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1. Introduction
* Corresponding author.

E-mail address: fmerovci@yahoo.com (F. Merovci). Recently, several attempts have been established and studied to
Peer review under responsibility of King Saud University. define new models that extend the baseline distributions. Burr
(1942) introduced twelve distributions using differential equation.
Burr type X with one parameter (BX1) and Burr type XII distribu-
tions have received much attention in the literatures. Surles and
Padgett (2001) proposed a new extension for Burr type X one
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parameter by adding scale parameter named Burr type X with two
parameters or Burr type X (BX) distribution. Many authors have
studied widely BX distribution and applied them in different areas
such as Burr (1942), Merovci et al. (2016),Ragab and Kundu (2006),
Shayib and Haghighi (2011) and Merovci et al. (2016) and many
others. The cumulative distribution function (cdf) of BX is given by:

Fn ) = [1-e ]’ y>00>0 (1)

and the probability density function (pdf) of the BX distribution cor-
responding to the (1) is:

9-1
fxn,9) =209 2 xe™ ™’ [1 - e*(”")z] x>0n>0,7. 2)

The hazard rate functions h(x) of the BX distribution is:

¥-1

and the r th moment for BX distribution is given as:

TN _ (r)_ﬁ I OC<79_]) (71)k
EX)=n 7]/’rl"(2+1)k2:(:) k) (k+1)F"

Many families have been established in recent years, Eugene
et al. (2002) proposed and study a general class of distributions
based on the logic of a beta random variable named Beta-G family
distribution and added two shape parameters. Zografos and
Balakrishnan (2009) and Ristic and Balakrishnan (2012) used
gamma class of family. In Cordeiro et al. (2013) proposed the Expo-
nentiated Generalized (EG) class of distribution with two extra
shape parameters. The term of “Exponentiated” and “Generalized”
are mean the process of transforming a quantity to some positive
real number. The new class of distribution gives more flexibility
for the baseline of distribution. The cumulative distribution func-
tion of EG is given by:

G0 p) = {1-[1—Fx)"}, «>0,8>0, 3)

and the probability density function of the EG distribution corre-
sponding to the (3) is:

g(x;0, B) = oaff(x)[1 — F) " {1 - [1 - Fx)"}"". (4)

The first motivation is based on the two extra shape parameters
(o, B) of EG family which place a very important role in generating
a distribution with heavier tail. The second motivation is the EG
family can be applied more effectively on censored incomplete
data because its more tractable the beta-G family. Therefore, the
new model can analyze continuous univariate and multivariate
sets.

In this paper, we propose a new extension of Burr type X distri-
bution with more flexibility than the baseline (2). The new distri-
bution can be applied to different kind of data because the three
shape parameters can control the tail of data. The new distribution
has more sub-models when compared with baseline distribution
and hence it allows us to study more comprehensive structural
properties.

Thus, the aims of this work are to explore and study the math-
ematical properties of the new distribution, which is an extended
BX distribution and to prove the new model is more flexible than
other models by applying it to real data using a goodness of fit test
for real data.

The rest of this paper is arranged as follows: In Section 2, The
cumulative function, density function and hazard function of the
new distribution are defined. The expansion including the pdf
and cdf are provided in Section 3. In Section 4, some mathematical
properties of the new model are studied and discussed, such as the
quantile function, limit behavior, the r th moment, the moment-

generating function, Rényi entropy and order statistics. The param-
eters of new distribution are estimated using the maximum
likelihood method in Section 5. In Section 6, two real datasets
are used to illustrate the usefulness of the new model. Finally, con-
cluding remarks are presented in Section 7.

2. Exponentiated Generalized Burr type X

In this section, the four parameter Exponentiated Generalized
Burr type X (EGBX) distribution is examined. Several authors have
used the EG method to study and explore many distributions.
Exponentiated Generalized Inverse Weibull (EGIW) distribution is
proposed by using the cdf of Inverse Weibull distribution. In
Oguntunde et al. (2015) used the cdf of Weibull distribution to pro-
pose the Exponentiated Generalized Weibull (EGW) distribution by
applying the Eq. (3). Andrade et al. (2015) used cdf of Gumbel dis-
tribution to find a new generalization of Gumbel distribution
named Exponentiated Generalized Gumbel (EGGu) distribution.

Let F(x) be the cdf of Burr type X distribution. Inserting (1) in (3)
we have the cdf of the new extension of Burr type X distribution
named Exponentiated Generalized Burr type X (EGBX) distribution
as given in Eq. (5)

2y o\ B
G(x;a,ﬁ,r/,ﬁ):(l—{l—[l_e%wzr}), «a>0,>0, (5

where «, 8,9 > 0 are three shape parameters and # > 0 is scale
parameter. The corresponding pdf of (5) for the EGBX distribution
is written by:

-1

-1 9
g(x;0, .17, 9) = 209 xe 1’ [pe*"’oz] {17[17(%2} }

X (1 - {1 - [1 e<'7><)2]”}“>/f1
(6)

X ~ EGBX(a, B,1,9) denotes a random variable with the pdf (6).
The hazard function h(x; o, 8,1, 9) of X is given by:

-1

h(x;0, B.0,0) = 2apy*9xe ™’ [1 - e*“mz}

oo} froe )
p(p{p[pe—w} } )

The survival function S(x; «, 8, 1,9) of X is given by:

p-1
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Fig. 1. Plot of the EGBX density function for different values of o, 8,1 and ¥.
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Fig. 2. Plot of the EGBX cumulative function for different values of «, 8, and 9.
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Fig. 3. Plot of the EGBX hazard function for some different values of of «, 8, and 9.

S0 B 9) = 1 — (1 - {1 -1~ efwxfr}i)ﬁ.

Figs. 1 and 2 display a variety of possible shapes of pdf and cdf
of EGBX distribution for selected values of parameters «, 8, #, and 9.
In Fig. 3. the hazard function of the EGBX distribution are shown
and it can be seen that the hazard function can take many different
shapes like bathtub,inverted bathtub and monotonically increasing
or decreasing depending on the parameter values and a such can
be useful for modeling different types of data.

Table 1
Summery of sub-models.
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2.1. Sub-models

It is worth noting that many sub-models can be obtained as
special cases of the EGBX distribution by selecting specific values
of parameters in Eq. (6). such as Exponentiated Generalized Ray-
leigh (EGR), Exponentiated Generalized Burr type X with one
parameter (EGBX1), Generalized Burr type X (GBX), Generalized
Burr type X with one parameter (GBX1), Exponentiated Burr type
X (EBX), Exponentiated Rayleigh (ER) distributions and others dis-
tributions. Table 1 summarize some sub-models of EGBX distribu-
tion by equit the parameters to number 1.

3. Expansion of pdf and cdf

In this section, expansion for the pdf and cdf of the EGBX distri-
bution are derived, which are useful to study several statistical
properties of EGBX distribution. The generalized binomial is used
to find the expression of the pdf and cdf. For any positive real
non-integer w > 0, the generalized binomial is giving by (see
Jeffrey and Zwillinger, 2007):

-2 =3 ()

i

(7)

where |z| < 1.
by repeated application of the generalized binomial to Eq. (6)
we obtain the Eq. (6) of EGBX:

g(x; 0, B,17,9) = 20 Ox Wi PRLE [1 - e*"”z]ﬁ OHH, (8)
where
e BTN fafie 1)~ 1
o _ 1\t
wy =550 () ()

i=0 j=0

Eq. (8) can be expressed as an infinite weighted linear combina-
tion of Burr type X (#,9(; + 1)) distribution random variable.

The expansion of cdf can be found by applying the binomial
expansion also twice for positive real number and we have:

aosanpn) =3 S50 (7 1) (5) -]

i~0 j=0 J

)

Egs. (8) and (9) would be useful in deriving some mathematical
properties of the EGBX distribution like the moments and moment
generation function directly.

4. Mathematical properties

In this section, some important mathematical properties of the
EGBX distribution are explored, specifically the quantile function,
limit behavior, the rth moment, the moment-generating function,
Rényi entropy, and order statistics.

Parameters

Distribution

n 4

Exponentiated Burr type X (EBX)

Exponentiated Burr type X with one parameter (EBX1)
Exponentiated Rayleigh (ER)

Generalized Burr type X (GBX)

Generalized Burr type X with one parameter (GBX1)
Generalized Rayleigh (GR)

Burr type X(BX)

Burr type X with one parameter (BX1)

Rayleigh (R)

_ e e e e

_m el =
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4.1. Quantile function

Quantile function (qf) of continuous distribution are usefull in
many application like Bowley’s skewness and Moor’s kurtosis
and generated frequency of occurrence of the distribution.

The cdf of the EGBX distribution (5) is inverted to obtain the qf
which is given as follows:

(rafr- o)
x=Q(u) = : (10

n

In particular the EGBX median of X is Q(3).

Simulating the EGBX random variable is straightforward if U is a
continuous uniform variable on the unit interval (0,1). By using
the inverse transformation method, the random variable X is given
by:

1

) <log{1 {1—(1—%)1 }) | .

- 0
Eq. (11) is used to generate random numbers from the EGBX
distribution when the parameters o, 8,7 and ¥ are known.

4.2. Limit behavior

In this sub section, we investigate the limit behavior of the pdf
of EGBX distribution as x — 0 and x — co.
The

limg(x; o, §,1,9) = 0,
X—
because

; _ e _
lim(1 - ") =0
the

limg(x; o, ,1,9) = 0

because

im(e ) <o

4.3. Moments

In this sub section, we try to find the r th moment for EGBX dis-
tribution. Moments are very necessary and significant in any statis-
tical analysis, especially for application studies. Several important
features can be studied using moments, such as mean, median,
tendency, skewness and kurtosis. The rth moment for EGBX can
be defined as:

= [ ¥goponvjax (12)
0
Using the pdf of the EGBX distribution in Eq. (8) gives:

W =20 pn* I Wi /OO X1 e [1 - e’“”‘)Z]WH)il
0

dx, (13)

where

-G )

Since

I(j+1)-1

0< [1 - e*("")z] <1
. . . . 2790+1)-1
for all x > 0, and the binomial series expansion of [l —e ]

and some algebra, the r th moment can be written in the following
form:

Ex) = p = PTG D 2 S0
k=0

(_1)k
(k+1)="
(14)
where
Wij = m(*l)iﬁ(ﬁ_'])c(”'l)i])'
ij=0 ! J
if « = p=1 from (14) we have:
. O T < 9-1\ (=1
E =pu"=—T(5+1 ( )7,
X)=n nr (2+ )kz:; k (k+1)z+1

this is the r th moment for Burr type X distribution which is given
by Surles and Padgett (2001) with parameter # and 4.

Eq. (14) is also important for finding many measures, such as
the mean, coefficient of central moments, variance, cumulants,
skewness and kurtosis, or anthers properties. Setting r = 1 in Eq.
(14) gives the mean of X. Similarly, the central moment (u,) and
the cumulants (x,) of X are obtained from (14) as:

L n i !
1, :Z<q>(—l)quf’umq
and
ln-1
SRS S G SIS
= \d—

respectively, where Ky = [, Ky = y — W2, K3 = py — 3o + 2143,
and

Ka = [y —4pspty — 302 + 12512 — 6}, The Coefficient of
variation (CV), Skewness (Si), and Kurtosis (K, ) can be determined
from the above forms as:

o= 21 51 and K, =%
My K2 K3

respectively. Furthermore, Eq. (14) can be used to find the moment-
generating function (mgf).

4.4. Moment generating function

Theorem 1. The moment generating function for EGBX distribution is
given by:

&S Wi t"9apl (24 1) IGi+1) -1\ (=1
w0 =3 e (T )
(15)

m=0

where

Wo=3 (*U”J#m(ﬂ;])(“(i+'1)*1).

ij=0 J

Proof. The well-known definition of Mx(t) for the random variable
X starts with probability density function g(x; «, 8, ,9) given by:
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E(e®) = Mx(t) = /0oc et*g(x; o, B,1,9)dx.

By using the representation

m=0
Then
[e ] tm o0
M) = > [ w0y d
m=0""""*

(see Jeffrey and Zwillinger (2007)), and by using the Eq. (14), M(t)

is found as follows:
1) IG+1) -1\ (=1)*
> K e ET
k>0 (k+1)

Wi Mo T (2 +

m=0

where

Wi — i(—nf“*’"(ﬁ; 1) (“(”j” -1 )

ij=0

which completes the proof. O

4.5. Rényi entropy

Rényi entropy is a measure of variation or uncertainty of ran-
dom variable. It is a very popular entropy measure in many fields
of science such as engineering, theory of communication, and

probability. The Rényi entropy for a random variable with pdf of
EGBX distribution is as follows:

IR(C):ﬁlog (/Omgg(x)dx>ﬁ>o,g“7él. (16)

let

g (%00 B, 9) = (2upn?0) Kt {17[1—((’7")2]#} '

* [1 - e*“i")z]ng <1 - {] - [1 - e*(mc)z]ﬂ}“y/’*i7

(17)

using binomial expansion thrice in (17) we obtain:

(Zaﬁnzﬁ)gz Wx: e

gt (x;0, B,1,9) =

where

o ik (C(B—=1 oi+ (-1 Ok 4+ (0 -1
Wk:uz(:)(l)+j+k<@(ﬁi ))( g; ))( C’(< )).
after some algebra we have Rényi entropy as:

(0 = 1 log (( s T(57) f; ;> (18)
where

W, i(_l)i+j+k<C(ﬁi—1)> <oci+£('0€— 1)) (9k+«:’(<9— 1>>.

ij=0 J

Eq. (17)is the main result in this subsection and it is very important
to find some kinds of entropy such as Shanon entropy and q-
entropy.

4.6. Order Statistics

In this subsection, we drive the order statisics of EGBX distribu-
tion. Let Xq.,,X>,...,X, be a random sample from EGBX and let
Xin < Xom < ... < Xun be the corresponding order statistics. The
pdf of ith order statistics X;, is given by:

gr) L meiy
) )Z<—1)1< . )(G(x))f - (19)

8inX) = g iy
Blin—i+1)= j

inserting Eqs. (5) and (6) in (19) and using binomial expansion
twice we have:

o 2uppP & " e a(l+1)-1
gi:n(x) = l n—i T .1 ZW xe (n { N } , (20)
where
W, = 22(71)”,{”(@) (ﬁ(lﬂ) - 1) (cx(k+ 1H-1 )

=0 k=0 ] k [

The Eq. (20) is the main result, based on this equation we can obtain
several structural properties of X;,. For example, the r th moment of
Xin, the pdf of the smallest order statistics X1.,, and the largest order
statistics Xy.n.

5. Parameter estimation

In this section, the unknown parameters of the EGBX distribu-
tion are estimated using the method maximum likelihood
estimation.

5.1. Maximum likelihood function

Let Xq,X2,...,X, be a random sample of size n from the EGBX
distribution with parameter «,f,nand ¢. The logarithm of

likelihood function for vector of parameters ¢ = («, 8,1, 19)T is given

by:

In(L) = nln (xpn?v) — anl +Zlnx,

=1

+ (0 - 1)zn: In [1 - e—wxnz}
a—1) Zln{l — [ _ e tm) }”}
(B 1); In (1 - {1 - [1 76,“7)‘)2]0}“) 21)

The first partial derivative of the log likelihood function with
respect the vectors of parameters and by equating the derivative
to zero, we obtain:
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oln(L) _2n " 2px2e=(1)’
- 2 x +(W-1 _—t
on 11 le: " )Z 1—e-x)?

-1
n 219]’[}(1.26’(’7"0 {‘1 _e~(nx) }

P {1,[17 (%) ]v}
n 2(119119*(’“")2)(,?{1 - [1 —e*(”x:)z]u}oH (1 _efwx,vﬂ)”*l

+(x—1)

-(B-1) 7
=] (1 —{1 -1 —e*(vmz]d} )
(24)
and
al;;” = §+ ‘n In {1 - e’(’“fq

+ (o — 1)2”: [] —e <'7X,)z]ﬁ In {1 _e (w,)z}

i1 1- [1—e 'Mz]u

1 e (nx.) "In [1 _ e—(nmz]

9 o
e*(nx,)z]v} )

(25)

n oc{l— 1—e (nx)?

)1
(e )

-(B-1)

=0

Note that Eqgs. (22)-(25) its very difficult to solve analytically.
However, there is a range of statistical software that can be used
to maximize the likelihood function by using for example the Pack-
age in R (AdequecyModel). Also, solving can be done numerically
using iterative methods such as the Newton-Raphson method for
interval estimation of the model parameter.

5.2. Simulation study

Next, we conducted a small simulation study based on 1000
replications to evaluate the performance of Maximum Likelihood
Estimation (MLE) of the parameters of EGBX distribution. We took
u as a Uniform random variable in (0,1) and set
n = 10,20,30,50and 100. We computed the mean of 1000 replica-
tions of the estimations, Biases and mean squared errors (MSEs) for
the parameters are setl «a =4,8=2,2=>5.5 and 0 = 1.5 and set2
o=22,=3,2=2.5 and 0 = 4. The simulation results are listed
in Table 2. From Table 2 we find that the bias and MSEs of the esti-
mation parameters decrease toward zero when the sample size
increase as we expected. Also the Average of MLEs (AVE) of param-
eters tend to be close from true value of parameter when n is
increasing.

6. Application to real data set

In this section, we consider a real data set to illustrate the
potentiality of the new model. The real data set from Smith and
Naylor (1987). consist of 63 observations of strengths of 1.5 cm
glass fibers, originally obtained by workers at the UK National Phy-
sics Laboratory. We estimated the unknown parameters for each
distribution using the method of maximum likelihood. We com-
pare the fit of the EGBX distribution with sub-models such as
Exponentiated Generalized Rayleigh (EGR), Burr type X (BX) and
non-nested Beta Burr type X with one parameter (BBX1) distribu-
tions. In order to select the best model we used criteria like Log
Likelihood (I), Akaike information criterion (AIC), corrected Akaike
information criterion (AICC), and Bayesian information criterion
(BIC) statistics which are defined as fellows,

Table 2
Average of MLEs (AvE), Bias and mean square errors (MSE) for different parameter values.
Set1
a=4 B=2
n AVE Bias MSE AVE Bias MSE
10 4.2992 0.2992 1.5696 2.4553 0.4553 1.8187
20 4.1800 0.1800 0.8983 2.2736 0.2736 1.0245
30 41415 0.1415 0.5722 2.1690 0.1690 0.6359
50 41020 0.1020 0.5060 2.1299 0.1299 0.4361
100 4.0859 0.0859 0.2981 2.0799 0.0799 0.1696
4=55 0=15
n AvE Bias MSE AvE Bias MSE
10 6.0623 0.5623 1.9740 1.8415 0.3415 0.6041
20 5.7954 0.2954 0.8152 1.6659 0.1659 0.2368
30 5.6642 0.1642 0.4514 1.6011 0.1011 0.1353
50 5.6058 0.1058 0.5060 1.5548 0.0548 0.0810
100 5.5236 0.0236 0.2981 1.5134 0.0134 0.0298
Set2
=22 p=3
n AvE Bias MSE AvVE Bias MSE
10 2.8274 0.6274 2.5306 3.5582 0.5582 3.4377
20 2.5143 0.3143 0.8748 3.3404 0.3404 1.6914
30 2.4392 0.2392 0.5881 3.1278 0.1278 1.1501
50 2.3416 0.1416 0.3354 3.1132 0.1132 0.6965
100 2.2433 0.0433 0.1245 3.0954 0.0954 0.4137
=25 =4
n AvVE Bias MSE AvE Bias MSE
10 2.5460 0.0460 0.0870 4.7533 0.7533 3.0079
20 2.5267 0.0267 0.0492 43928 0.3928 1.2864
30 2.5109 0.0109 0.0366 43578 0.3578 0.9056
50 2.5082 0.0082 0.0242 4.2000 0.2000 0.4680
100 2.5035 0.0035 0.0125 4.1016 0.1016 0.2837
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Table 3
The ML estimates, [, AIC , AICC, and BIC for data set
Model ML Estim I AIC AlCC BIC
EGBX 6=47.826 14.963 37.92 38.61 46.49
B =0.4467
i1 =0.5054
)=6.6110
EGRe & =0.9869 23.928 53.85 54.26 60.28
B =5.4860
i1=0.9870
BBX1 4=79.7074 21.6064 48.012 48.4196 54.442
B=0.0797
J=2.9480
BX il = 0.9869 23.928 51.857 52.057 56.143
J =5.4859
EGBX where k is the number of parameters in the statistical model, n
EGRe the sample size and [(.) is the maximized value of the log-
o | BBX1 likelihood function. Smaller values of these statistics indicate a
- etter fit.
BX better fit
The results of model fitting are listed in Tables 3. According to

/)
Z

f(x)

0.5

0.0

0.5 1.0 1.5 2.

— XQ

Fig. 4. Estimated densities of four models fitted to data.

0.5 1.0 1.5 20

Fig. 5. Estimated CDFs for data set.

AIC = =21+ 2k,

AICC = AIC + M,
n—-k-1

and

BIC = -21+ klog(n),

the criterion AIC,AICC, and BIC, we found that EGBX distribution
is the best fitted model than the sub models EGRe, BX and non
nested BBX distributions for the strengths of 1.5 cm glass fibers
data set. So, the EGBX model could be chosen as the best model.

The 95% confidence intervals for &, 3,77 and J are [-81.239,
179.981], [-0.0186, 0.91212], [0.1729, 0.8380] and [-0.8181,
14.0402] respectively.

The histogram of strengths of 1.5 cm glass fibers data set and
the estimated PDFs, CDFs for the fitted data model are displayed
in Figs. 4 and 5 which are the fitted histogram comparing the
new propose model EGBX with its sub-models. It is clear from
Tables 3 and Figs. 4 and 5 thatthe EGBX provides a better fit to
the histogram and therefore it could be chosen as the best model
based on the dataset used, because in histogram graph any model
with the highest peak is the best one among others.

7. Conclusion

In this study, a new four-parameter model was proposed and
studied, called the Exponentiated Generalized Burr type X, which
is an extension of the Burr type X distribution and many others dis-
tribution as a sub-models. The cumulative function and the proba-
bility density function of EGBX were expressed as a mixture of BX
distribution with different parameters. It was observed that the
hazard function has various shapes, such as increasing, decreasing
and bathtub. Several of its mathematical properties were derived
such as the quantile function, limit behavior, moments, moment-
generating function and the Rényi entropy and order statistics.
The unknown parameter was estimated using maximum likelihood
function. Simulation study is carried at under varying sample size
to assess the performance of this model. Finally, numerical exam-
ples were presented in order to demonstrate the usefulness of the
new model with real data set. The EGBX distribution provides a
better fit than other sub-models.
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