fig. 3(b) displays a series of four encoding blocks 
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defined by convolutional layers, which aim to capture the context of 
the input image feature maps. This block helps to reduce the spatial 
dimensions and feature maps while increasing depth. In the decoder 
block, the image progressively recovers the spatial resolution using 
transpose convolutions or up-sampling followed by convolution. The 
decoder block includes skipping connections from the encoder block 

to preserve high-resolution features through concatenation. Attention 
gates are added before merging features in the decoder. By focusing on 
relevant features and suppressing irrelevant regions, the attention gate 
block helps the model when dealing with input images of skin cancer. 
Gating signals are used in this model to emphasize important features 
passed through skip connections.

Fig. 1. Architecture view of proposed extended U-net model based on deep convolutional neural network.

Fig. 2. Block diagram of proposed U-net architecture based on deep learning.

Fig. 3. Provides a detailed architectural representation of the proposed model. (a) Illustrates the block diagram of individual components, including the encoding, decoding, and 
attention gate architectures, which play a crucial role in feature extraction and refinement. (b) Presents the overall structure of the proposed extended U-Net model, built upon a 

deep convolutional neural network, highlighting its enhanced capability for skin cancer segmentation and classification.

(a) (b)
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2.2 Encoding (contracting path)

In proposed extended deep convolutional U-net architecture, the 
encoder block (Aboussaleh et al., 2023)  is essential for capturing 
convolutional information and decreasing the spatial dimensions of 
the input image. It follows a neural network architecture like that of a 
CNN. In Fig. 3(a), a single encoding block includes a convolution layer, 
pooling layer, dropout layer, and feature doubling, resembling a CNN. 
The details and mathematical overview of these layers are as follows:

2.2.1 Convolutional Layer

In the encoder block, a deep convolutional layer (Sharma et 
al., 2024) is utilized for image feature extraction. Learnable filters 
are applied to each convolutional layer based on the input sample. 
For a given individual layer (i), the convolution operation can be 
mathematically represented. Let the input image dimensions be 
represented as (V V V

h w c
× × ). When a convolutional layer is applied, 

the output dimensions transform to a new volume size denoted as 
(V V V
h
new

w
new

c
new× × ), with the filter dimensions defined as (F F F

h w c
× × ).  

The filter dimensions consist of four hyperparameters: (P) indicates the 
amount of zero padding, and (S) denotes the stride length. Consequently, 
the output shape can be mathematically expressed as follows:

V V F P S
h
new

h h
� � � � � � � � � / � �� � � �� � �2 1 (1)

V V F P S
w
new

w w
� � � �� � ��� � � � � � � � / � �2 1 (2)

V F V R
d
new

c c
� � � � /� �� � (3)

2.2.2 Relu Layer

The term “ReLU layer” stands for Rectified Linear Unit layer, a widely 
utilized component in neural networks, particularly in CNNs (Agarap, 
2018). It serves to implement activation functionality, facilitating the 
learning of more computationally intricate representations of data. 
The rectified linear unit introduces non-linearity into the network 
architecture. It effectively mitigates overfitting and sparsely activates 
neurons, mimicking the behavior of biological neurons. When 
considering any input value (z), the function can be mathematically 
expressed as follows:

ReLU h h if z otherwise� � � �{ ,�� � � � ,�� �����00 (4)

f ReLU W x b
i i i

� �� ��*� 1 (5)

where, like the biological neurons, any input value defined as (h) fi 
is the feature map produced by the ith layer, Wi  is defined as the weights 
of the filters, * is denoted as convolution operation and the input to ith 
layer is denoted as xi-1; therefore, ReLU is the activation function.

2.2.3 Pooling layer

To decrease the size of the feature maps, we utilized a pooling layer 
(Gholamalinezhad and Khosravi 2020). There are two types of pooling 
layers: MaxPooling Layer and AveragePooling Layer. In our research, 
we employed the max pooling layer following each set of convolution 
layers with activation functions. The max pooling operation can be 
described as:

P MaxPool f
i i
� � � (6)

where a pooled feature map denoted as pi and a function selects the 
maximum value in a certain window size defined as (MaxPool).

2.2.4 Feature doubling & downsampling

In the U-Net architecture, the number of image or data sample 
features doubles after each pooling layer, as indicated in Table 1 and 
Fig. 3(b). This helps the network learn more complex representations. 
The model’s output is produced by combining the convolutional and 
pooling layers through the network’s down-sampling configuration, 
which reduces the spatial dimensions of feature maps. Essentially, the 
encoder’s output is also known as the bottleneck.

2.3 Decoding

A decoder (Kim et al., 2018) is defined as a functional block inside 
network layer configuration in Fig. 3(a), in the context of extended 
U-net architecture that is responsible for up-sampling. The up-sampling 
process is carried out by the encoder function block, which gathers and 
combines feature maps to create a segmentation map or an output with 
the same dimensions as the input sample, but possibly with a different 
number of channels. In our U-net architecture, the decoder block consists 
of four up-sampling blocks, each performing up-sampling followed by 
convolutional operations. We utilized transpose convolutions, also 
known as up-convolutions or deconvolutions, to expand the spatial 
dimensions in feature maps. Additionally, we incorporated the feature 
maps from the corresponding encoder block by concatenation, enabling 

Table 1.  
The detailed configuration of the proposed extended customized U-net architecture consists of encoding-decoding with attention block based on deep convolu-
tional neural network model.

Layer Output shape Connected layer Parameter

Input (1) (Input Layer) (None, 256, 256, 3) 0 -

Encoder (1) (Encoder Block) [(None, 128, 128, 32), (None, 256, 256, 32)] Input (1) 10144

Encoder (2) (Encoder Block) [(None, 64, 64, 64), (None, 128, 128, 64)] Encoder (1) 55424

Encoder (3) (Encoder Block) [(None, 32, 32, 128), (None, 64, 64, 128)] Encoder (2) 221440

Encoder (4) (Encoder Block [(None, 16, 16, 256), (None, 32, 32, 256)] Encoder (3) 885248

Encoding (Encoder Block) (None, 16, 16, 512) Encoder (4) 3539968

Attention (1) (Attention Gate) (None, 32, 32, 256) Encoding, Encoder (4) 1771265

Decoder (1) (Decoder Block) (None, 32, 32, 256) Encoding, Attention (1) 2359808

Attention (2) (Attention Gate) (None, 64, 64, 128) Decoder (1), Encoder (3) 443265

Decoder (2) (Decoder Block) (None, 64, 64, 128) Decoder (1), Attention (2) 590080

Attention (3) (Attention Gate) (None, 128, 128, 64) Decoder (2), Encoder (2) 111041

Decoder (3) (Decoder Block) (None, 128, 128, 64) Decoder (2), Attention (3) 147584

Attention (4) (Attention Gate) (None, 256, 256, 32) Decoder (3), Encoder (1) 27873

Decoder (4) (Decoder Block) (None, 256, 256, 32) Decoder (3), Attention (4) 36928

conv2d (30) (Conv2D) (None, 256, 256, 1) Decoder (4) 33

Total parameters 10200101

Trainable parameters 10199141

Non-trainable parameters 960
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the decoder to access both high-level and low-level features. Let 
denotes the ith samples of input feature map to the decoder as X with 
dimension (U V Cin in in× × ) where, Uin  represent as height and Vin  
as width of the feature maps. The channel number is denoted as Cin .  
After up-sampling, the output feature maps produce (U V Cin in in× × ) 
same dimension as feature map but the Cin  value might be changed. 
In our approach, up-sampling has been used as transposed convolution 
also known as fractionally stride convolution or deconvolution. In a 
mathematical way it is represented as follows:

Z Conv DTranspose X
i i
� � �2 (7)

where Z
i
 is the output feature map after upsampling and 

Conv2DTranspose represents the transpose convolution operation.

2.4 Attention gate

The model used four attention gate mechanism blocks (a1, a2, a3, 
and a4) connected with four decoding blocks (d1, d2, d3, and d4) in Fig. 
3(b) individually in our proposed U-net architecture. Each attention gate 
functional block consists of a sequential series of three convolutional 
layers, up-sampling 2D, and batch normalization displayed in Fig. 3(a). 
Basically, the attention gate is used in neural networks, particularly in 
architectures like RNN (Recurrent Neural Network), CNN, and image 
segmentation U-net architecture. By following human attention, the 
attention gate mechanism is inspired. The attention gate consists of two 
main components as follows:

2.4.1 Attention mechanism

Each element in the input data is computed by attention weights 
in the attention mechanism (Guo et al., 2022). These weights signify 
the importance or relevance of each element to the task at hand. 
During training, these weights are learned and computed based on the 
similarity between the context vector and input samples in the attention 
mechanism.

2.4.2 Gating mechanism

The gating mechanism (Gu et al., 2000) describes how input 
data is processed using attention weights computed by an attention 
mechanism. This mechanism filters out noise or irrelevant details from 
input samples to focus on the most crucial information. It allows the 
model to selectively amplify or suppress certain parts through the 
gating mechanism.

Let’s consider, ith a set of input data sets (fi = f1, f2, ....fi), V be the 
context vector. The attention mechanism computes attention weights 
(Wi = W1, W2, .... Wi). The mathematical representation of the attention 
mechanism and gating mechanism are as follows:

W
exp e

exp e

i

i

j
i

�
� �

� �
�� 1

1 (8)

In equation (8), e
i
 is a compatibility score between the input element 

fi and the context vector denoted as (V). Using various methods, the 
score can be computed, such as cosine similarity, dot product, or by 
learned function. Once the attention weights are computed, the gated 
input f is obtained by modulating the input data f using the attention 
gate.

f W f
i i i
 = (9)

Finally, the gated input sample f is passed through the gating 
mechanism, which typically involves a sigmoid function to determine 
how much of the original input to let through:

y D f b f
i g i g i
� �� �� . .  (10)

where, D
g
 represented as weights and the bias parameters denoted 

as b
g
 of the gating mechanism and sigmoid activation function denoted 

as σ.

2.5 Grad-CAM

Gradient-weighted Class Activation Mapping, (Selvaraju et al., 
2017) (Grad CAM) is a technique used for visualizing image feature 
maps. It makes use of the gradients of a target concept that flow from 
the final convolutional layer. This technique produces a feature map 
localization, which highlights the affected or targeted areas for original 
image segmentation with its predicted and processed image mask. 
Let’s consider Vth as the feature maps of the final convolutional layer, 
denoted as Gd. In gradient computation, r is denoted as the score for the 
class. Therefore, nr with respect to the final convolutional layer feature 

maps Gd, defined as ∂
∂

n

n

r

r
. In the mathematical equation performed, 

the neuron importance weights a
d
r  with global pooling average on the 

gradients as follows:

a
M

n

G
d
r

i j

r

ij
d

�
�

�� ��
1

(11)

where (i,j) index the spatial dimensions of feature maps and (M) 
denoted as pixel numbers in the feature map.

The Weighted combination of the feature maps:

K ReLU a G
Grad CAM
c

k
d
r d

� �
�

�
�
�

�

�
�
�� (12)

Where to generate the heatmap K
Grad CAM
c

−  is the resulting upscaled 
to input sample size of images. Usually, in linear combinations of maps, 
the ReLU function is used to keep features. On the level of interest, this 
function has a positive influence.

2.6 Proposed network architecture

In Fig. 3(b), an encoder block consists of two functional components 
denoted as ( p

n
, c

n
), where p

n
represents the encoder output and 

c
n

 indicates the input to the block. The attention-gating block is 
represented as a

n
, while the decoding block is denoted as d

n
. Each 

of these blocks, encoding, decoding, and attention gating comprises 
convolutional layers, max-pooling layers, upsampling layers, and 
dropout layers, as illustrated in Fig. 3(a).

In detail, our proposed model consists of four encoding function 
blocks, each utilizing three repeated convolutional layers with a kernel 
size of 3x3, followed by a ReLU activation function. Each block also 
incorporates a 2x2 max-pooling layer with strides of 2x2 for down-
sampling. With each encoding step, the number of feature channels 
doubles. The first encoder block processes the input layer with a size of 
256 × 256 × 3, producing two outputs: p1 with dimensions of 128 × 128 
× 32 and c1 with dimensions of 256 × 256 × 32, enhanced by a max-
pooling layer and a dropout layer. The second encoder block further 
down samples the features, producing p2 with dimensions of 64 × 64 
× 64 and c2 with dimensions of 128 × 128 × 64, again including max-
pooling and dropout layers. Similarly, the third block outputs p3 with 
dimensions of 32 × 32 × 128 and c3 with dimensions of 64 × 64 × 128, 
while the fourth block generates p4 with dimensions of 16 × 16 × 256 
and c4 with dimensions of 32 × 32 × 256, both including max-pooling 
and dropout layers.

After the encoding process, the central encoding layer combines and 
processes the features, resulting in an output of size 16× 16 × 512. 
This serves as the input to the decoding path. The decoding process 
mirrors the encoding structure but operates in reverse to upscale the 
feature maps. The first decoding block integrates attention gate-1 and 
produces d1 with dimensions of 32 × 32 × 256. The second decoding 
block, connected via attention gate-2, outputs d2 with dimensions of 
64 × 64 × 128. The third decoding block, linked to attention gate-
3, produces d3 with dimensions of 128 × 128 × 64, and the final 



Muduli et al.� Journal of King Saud University - Science 2025 37 (2) 2802024

6

decoding block, connected through attention gate-4, generates d4 with 
dimensions of 256 × 256 × 32. The model concludes with an output 
layer of dimensions 256 × 256 × 1, representing the final single-channel 
feature map. The key hyperparameters of the proposed extended 
customized U-Net model play a crucial role in optimizing performance. 
The model utilizes ReLU and Softmax activation functions to introduce 
non-linearity and facilitate multi-class classification. A dropout rate of 
0.5 helps prevent overfitting, while a learning rate of 0.0001 ensures 
stable convergence. The model is trained with a batch size of 32 over 
25 epochs using the Adam optimizer for efficient weight updates. 
Additionally, the input image size is set to 256 × 256 × 3, ensuring 
consistent processing of skin cancer images.

3. Experimental Setup and Performance Evaluation

Our experiments were conducted on a MacBook Pro (Retina, 13-
inch, Mid 2014) with a 2.8 GHz Dual-Core Intel Core i5 processor, 8 GB 
1600 MHz DDR3 memory, and Intel Iris 1536 MB graphics. The system 
ran on macOS Big Sur version 11.7.10. We used the Anaconda Jupyter 
Notebook platform with Python version 3.12.4 for implementation. The 
proposed model was designed to be flexible, ensuring compatibility 
with various hardware and software configurations. We utilized the 
DermIS, DermaQuest, and ISIC (2016) datasets, which are discussed in 
detail in subsection 3.1.

3.1 Dataset and  preprocessing results

We have collected publicly available skin cancer images with 
their mask, and we customized the dataset corresponding in a serious 
alignment with each image with its mask index. A sample image with 
its mask has been shown in Fig. 4. In this paper, we used two datasets, 
the first dataset contained the images from both publicly available 
datasets named as DermIS and Dermaquest (Wen et al., 2022). We have 
considered a second dataset named ISIC-2016 (Cassidy et al., 2022). In 
our major dataset, we aligned each image with its respective index in an 
ascending order with its respective mask. Before training compilation, 
we processed our image data sample, resizing the image pixel size (256 
× 256) with a 3-channel feature colormap like RGB, grayscale etc. The 
data sample details for train test and validation have been described 

in a tabular format in Table 2. The dataset consists of melanoma and 
nonmelanoma are two categorical skin cancer images sampled with 
each of their masks.

3.2 Classification results

The results demonstrate outstanding performance with a 97.99% 
accuracy on a custom-collected image set from both DermIS and 
DermQuest datasets, reflecting the model's strong ability to accurately 
classify and segment skin lesions. Additionally, the model achieved 
91.75% accuracy on the ISIC-2016 dataset, further validating its 
robustness across various dermatological datasets. The graphical 
analysis of loss and accuracy graphs shows steady improvement during 
training, indicating the model's efficient learning process. These results 
highlight the effectiveness of the proposed deep learning approach, 
enhanced by attention mechanisms and advanced encoding-decoding 
techniques, in achieving high precision in skin cancer detection.

3.3 Performance metrics and evaluation

In the context of evaluating the performance of U-net architecture, 
three key matrices are considered as Accuracy, loss, and IoU (Intersection 
over Union) over train and validation dataset to analyze the model 
prediction performance over the test case sample and the differences 
between train and test performance comparison. The accuracy metrics 
measure the proportion of correct predictions according to the model 
performance evaluation where the loss measures how well the model 
prediction matches the actual labels. In the scenario of IoU (Intersection 
over Union), which alternate name the Jaccard index (Bouchard et al., 
2013), evaluates overlapping between the predicted segmentation and 
the ground truth. Between the true map, it calculated the area of overlap 
that is divided by union area. In Fig. 5(a),  we plotted our extended 
deep U-net model performance over DermIS and DermQuest Dataset 
discussed in subsection 3.1 and in Fig. 5(b) over ISIC(2016) dataset 
in a graphical representation where the y axis represents the values of 
performance in percentage and the X-axis represent the number of epoch 
in every subfigure as follow: Subfigure-(a) represents the loss function, 
Subfigure-(b) represent the accuracy curve and Subfigure-(c) represent 
the Intersection over Union (IoU) curve, collectively demonstrate 

Fig. 4. Some images and each image’s mask of melanoma and nonmelanoma data sample of DermIS and DermQuest Dataset. DermIS: Dermatology image search, DermQuest: 
Dermatology quest.
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segmentation and classification. These improvements validate the 
robustness and superior performance of our proposed approach over 
existing methods.

4. Discussion

In this study, we performed skin cancer lesion classification using 
a customized extended U-Net architecture, incorporating encoding-
decoding blocks and attention-gating mechanisms to enhance feature 
extraction and localization. Our model operates bidirectionally, 
effectively classifying melanoma and nonmelanoma lesions while 
simultaneously segmenting the classified images for precise lesion 
boundary detection. The integration of attention gates improves 
focus on relevant regions, leading to more accurate segmentation 
results. By leveraging the extended U-Net framework, our approach 
ensures a comprehensive and efficient analysis of skin cancer images, 

Table 2.  
Number of sample dataset distribution with train test split and accuracy rate 
in percentage.

Dataset Melanoma Non­
melanoma

Total 
sample

Train 
set

Test 
set

Model 
accuracy

DermIS and 
DermQuest images

93 87 180 144 36 97.99

DermIS and 
DermQuest masks

93 87 180 144 36 97.51

ISIC (2016) 1279 - 1279 900 379 91.75

ISIC (2016) 1279 - 1279 900 379 92.75

DermIS: Dermatology image search, DermQuest: Dermatology quest, ISIC: 
International skin imaging collaboration.

Table 3.  
Comparison of our proposed models with other existed models.

Existed method Classifier used Accuracy (%)

Badrinarayana et al. (2017) SegNet 91.70

Alom et al. (2019) RU-Net & R2U-Net 96.34

Turukmane et al. (2023) U-Net 91.00

Anand et al. (2023) U-Net 97.96

Bindhu et al. (2023) MFO-Fuzzy U-Net 97.57

Naveena et al. (2024) U-Net 96.00

Proposed model Extended U-Net 97.99

Bold denotes proposed model related information. RU-Net: Recurrent U-Net, R2U-
Net: Residual recurrent U-Net, MFO-Fuzzy U-Net: Multi-objective optimization fuzzy 
U-Net, SegNet: Segmentation network.

(a)

(b)

Fig. 5. Graphical analysis of the proposed model's performance across different datasets. (a) Illustrates the performance metrics on the ISIC (2016) dataset, while (b) Depicts the 
results on the DermIS and DermQuest datasets. These visual representations provide a comparative evaluation, highlighting the model's effectiveness in skin cancer classification 

across diverse datasets. DermIS: Dermatology image search, DermQuest: Dermatology quest, ISIC: International skin imaging collaboration.

the model's strong performance, showcasing effective learning, high 
classification accuracy, and precise segmentation capability.

3.4 Comparison with existing methods

Table 3 presents a comparative analysis of our proposed 
extended U-Net model against existing methods for skin cancer 
classification and segmentation. While previous models such as 
SegNet (Badrinarayanan  et  al., 2017), U-Net variants (Turukmane 
et al., 2023; Anand et al., 2023), and MFO-Fuzzy U-Net (Bindhu and 
Thanammal, 2023) have achieved high accuracy, our extended U-Net 
model outperforms them with an accuracy of 97.99%. Compared to 
Anand et al. (Anand et al., 2023) (97.96%) and Bindhu et al.(Bindhu and 
Thanammal, 2023) (97.57%), our model achieves a slight but significant 
improvement, demonstrating its effectiveness. The incorporation of 
advanced encoding-decoding blocks and attention-gating mechanisms 
enhances feature extraction and localization, leading to more precise 
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Fig. 6. Grad-CAM visual explanations of predicted data samples, highlighting the model's focus areas for skin cancer classification. (a) Illustrates results on our customized 
DermIS and DermQuest datasets, while (b) Showcases predictions on the ISIC (2016) dataset. (c) and (d) Compare the original, predicted, and processed masks for melanoma and 
nonmelanoma classifications. Specifically, (c) Visualizes these masks for the DermIS and DermQuest datasets, whereas (d) Focuses on melanoma predictions within the ISIC (2016) 

dataset. These visualizations provide insights into model interpretability and segmentation accuracy. Grad-CAM: Gradient-weighted Class Activation Mapping, DermIS: Dermatology 
Image Search, DermQuest: Dermatology Quest, ISIC (2016): International Skin Imaging Collaboration (2016).

(a)

(c)

(b)

(d)
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demonstrating superior performance in both classification and 
segmentation tasks.

4.1 Analysis of experimental results

Guided grad-cam (GCAM) and GCAM++ are the visualization and 
image segmentation techniques used to understand and interpret the 
process of decision-making. A feasible system of our proposed extended 
U-net segmentation model provided Original mask, Predicted mask, 
and Grad-CAM visualization in Fig. 6(a) over DermIS and DermQuest 
(Skin cancer images with Masks) data samples and in Fig. 6(b) over 
ISIC(2016) data samples. Fig. 6(c) illustrates the original, predicted, 
and processed masks for melanoma and NMSC images, highlighting 
the segmentation effectiveness on the DermIS and DermQuest datasets. 
Fig. 6(d) focuses specifically on melanoma skin cancer, showcasing the 
original, predicted, and processed masks from the ISIC (2016) dataset, 
demonstrating the model's precision in identifying affected regions. 
In the context of image classification tasks, these techniques are used 
to identify a certain area to capture the highlighted area of an input 
image sample which contributes the most to the network prediction. 
After computation, the gradient, as claimed by the predicted level score 
Grad-CAM, generates a heat map with respect to the feature maps of the 
last convolutional layer, which contain the same input height and width 
but might be, with different channel numbers. In Table 3, we compare 
our extended U-net model with other existing models in detail, those 
used in the medical section on the subject of image segmentation and 
visualization.

4.2 Challenges and future works

Our proposed extended U-Net architecture achieves an impressive 
97.99% accuracy in classifying melanoma and non-melanoma skin 
cancer, demonstrating its robustness. The integration of Attention 
Gates enhances feature selection by focusing on critical lesion regions, 
improving segmentation precision. Skip connections help retain spatial 
information, while image augmentation boosts model generalization. 
However, despite its high accuracy, the model has limitations. It may 
struggle with highly imbalanced datasets, leading to potential bias 
toward dominant classes. Additionally, the computational cost is 
higher due to complex attention mechanisms and deep encoder-decoder 
pathways. Future improvements can focus on optimizing inference 
speed and handling rare, ambiguous lesion cases more effectively. 
Future advancements in skin cancer detection should address key 
challenges such as dataset biases, model generalizability, and real-world 
applicability. Many datasets contain imbalanced distributions, where 
non-melanoma cases outnumber melanoma cases, potentially leading 
to biased predictions. Enhancing data diversity with multi-source data 
sets can improve robustness. Additionally, while our extended U-Net 
with Attention Gates achieves 97.99 % accuracy, its performance 
may vary across different demographics, imaging conditions, and skin 
types. Deploying the model in real-world clinical settings requires 
careful validation, handling of noisy images, and integration with 
dermatological workflows. Future research should explore lightweight 
architectures for faster inference, domain adaptation techniques for 
broader generalization, and AI-driven decision support systems to assist 
dermatologists in early and accurate skin cancer diagnosis.

5. Conclusions

This research’s advancements in AI for skin cancer early 
detection have significantly contributed to medical dermatology. 
First, the classification and segmentation of skin lesions have been 
improved through deep learning techniques, ensuring a more precise 
differentiation between malignant and benign lesions. The integration 
of attention mechanisms allows the model to focus on critical regions 
within the images, enhancing detection accuracy and reducing false 
negatives. By enhancing the proposed extended U-Net with advanced 
encoding-decoding techniques, multiscale feature extraction is 
achieved, improving the model's ability to detect intricate details and 
boundaries in skin lesions. The visual explainability methods, such 
as Grad-cam and heatmaps, further contribute by providing insights 

into the decision-making process of the AI, ensuring transparency 
and fostering trust. Future work includes refining these models for 
generalization across diverse datasets, incorporating multi-modal data, 
and expanding to include other dermatological conditions for broader 
diagnostic applications, thereby advancing personalized patient care.
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