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In this research, new operational method based on Genocchi polynomials for numerical solutions of non-
linear fractional differential equations (NFDEs) is proposed. The Genocchi operational matrix of fractional
derivative is first constructed by using some important properties of Genocchi polynomials. These oper-
ational matrices together with the collocation method are used to reduce the NFDEs into a system of non-
linear algebraic equations. The error bound for this proposed method is shown. Some examples are given
to display the simplicity and accuracy of the proposed technique.
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1. Introduction
In this article, we consider NFDEs of the form:

Dmiyn(x):fn(xyylvyz-"'vyn)v (1)

where, D% is the fractional derivative of order «; in Caputo sense
and o; is an arbitrary order, subject to initial conditions
y(0)=d;,i=1,2,---,n.

Fractional calculus as a generalization of integer order differen-
tiation and integration to an arbitrary order or fractional order, has
been the focus of many studies because it was proved to be more
realistic in modeling many physical phenomena. Modeling and
simulation of systems or processes by using fractional derivatives
will lead to the formation of fractional differential equations
(FDEs). Naturally, these FDEs are difficult to solve. Hence, numeri-
cal methods are always needed. The numerical methods for solving
FDEs are including the Adomian decomposition method (Hosseini
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and Abbasbandy (2015)), variational iteration method (Jafari
et al. (2014, 2015)), homotopy perturbation method (Odibat,
2011; Johnston et al., 2016) and predictor-corrector method
(Diethelm et al., 2002). On top of that, the idea of approximating
the solution of FDEs using a family of basis functions is now being
widely used. The most commonly used functions include block
pulse functions (Mollahasani et al., 2016), Legendre polynomials
(Bhrawy et al., 2016), Chebyshev polynomials (Sweilam et al.,
2016), Laguerre polynomials (Giirbiiz and Sezer, 2016) and etc. Dif-
ferent than the previous studies, in this research, we use a semi-
orthogonal polynomial which also is an important member of
Appell polynomials called the Genocchi polynomials. This Genoc-
chi polynomials share some sound advantages with other mem-
bers such as Bernoulli polynomials, over other classical
orthogonal polynomials when approximating an arbitrary func-
tion. These advantages are stated in Loh et al. (2017) and Isah
and Phang (2016). Motivated by these advantages, we attempt to
introduce a new operational matrix of fractional order derivative
based on Genocchi polynomials to provide approximate solutions
of NFDEs (1) through collocation method. In this research direc-
tion, some numerical schemes involving operational matrix of
non-orthogonal or semi-orthogonal polynomials had been devel-
oped for solving fractional calculus problems, which including Ber-
noulli polynomials (Keshavarz et al., 2016), Fibonacci Polynomials
(Abd-Elhameed and Youssri, 2016), Lucas polynomials (Abd-
Elhameed and Youssri, 2016), Boubaker Polynomials (Bolandtalat
et al., 2016; Rabiei et al., 2016). Here, we compared our results
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with existing standard results to clearly demonstrate the simplic-
ity, applicability and accuracy of our method.

The rest of the paper is organized as follows: Section 2, intro-
duces some preliminaries of fractional calculus. In Section 3,
Genocchi polynomials and their important properties, arbitrary
function approximation and error bound are discussed. In Section 4,
we derive the Genocchi operational matrix of fractional order
derivative, whereas the collocation method is applied to solve
NFDEs using the Genocchi operational matrix of fractional deriva-
tive in Section 5. In Section 6, the proposed method is applied to
some examples. Finally, Section 7 concludes the paper.

2. Preliminaries
2.1. Fractional derivative and integration

Here, we give a recap of some definitions and properties of frac-
tional calculus that are used in this article. There are many defini-
tions for fractional differentiation (Kilbas et al., 2006; Podlubny,
1998). The Riemann-Liouville definition has certain disadvantages
when it comes to modelling a real-world phenomenon (Kilbas
et al., 2006). However, the Caputo’s definition is more reliable in
application. However, the most often used definition of fractional
order integral is the Riemann-Liouville integral, in which the frac-
tional integral operator I of a function f(t) is defined as:

Definition 1. The Riemann-Liouville fractional integral of order o«
of f(t) is given by

I*f(t) = 1 ] /0r (t—1)"'f(t)dt, t > 0,00 € R* )

T(2)

where I'(.) is the well known gamma function. The Riemann-Liou-
ville fractional derivative of order o > 0 is also defined by

(DIf)(t) = (%)m(l'”’“f)(t), (x>0, m—-1<a<m)
Some properties of I* are as follows:

PIPf(t) = If(t), « >0, >0 (3)
ap  L(B+T) 4,
P =t @

Definition 2. The Caputo fractional derivative D* of a function f(t)
is defined as:

1 © ")
F(n - OC) /(; (t _ ,L.)oc—nﬂ df, n—

Below are some properties of Caputo fractional derivatives;

D*f(t) = l<agn neN. (5

D*C=0, (6)
where, C is a constant.
0, feNU{0} and B < [o]
D'th = ¢ it peNU{0}and f >
and > |o],

[o] orp ¢ N

(7)

where, |a] denotes the largest integer less than or equal to o and
[a] is the smallest integer greater than or equal to o.
The operator D” is a linear operator, since,

D*(3f (t) + pg(t)) = AD°f(t) + uD*g(t) 8)
where 2 and y are constants.

3. Genocchi polynomials and some properties

Genocchi numbers and polynomials have been widely studied
in a wide range of settings in many branches of mathematics such
as elementary number theory, complex analytic number theory,
homotopy theory, differential topology (differential structures on
spheres) and quantum physics (quantum groups). The Genocchi
numbers G, and polynomials G,(x) are usually defined respec-
tively, by means of the exponential generating functions (Araci,
2012; Araci, 2014; Bayad and Kim, 2010).

2t - t"

Q) =g = LGy (<) 9)
2 Xt 00

Q(t,x) eft-il Zc (t| < ) (10)

where G,(x) is the Genocchi polynomial of degree n and is given by

n n
Gn(x) = Gp_iX (11)
> (i)
Gn_k here is the Gennochi number which can also be obtained from
G, =2(1-2"B,, (12)

where B, is the well-known Bernoulli number. The first few Genoc-
chi polynomials are;

Go(x) = 0
Gi(x) =1

G(x)=2x—-1

Gs(x) = 3x% — 3x

Ga(x) =4x3 —6x2 41
Gs(x) = 5x* — 10x> + 5x.

Some of the important properties of Genocchi polynomials are:

2(-1)"nim!

1
/0 Go (1) G2 = = T G, mm > 1 (13)
dG,(x)

I =G, n>1 (14)
Ga(1)+Gy(0) =0, n> 1 (15)

From (12) and (14) it is obvious that:
t
Gn(t) :/ nGn_1(x)dx+Gp, n > 1. (16)
0

We refer the readers to Araci et al. (2014a); Araci et al. (2014b)
for more properties of Genocchi polynomials and higher order
Genocchi polynomials.

3.1. Function approximation

Suppose that {G;(t),Gy(t),---,Gn(t)} c I?[0,1] is the set of
Genocchi polynomials and Y = Span{G (t), G,(t),---,Gn(t)}. Let
f(t) be arbitrary element of L*[0, 1], since Y is a finite dimensional
subspace of L?[0, 1] space, then, f(t) has a unique best approxima-
tion in Y, say f*(t) such that

Wty €Y, If(t) = f (O, < If) =y(©O)l, (17)
This implies that Vy(t) e Y
{fO)—f(1),y()) =0 (18)

where (.) denotes inner product. Since f*(t) € Y, then there exist the
unique coefficients ¢y, ¢y, - - -, cy such that
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FO = () = aGalt) = C'G(2) (19)

where C = [c1,¢a, -+, cn]T, G(t) = ,Gn(O)]".

Using (18), we have
(f(£) = €'G(1), Gi(t)) =

for simplicity we write
C'(G(£),G(1)) = {f(£), G(t)). (20)
where (G(t), G(t)) is an N x N matrix.

Let D = (G(t),G(t)) = [, G(t)G' (t)dt, the entries of the matrix D

can be calculated from (13). Therefore, any function f(t) € L*[0,1]
can be expanded by Genocchi polynomials as f(t) = C'G(t), where

C=D"'(f(t),G(1)). (21)

[G1 (1), Ga(L), - -

0i=1,2,---,N

3.2. Error bound

In this section we provide the error bound for the approximated
function f(t). It is important to note that, in general, f(t) might fail
to have a bounded derivative at certain points of the considered
domain. But in our case, the smoothness of solutions of fractional
differential equations in Caputo derivative sense is shown in
Diethelm (2010), where a full characterization of the situation
where smooth solutions exist is proven and very good results con-
cerning the differentiability of the solution in the interval [0, X] are
also shown. Therefore, we suppose that f(t) e C*"'[0,1] and
Y = Span{G (t), Gy (t),- - -, Gy (t) }if C'G(t) is the best approximation
of f(t) out of Y then

2n+3

h2R
(n+1HW2n+3’

If(6) = C'G(t)] < tet,tia]C0,1]

where R = maXeci, ., | F"(t) [ and h =ty —

To see this, we set

Y
fit) e -+ 5w S

From Taylor’s expansion it is clear that

(t— ti)nﬂ
nm+1)°

(t—t)"
n

yi(t) = +f7 ()

|£(6) =y, (0) 1< F™ (&) |
where ¢, € [t;, tiy1].

Since C'G(t) is the best approximation of f(t) out of Y and
y1(t) € Y, then from (17), we have

-l <[ro -nol - | 155 - me)Pds
[l

h2n+3R2
<
(n+ 1) (2n+3)

Taking the square root of both sides, we have

2n+3

h'z R
(n+1)vV2n+3
which is the desired result. Hence we conclude that at each sub
interval [t tiq], i=1,2,---,n. f(t) has a local error bound of

O(h#)' Thus, f(t) has a global error of O(h B ) on the whole inter-
val [0,1].

Ire - e <

The following lemma is also of great importance.

Lemma 1. Let G;(t) be the Genocchi polynomial then, D*G;(t)
i=1,...,Ja] —1,0>0.

=0, for

The proof of this Lemma is obvious, one can use (6)-(8) on (11).

4. Genocchi operational matrix of fractional derivative

If we consider the Genocchi vector G(t) given by
G(t) = [G1(t), Ga(t), - --,Gn(t)], then the derivative of G(t) with the
aid of (14) qe0 _ MG(t)".
where

ro 0 0 0 0 07

2 00 0 0 0
030 0 0 0
M=1|0 0 4 0 00
000 N-1 0 O

LO 0 O 0 N Ol

Thus, M is N x N operational matrix of derivative.
It is not difficult to show inductively that, the k™ derivative of
G(t) is given by
de([’)T
dt*

In the following theorem, we derive the operational matrix of
fractional order derivative for the Genocchi polynomials.

— G(tMN".

Theorem 1. Suppose G(t) is the Genocchi vector given in (19) and let
o > 0. Then,

D*G(t)" = P*G(t)" (22)

where P* is N x N operational matrix of fractional derivative of order o
in Caputo sense and is defined as follows:

r 0 0 - 0 T
0 0 e 0
Z/@{awpm.k,l Z/Eﬂmpmk.z leojmpm.kw
p@ —
ZL: 101 Pik.1 ZL: (o Pik2 ZL: (o) PikN
N N
Zk 1PNKT 2ok P2 D ke PNAN ]
where p,,; is given by:
_ l‘!Gi,k
Piki = TR k+1 =) 9 (23)

Gi_ is the Genocchi number and ¢; can be obtained from (21).

Proof. From (11) we have

, LG
DG =3 gDt = Z

k=1 k=[or]

I'G, k

k—oc
Ik 10" 24)

Let f(t) = t**, then if we approximate f(t) using truncated
Genocchi series, we have f(t) = Zj’-\’zlcjcj(t).
Therefore, putting this in (24), we have
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N i l'Gl
Z( (i—k 'F(kil )‘:)Gf(t)

J k= M

N
Z( plk]) t)
Jj=1 \k=[x]

where p;,; is given in (23). Rewriting (25) in vector form, we
have

(25)

i
|:Zp[(x k1 ZP : me.kw} G(t)
k=[or] k=[or] k=[or] (26)
i= [Oq .
Also according to Lemma 1, we can write
D*Gi(t) = (0,0, --0IG(t) i =1, -, [o] ~ 1 (27)

Thus, combining (26) and (27) leads to the desired result.

5. Collocation method based on Genocchi operational matrix of
fractional derivative

In this section, we use the collocation method based on the
Genocchi operational matrix of fractional derivatives to solve the
NFDEs (1) numerically. To do this, we first approximate y;(t) for
j=1,2,---,n, by Genocchi polynomials as follows:

ch kGi(t)

where, G; = [¢1, Cj2,- ",
(22) in (28), we have

D*y;(t) ~ GPG(t)", j=1,2,---,n. (29)

GO =12, (28)

cjn] is an unknown vector. Now employing

Therefore, substituting (28) and (29) in (1), we have

(o t, GG GG, - -+, C.G(t)T
GO" =f;(t. 660" OGN GGN) 50
]21,27---77'1
From the initial conditions we have
CGO) =d; j=1,2,---,n. (31)

To find the solution of (1), we collocate (30) at the collocation

points t; =5, i=1,2,---,N — 1 to obtain
GPYG(t)" = (&, Ci6(E) CG(E) -, CG()) 52
i:1727"’7N_]7j:1727"’7n

Thus, (32) contains n(N — 1) algebraic equations. These equa-
tions together with (31) make n(N) algebraic equations which
can be solved through Newton’s iterative method. Thus, y;(t) given
in (28) can be calculated.

The procedure can be easily extend to solve the nonlinear sys-
tem of fractional differential equations (NSFDEs).

6. Numerical examples

In this section, we solve some examples to illustrate the appli-
cability and accuracy of the proposed method. All the numerical
computations are carried out using Maple 18.

Example 1. First let’s consider the following fractional differential
equation solved using B spline operational method in Lakestani
et al. (2012).

4 11
Dy(e) + T3 ) Eiy(o) + 4 (3 0w - )
1 2
=2+ ﬁt (33)
subject to, y(0)=1, y(1) =2. The exact solution is given by
y(t) =t +1

We consider this problem when N = 3,4,5,6 and 7. The L? and
L errors of the results obtained are compared with that obtained
using B-spline operational method (Lakestani et al, 2012) as
shown in Table 1. From this table one can observe that despite
the simplicity of our operational method, we are able to get a more
accurate result than that obtained using B spline operational
method in Lakestani et al. (2012).

Example 2. We consider the following system of fractional
differential equations as in Chen et al. (2010).

3 2I(8)t: 208tz I'(3)tz
Dl (t) = ()~ -
AU YUTR G YR YO a4
s re)ts r(6)t3
D} t
5Y,(t) 203 yi(t) + 2I'(3)
subject to, y;(0) =0, y;(1) =1 y,(0) =1, y,(1) =2.
The exact solutions of this system are given by y, (t) = 2t” — t2

and y,(t) = t> + 1 This example is solved in Chen et al. (2010) using
Legendre wavelets method, with M = 4 and different values of k.
We used Genocchi polynomials operational method and compared
the absolute errors obtained with Legendre wavelets method and
that of our method for y,(t) and y,(t). The results are shown in
Table 2 and 3 respectively.

Example 3. Consider the following NSFDE.

Dly, (t) = —8y, () + YA (t) — 4t° + 4¢3 +8—r -1
e (35)
8
Dly,(t) = 2Dy, (t 3208 4251
Y2 (t) Y1(t) +ya(t) - 5\/—
subject to, ¥;(0)=0, y,(0)=1, y;(1) =1, y,(1) =3, y;(0) =0,
=3
The exact solution of this system 1is known to be

y1(t) = £, y,(t) = 2t + 1. We solve this problem using the present
method. The absolute error for solutions y,(t) and y,(t) obtained
with different values of N are shown in Table 4.

Table 1
Comparison of the L? and L* errors obtained by the present method and that in
Lakestani et al. (2012) for numerical solution y(t) for Example 1.

I%Error L> Error
Lakestani et al. Present Lakestani et al. Present method
(2012) method (2012)
1.9E-3 (J=3) 1.323E-4 51E-3 (J=3) 1.8119E-4
(N=3) (N=3)
47E-4 (] =4) 3.377E-5 1.2E-3 (J =4) 5.5528E-5
(N=4) (N=4)
1.2E-4 (] =5) 1.698E-5 33E-4 (J=5) 1.8466E—5
(N=15) (N=5)
3.0E-5 (] =6) 9.990E-6 8.1E-5 (] =6) 1.3312E-5
(N=6) (N=6)
7.6E-6 (J=7) 9.262E-6 21E-5(=7) 1.4556E-5
(N=7) (N=17)
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Table 2
Comparison of the absolute errors obtained by the present method and that in Chen et al. (2010) for numerical solution y;, (t) for Example 2.

t Chen et al. (2010) k=3  Present method N=8  Chen et al. (2010) k=4  Present method N=16 Chen et al. (2010) k=5  Present method N = 20

0.2 54189E-5 1.90235E-5 5.4369E—-6 8.95309E-8 2.7929E-6 2.48113E-7

04 2.1851E-4 3.42767E-5 1.1205E-4 1.47111E-5 7.1572E-5 1.04730E-5

0.6  3.9439E-3 2.72428E-4 2.5271E-3 3.02569E-4 1.2697E-3 1.88619E-4

0.8 3.7760E-2 3.77612E-4 1.9787E-2 2.25477E-3 5.4447E-3 1.41045E-3
Table 3

Comparison of the absolute errors obtained by the present method and that in Chen et al. (2010) for numerical solution y, (t), for Example 2.

t Chen et al. (2010) k=3  Present method N=8  Chen et al. (2010) k=4  Present method N=16 Chen et al. (2010) k=5  Present method N = 20

0.2 7.3753E-4 3.64710E-4 2.0239E-4 4.20073E-6 4.6757E-5 3.93829E-6
04  7.2903E-4 2.93359E—-4 4.5844E—4 6.05796E—5 8.2082E-5 3.47028E-5
0.6 6.1980E-3 1.21135E-4 3.4222E-3 4.21201E-4 7.6776E—4 2.61086E—4
0.8 2.9120E-2 2.09568E—4 8.4107E-3 1.77011E-3 2.9426E-3 1.10169E-3
Table 4
Absolute errors obtained by the present method for numerical solution y; (t) and y,(t), for Example 3.
N=6 N=10 N=15
t yi(t) Ya(t) yi(6) Ya2(t) y1(0) ¥2(t)
0.2 8.34845E-5 2.65555E—4 3.17722E-5 2.97062E-5 9.53891E-6 4.67442E-6
0.4 6.77277E-5 2.39200E—4 1.99578E-5 3.78689E-5 6.37208E—-6 6.73884E—6
0.6 5.23846E-5 3.81107E-4 3.29544E-6 6.70313E-5 5.36904E—7 1.33571E-5
0.8 7.66654E—5 4.24562E—-4 2.70757E-5 1.16860E—4 6.23829E-6 2.74888E-5

Example 4. Consider the following NSFDE (Wu and Xia, 2001;

.. Table 6
Dixit et al,, 20]])' Absolute errors obtained by the present method and that in Wu and Xia (2001) at

t =1 for Example 4.

D%y, (t) = —1002y, (t) 4+ 1000y3(t) (36) t Y(t) Error Wu and Xia (2001) h = 0.002 Our Error N = 10
D70 =50 =3a() =500 "0 somsors 205476511
2 . - . _

subject to, y,(0) =1, y,(0) =1

081!
061 |
0.4

0.24

X 1 0.2+ T T T T ‘\
| 0 0.2 04 0.6 0.8 1
-0.24 [ X

Exact Solution * = * * ¢=0.9 — — 0=0.25 o=0.5

Exact Solution * * * * 0=0.9 =" — 0=0.25 a=0.5
— a=0.75

— —a=0.75

Fig. 1. Comparison of our solutions y, (x) and y, (x) respectively, when oc = 1,0.9,0.75,0.5 and 0.25 for Example 4.

Table 5
Numerical solutions y, (t) and y,(t), when o = 0.25,0.5,0.9 obtained by the present method for Example 4.
o =0.25 a=0.5 a=0.9
t yi(t) Y>(t) yi(t) Y>(t) Y1 (t) V()
0.2 0.3292530 0.5736073 0.4312529 0.6565720 0.6283094 0.7926404
0.4 0.2781248 0.5271530 0.3157611 0.5617578 0.4179744 0.6464731
0.6 0.2503713 0.5001338 0.2537459 0.5035336 0.2863979 0.5351088

0.8 0.2299841 0.4793216 0.2128393 0.4611347 0.2007005 0.4479343
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18 5
1.7 /7
z 4
1.6 b
N7
/ .
1.5 .
1.4 RS <
s . ///
13 . 29 ‘///
.2 oz
12 Z 857
Y ~
B2 1 L Z
11 Z =
o =

101 ‘ , ; ; .0 ‘ ‘ ‘ ‘ )

0 0.2 0.4 0.6 0.8 1 0 02 0.4 0.6 0.8 1

X
[— Exact Solution — — 0=0.95 = * + 4=0.9 —— 0=0.7| [—— Exact Solution — — 0=0.95 = * ' 0=0.9 —— 0=0.7

Fig. 2. Comparison of our solutions y, (x) and y, (x) respectively, when o = 0.95,0.9,0.7 and 1 for Example 5.

Numerical solutions y, (t) and y,(t), when o = 0.5,0.7,0.9 obtained by the present method for Example 5.

=05 a=0.7 =09
t Yi(t) Ya(t) Y1 () Ya(t) Y1 () Ya(t)
0.2 1.2931031230 1.0835866399 1.1892580591 0.5361674631 1.1260021754 0.3073945918
0.4 1.4695250791 2.3646303626 1.3428046690 1.2320138557 1.2541212454 0.7383813062
0.6 1.6293827449 4.0691446057 1.4944201345 2.1872479471 1.3906810301 1.3411957180
0.8 1.7841485799 6.3194120920 1.6499360492 3.4822704268 1.5380075467 2.1711230181
Table 8

Absolute errors obtained by the present method for numerical solution y(t),y,(x)

and y,(t), for Example 6.

t

Abs. Err y (t)

Abs. ErT y, (t)

Abs. Err y5(t)

0.2 0.00000E+00 7.10000E—08 6.66760E—06
0.4 0.00000E+00 7.30000E—-08 6.74900E—-06
0.6 1.00000E—-09 7.30000E—-08 6.82000E—-06
0.8 0.00000E+00 7.20000E—-08 6.88000E—06

The exact solution of this system when oo = 1 is known to be
y:1(t) = e~% and y,(t) = e~'. This example is solved by our method
with N = 10 when o = 0.9,0.75, 0.5, 0.25. The results are compared
with the exact solution (¢ = 1) in Fig. 1 in which the figures affirm
that when « approaches 1, our results approach the exact solution.
The results obtained when o = 0.25,0.5,0.9 for y,(t) and y,(t) are
also shown in Table 5. We also compared the absolute error
obtained by our method and that in Wu and Xia (2001) when
t =1 in Table 6.

Example 5. Here we consider the following NSFDE (Zurigat et al.,
2001; Dixit et al., 2011).

Dy :y]T(t) (37)

D%y, (t) = 1 (D))" +¥2(t)
subject to, y;(0) =1, y,(0)=0

The exact solution of this system when oo =1 is known to be

¥:(t) = et and y,(t) = te. We consider this example when N = 10
and « =0.95,0.9,0.7,0.5 and the results are compared with the
exact solution when « =1 as shown in Fig. 2. The figures affirm
that when « approaches 1, our results approach the exact solution.
We also reported the numerical results for y,(t) and y,(t) when
o =0.5,0.7,09 in Table 7.

Example 6. Lastly, we consider the following NSFDE (Zurigat et al.,
2001; Dixit et al., 2011).

Dy, (t) =y, (¢)

Dy, () = 251 (1))*

Dys(t) = 3y, (t)y,(t)

subject to, y;(0) =1, y,(0)=1 y;(0)=0

(38)

Exact Solution « -
=009
0-0.5

~+ Approximate Solution
— =007

Exact Solution * *
= = a=09
0=0.5

+~ Approximate Solution
— =007

Exact Solution * *
== a=09
o=0.5

+~ Approximate Solution
— =007

Fig. 3. Comparison of our solutions y, (t),y,(t) and y;(t) respectively, when o = 0.9,0.7,0.5 and 1 for Example 6.
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The exact solution of this system when oo =1 is known to be
yi(t) =e' , y,(t) = e* and y;(t) = e3 — 1. The example is solved
using our method with N = 10. The absolute errors obtained for
¥1(£),y,(t) and y;(t) are shown in Table 8.

This example is also solved when o =0.9,0.7,0.5 and the
results are compared with the exact solution when o = 1 as shown
in Fig. 3 and it affirms that when o approaches 1, our results
approach the exact solution.

7. Conclusion

In this paper, a new operational matrix based on the Genocchi
polynomials is derived and applied together with the collocation
method to numerically solve the NFDEs. The comparison of the
results shows that the present method is a simple and good math-
ematical tool for finding the numerical solutions of NFDEs. The
advantage of this operational matrix over others is that it has less
computational complexity because every operational matrix of dif-
ferentiation involves more numbers of zeros and thus, reduces the
run time and provides the solution with high accuracy.
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