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The hazard (failure) rate is a fundamental statistical indicator commonly used in both reliability and sur-
vival analyses. In practice, the hazard curve might exhibit a non-monotonic unimodal behavior. Thus,
determining the highest point of the peak of a non-monotonic hazard function is indeed a point of inter-
est in lifetime analysis. This study discusses the shape of the hazard function of the logistic Birnbaum-
Saunders distribution and associate estimation. This model belongs to the generalized Birnbaum-
Saunders family of positively skewed models with lighter and heavier tails than the conventional two-
parameter Birnbaum-Saunders distribution. The latter model originated from a problem related to mate-
rial fatigue, a phenomenon of interest in material sciences. In this paper, we establish that the hazard rate
of the logistic Birnbaum-Saunders distribution is either unimodal or decreasing depending on the value
of the shape parameter. We also estimate the critical value of the hazard rate, which is the highest point
of the peak of the hazard function, using moment estimators. We perform extensive Monte Carlo simu-
lations to examine estimation efficiency numerically; moreover, we analyze a data set for the sake of
illustration.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The failure rate function, also known as the hazard function
(HF), is one approach to model life distributions in reliability and
survival studies. Typically, researchers assume the hazard function
(HF) of interest is either constant or monotonic. However, in prac-
tice, HFs may have a non-monotonic behavior, including, but are
not limited to, upside-down bathtub-shaped HFs. Such functions
increase to a point on the real line and then decrease to become
constant later. Langlands et al. (1979) observed this HF in their
study, which was about recovering from breast cancer. The study
indicated that the highest mortality rate due to this type of cancer
appears approximately three years after the disease was diag-
nosed; afterward, the mortality decreases slowly over a fixed time
interval. In literature, three well-known continuous probability
distributions have similar upside-down bathtub-shaped HFs: the
log-normal distribution, the inverse-normal distribution, and
Birnbaum-Saunders (BS) distribution. The HF of the latter model
decreases and becomes stable at a positive constant; on the other
hand, the HFs of the two former ones tend to zero; see, e.g.,
Johnson et al. (1995) and Nelson (2009).
Birnbaum and Saunders (1969) introduced the two-parameter
BS distribution as a lifetime model for fatigue failure caused due
to cyclic loading. The cumulative distribution function (CDF) of
the BS distribution is given by

Fðx;a;bÞ ¼ U
1
a

ffiffiffi
x
b

r
�

ffiffiffi
b
x

r !" #
; x > 0; a; b > 0; ð1Þ

where Uð�Þ is the standard normal CDF, while a and b are the shape
and scale parameters, respectively. Desmond (1985) provided a
more general derivation for the BS distribution based on a biological
model, and strengthened the physical rationalization for the use of
the BS distribution by relaxing the original presumptions of
Birnbaum and Saunders (1969). In practice, the scale parameter of
the BS distribution represents the median of failure time.
Bourguignon et al. (2020) recently proposed control charts for mon-
itoring the median of the BS distribution. Hassani et al. (2020) pro-
posed an extended BS distribution to model bicoid gene expression
data, while Kannan et al. (2020) designed the repetitive group sam-
pling plan under BS distribution. In the field of multivariate statis-
tics, Saulo et al. (2019) recently discussed inference for the mean-
based bivariate BS distributions and corresponding application.
Diáz-Garciá and Leiva-Sánchez (2005, 2007) proposed a generaliza-
tion for the BS distribution which is more flexible than the BS dis-
tribution in terms of the kurtosis. The generalized BS (GBS)
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Fig. 1. The HF for the LBS distribution with different values for a and b ¼ 1.
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distribution is based on the idea of replacing the Gaussian kernel in
the CDF of the BS distribution with the kernels of elliptically con-
toured distribution such as the logistic distribution. Balakrishnan
et al. (2007) developed sampling plans from truncated life tests
assuming the GBS distribution, while Leiva et al. (2008) used the
GBS distribution to model air pollutant concentration. For further
details in this connection; see Sanhueza et al. (2008). A recent, con-
cise and comprehensive review of various developments on the BS
distribution and its generalization can be found in Balakrishnan and
Kundu (2019).

Determining the highest point of the hazard rate peak is conve-
nient in practice. Knowing such an instant of change allows
researchers to make sound interventions to the phenomenon
under study. For instance, suppose that medical researchers have
started administering a specific disease treatment. Once they
determine when the hazard rate starts to decrease, they can reduce
the dosage and, consequently, reduce the treatment cost. In the lit-
erature, Kundu et al. (2008) considered estimating the highest
point of the peak (i.e., the critical point) of the HF of the well-
known BS distribution. They proved that the latter function is uni-
modal for all shape parameter values (see also Bebbington et al.
(2008) in this connection). They also discussed the numerical
means to obtain the critical point, conducted some assessments
via Monte Carlo simulations, and performed data analysis to illus-
trate their findings. Azevedo et al. (2012) discussed the critical
point of the hazard function in the case of Student’s t BS distribu-
tion, a particular case of the generalized BS distribution, and a gen-
eralization for both the BS distribution and Cauchy BS distribution.
They performed a numerical application to evaluate the estimation
efficiency of the critical points using different estimation methods
and to demonstrate their results.

This paper discusses the form of the HF of the logistic BS
(LBS) distribution, which is a particular case of the generalized
BS distribution. Determining the highest point of the peak of
the hazard rate of the LBS distribution and discussing associated
inference have not been considered yet. Furthermore, as previ-
ously discussed, this topic is of interest to researchers who per-
form reliability and survival analyses. Hence, this what makes
this study novel. The main objectives of this work are (1) to pre-
sent a mathematical study of the shape and critical point of the
HF of the LBS distribution; (2) to numerically evaluate the criti-
cal point estimation efficiency based on moment estimators
using Monte Carlo simulations; and (3) to perform a real-life
data analysis to compare the findings of this work to previous
research.

The rest of this paper is organized as follows. In Section 2, we
review the LBS distributions and some of its key properties. In Sec-
tion 3, we study the shape of the HF of the LBS distribution and the
means to estimate its critical value are discussed in Section 4. To
evaluate the performance of the proposed estimators of the critical
value of the HF, we conduct a Monte Carlo simulation study and its
outcomes are reported in Section 5. In Section 6, we analyze a real
data set for the sake of illustration. Finally, the paper is concluded
in Section 7.

2. LBS distribution

A non-negative continuous random variable X is said to follow
the GBS distribution based on an elliptically contoured kernel;
say, Gð�Þ with shape parameter a > 0, scale parameter b > 0, and
a location parameter c, if the corresponding CDF is given by:

Fðx;a; b; cÞ ¼ G
1
a
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Now, under the assumption that c ¼ 0, if we replace the kernel
Gð�Þ in (2) by the CDF of the logistic distribution

GðzÞ ¼ ½1þ expð�zÞ��1, then the random variable X is said to follow
the BS distribution based on the logistic kernel with shape param-
eter a > 0 and scale parameter b > 0, i.e., X � LBSða; bÞ. The CDF,
probability density function (PDF) and survival function (SF) of
the LBS distribution are given by:

Fðx;a;bÞ ¼ 1þ exp �a�1 x� bffiffiffiffiffi
bx

p
� �� �� ��1

; ð3Þ
f ðx;a;bÞ ¼ x�
3
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and Sðx;a;bÞ ¼ 1� Fðx;a;bÞ, respectively. If X � LBSða;bÞ and

Z � Logisticð0;1Þ, then X ¼ 4�1b aZ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a2Z2

ph i2
� LBSða;bÞ and

Z ¼ a�1 bXð Þ�1
2ðX � bÞ � Logisticð0;1Þ. Based on these relationships,

and by using the distributional properties of the standard logistic
random variable Z, one can determine the distributional aspects
of X. For example, using these relations, one can easily verify that
the median is simply equal to b, while EðXÞ ¼ bð1þ p2

6 a
2Þ and

VðXÞ ¼ ðabpÞ2
3 1þ 37

60p
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3. The HF of the LBS distribution

The HF is a crucial distributional property that has diverse prac-
tical applications. For instance, it allows researchers to characterize
a probability distribution behavior. Researchers must correctly
specify the HF; otherwise, they could encounter severe conse-
quences in the estimation technique due to incorrectly identifying
the HF; see Bhatti (2010) in this connection. In practice, the HF can
be constant, increasing, decreasing, or non-monotonic. One
approach to identifying the HF type is by examining the scaled
total test time (TTT) curve proposed by Aarset (1987). This section
discusses the HF of the LBS distribution which is given by:
hðx;a; bÞ ¼ f ðx;a; bÞ=Sðx;a; bÞ for x > 0 and 0 < Sðx;a; bÞ < 1, where
f ðx;a; bÞ and Sðx;a; bÞ are the PDF and SF of the LBS distribution,
respectively. Fig. 1 presents the HF for different values of the shape
parameter a, assuming that the scale parameter b is equal to 1,
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without loss of generality. The following theorem discusses the
shape of the HF of the LBS distribution.

Theorem 1. If a random variable X follows the LBS distribution with
shape parameter a > 0 and scale parameter b > 0, i.e., X � LBSða; bÞ,
then the corresponding HF is given by:

hðx;a; bÞ ¼ x�
3
2ðxþbÞ
2a

ffiffi
b

p Fðx;a; bÞ

¼ x�
3
2ðxþbÞ
2a
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b
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bx

p
� �� �� ��1

:

ð5Þ

The curve of the HF hðx;a; bÞ is an upside-down bathtub shaped
(i.e., unimodal) curve with a critical point ca;b that is obtained by solv-
ing the following nonlinear equation

ðxþ bÞ2
2a

ffiffiffi
b

p Sðx;a; bÞ �
ffiffiffi
x

p
2

ðxþ 3bÞ ¼ 0;

such that ca;b P ð<Þb when a 6 ð>Þ0:5. Nevertheless, if the actual
value of the shape parameter is large (i.e., a ! 1), then the HF
hðx;a;bÞ is decreasing.
Proof. Observe that the first derivative of the HF (5) with respect

to x is given by h0ðx;a; bÞ ¼ 2�1a�1b�1
2x�3Fðx;a; bÞgðx;a; bÞ, such that

gðx;a; bÞ ¼ ðxþ bÞ2
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Notice that the sign of h0ðx;a;bÞ depends only on the sigh of
gðx;a; bÞ which depends on the value of a. Therefore, we need to
discuss the cases a ! 1 and a91 separately.Case I: a ! 1:
Clearly, the limit of gðx;a;bÞ as a becomes large is given by:

lim
a!1

gðx;a;bÞ ¼ �
ffiffiffi
x

p
2

ðxþ 3bÞ; 8x:

That is, gðx;a; bÞ < 0 for all values of x; hence, hðx;a;bÞ is decreas-
ingCase II: a91: Here, one can observe that as gðx;a; bÞ > 0 as

x ! 0 and gðx;a;bÞ ! 1
a� 2
	 


b
3
2 as x ! b. If ca;b represents the criti-

cal value of hðx;a; bÞ, which is the root of expression (6) after equat-
ing it to 0, then ca;b P ð<Þb when a 6 ð>Þ0:5.
4. Critical value estimation

In the previous section, we established that the HF of the LBS
distribution has either a unimodal or a decreasing curve. Thus, it
is then of natural interest to determine the corresponding critical
point ca;b. Based on Theorem 1, ca;b can be obtained as the solution
of gðx;a; bÞ which was given by (6). Nevertheless, the solution
depends on the model parameters, which need to be estimated
first. We propose to estimate them using the modified moments
estimation method proposed by Ng et al. (2003), who noticed that
the MMEs are easier to use than the maximum likelihood estima-
tors (MLEs) and both share similar behaviors. Let x1; . . . ; xn repre-
sent an observed random sample of size n from the LBS
distribution with PDF as in (4). For the critical value ca;b, the

MME is simply c~a;~b ¼ ~c, such that ~a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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are the MMEs of a and b, respectively, where
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i xi and r�1 ¼ n�1Pn

i x
�1
i .

Clearly, the MME of ca;b does not have an explicit expression;
therefore, we seek to obtain a functional approximation of ca;b as
a function of the model parameters a and b. By following the same
approach as in Kundu et al. (2008), we obtain an approximated
3

MME (AMME) for ca;b as follows. Recall that b is a scale parameter;
thus, it is obvious that since ca;b is the critical point of the HF of the
LBS distribution, then ca;b = bca;1. By using Box-Cox transformation,

we observed that ca;1½ ��0:5 is approximately a linear function of a
and so a reasonably good approximation of bca;1; say, c�a;1 is given

by c�a;1 ¼ ð�0:47633þ 3:22458aÞ�2 given that the actual value of
a is approximately greater than 0.15. Accordingly, the AMME of

c�a;b is simply c�
~a;~b ¼ ~c� ¼ ~bð�0:47633þ 3:22458aÞ�2.
5. Simulation outcomes

This section reports the outcomes of a Monte Carlo simulation
study which have been conducted to numerically examine the esti-
mation efficiency of the proposed estimators mentioned in the pre-
ceding section assuming different values for the shape parameter
and various sample sizes. The simulation outcomes are reported
up to three decimal digits in Table 1 since they are computed based
on M ¼ 10;000 simulation runs. The latter simulation runs

provides an accuracy of the order �ð10;000Þ�0:5 ¼ �0:01 (Karian
and Dudewicz, 1999). The considered sample sizes were
n ¼ 25;50;75;100;250;500 and a ¼ 0:5;1:0 and 2:0 as the values
of the shape parameter. Without loss of any generality, we set
the scale parameter b ¼ 1 for all cases. According to the chosen val-
ues of the model parameters, the values of the critical point ca;b are
obtained by solving expression (6) after equating it to 0. It is to be
noted that all computations were performed using an R program
which is available upon request from the authors.

The MME and AMME are then obtained for ca;b, and for each
estimate, we obtained the bias, the root-mean-squared error
(RMSE), the average absolute difference between the true and esti-
mate hazard functions (Dabs) and the maximum absolute difference
between the true and estimate hazard functions (Dmax), respec-
tively, as

Biasð~cÞ ¼ 1
M

XM
i¼1

ð~ci � ca;bÞ; Biasð~c�Þ ¼ 1
M

XM
i¼1

ð~c�i � ca;bÞ;

RMSEð~cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Dabsð~cÞ ¼ Dabs
1 ¼ 1

M
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hðca;b;a; bÞ � hð~ci; ~ai; ~biÞ
 

Dabsð~c�Þ ¼ Dabs
2 ¼ 1

M

XM
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hðca;b;a;bÞ � hð~c�i ; ~ai; ~biÞ
 

Dmaxð~cÞ ¼ Dmax
1 ¼ max

i¼1;...;M
hðca;b;a;bÞ � hð~ci; ~ai; ~biÞ
 

and

Dmaxð~c�Þ ¼ Dmax
2 ¼ max

i¼1;...;M
hðca;b;a; bÞ � hð~c�i ; ~ai; ~biÞ
 

such that ~ai; ~bi are the MME of a and b based on simulation run i,
while ~ci (~c�i ) is the MME (AMME) of ca;b. Table 1 summarizes the
simulation study outcomes and reveals that MME and AMME of
ca;b become more efficient as the sample size increases. Overall,
when the shape parameter is small, namely, when a 6 0:5, then
the AMME is not performing very well; however, it is more accurate
when a is large. As the values of both the sample size and the shape
parameter increase, the MME and AMME of ca;b are quite similar in
terms of the considered comparison criteria.



Table 1
Simulated values of bias and RMSEs of ca alongside the difference measurements between the true and fitted hazard functions evaluated at the actual and estimate critical points,
respectively.

a n Biasð~cÞ Biasð~c�Þ RMSEð~cÞ RMSEð~c�Þ Dabs
1 Dabs

2
Dmax
1 Dmax

2

0.5 25 0.046 0.115 0.279 0.792 0.229 0.192 3.500 1.373
50 0.018 �0.084 0.202 0.397 0.150 0.147 1.366 0.930
75 0.015 �0.134 0.167 0.315 0.119 0.122 0.783 0.623
100 0.011 �0.155 0.146 0.284 0.103 0.107 0.615 0.555
250 0.006 �0.196 0.093 0.240 0.065 0.072 0.371 0.370
500 0.002 �0.212 0.066 0.232 0.045 0.052 0.251 0.245

1 25 0.069 0.036 0.164 0.108 0.261 0.262 2.463 2.463
50 0.031 0.012 0.086 0.060 0.188 0.189 2.510 2.509
75 0.020 0.004 0.061 0.045 0.155 0.155 1.265 1.265
100 0.014 0.000 0.049 0.037 0.135 0.136 0.946 0.945
250 0.005 �0.006 0.028 0.023 0.087 0.088 0.523 0.522
500 0.003 �0.007 0.019 0.017 0.062 0.062 0.379 0.378

2 25 0.011 0.011 0.027 0.028 1.050 1.050 11.987 11.986
50 0.005 0.005 0.014 0.015 0.761 0.761 8.845 8.845
75 0.003 0.003 0.010 0.010 0.627 0.627 4.976 4.975
100 0.002 0.003 0.009 0.009 0.551 0.551 4.346 4.346
250 0.001 0.001 0.005 0.005 0.347 0.347 1.926 1.925
500 0.000 0.001 0.003 0.004 0.246 0.246 1.591 1.591

Table 2
Lifetimes of Cavia Porcellus induced with different dosages of Mycobacterium
Tuberculosis.

12 44 60 70 95 146

15 48 60 72 96 175
22 52 60 73 98 175
24 53 60 75 99 211
24 54 61 76 109 233
32 54 62 76 110 258
32 55 63 81 121 258
33 56 65 83 127 263
34 57 65 84 129 297
38 58 67 85 131 341
38 58 68 87 143 341
43 59 70 91 146 376

Table 4
EDA outcomes based on the lifetimes of Cavia Porcellus.

Source Q1 Median Mean Q3 SD

Sample 54.75 70 99.8194 112.7500 81.1180
BS 46.2221 77.2931 100.2483 129.2505 78.6338
LBS 49.0734 77.4526 99.8199 122.2434 84.6580

Farouq Mohammad A. Alam and Abeer Mansour Almalki Journal of King Saud University – Science 33 (2021) 101580
6. Application

This section reports the analysis of a real data set considered by
Kundu et al. (2008) to compare between the BS distribution and
the LBS distribution. The data consists of the lifetimes of Cavia Por-
cellus (guinea pigs) induced with different dosages of Mycobac-
terium Tuberculosis. For this data set, 72 observations are listed
in Table 2.

We first estimate the model parameters of both the BS and the
LBS distributions and both the MMEs and AMMEs of the critical
values of the corresponding hazard functions, then we calculate
several explanatory data analysis (EDA) measurements based on
the considered data set as well as their approximations based on
the estimated model parameters. Moreover, we test the fitted
models’ suitability to the data using Anderson–Darling (AD) and
Cramér-von Mises (CvM) goodness-of-fit tests. Finally, we evaluate
the fitted hazard rates using the TTT method.
Table 3
Fitted models based on the lifetimes of Cavia Porcellus.

Model ~a ~b ~c ~c�

BS 0.7707 77.2931 90.3 87.8
LBS 0.4190 77.4526 91.8 101.2

4

Table 3 summarizes the estimators of the model parameters
and the critical values as well as the corresponding goodness-of-
fit statistics, while Table 4 shows the outcomes of EDA measure-
ments. By examining these tables, one can observe that the LBS
distribution provided EDA measurements close to those of the
observed sample compared to the BS distribution. Furthermore,
both AD and CVM goodness-of-fit tests indicated that the LBS
distribution is much more suitable for the considered data. Fig. 2
shows the histogram of the data compared to the fitted PDFs.

As indicatedabove,weused theTTTcurvemethodto compare the
LBS distribution and the BS distribution in terms of hazard rates. The
empirical TTT curve is given by WXðuÞ ¼ H�1

X ðuÞ=H�1
X ð1Þ, for

u 2 ð0;1Þ, such that H�1
X ðuÞ ¼ R F�1

X ðuÞ
0 ½1� FXðyÞ�dy, where F�1

X ð�Þ is
the quantile function of a lifetime random variable X. Fig. 3 shows
the empirical scaled TTT plot based on the analyzed data alongside
the fitted TTT curves of BS and LBS distributions. Since the fitted
TTT curves are quite similar,we calculated the average and themax-
imum absolute differences between the empirical TTT curve and
their fitted counterparts of the consideredmodels. For the LBSdistri-
bution, the mean and maximum differences were 0.033 and 0.07,
respectively, compared to 0.039 and 0.09 for the mean and maxi-
mum differences in the case of the BS distribution. The previous
results support that the claim that the LBS distribution seems to pro-
vide a better fit to the Cavia Porcellus data than the BS distribution.
AD p-value CVM p-value

2.0218 0.5327 0.3267 0.6155
1.9841 0.5503 0.3237 0.6233



Fig. 2. Histogram of the lifetimes of Cavia Porcellus vs. the fitted models.

Fig. 3. The fitted TTT curves and the empirical TTT curve based on the lifetimes of
Cavia Porcellus..
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7. Conclusions

Studying the hazard rate is common in many scientific fields
that involve reliability or survival analyses. In statistical literature,
researchers might use the BS distribution instead of the lognormal
and the inverse Gaussian distributions to model unimodal hazard
rates. This study has revealed that the LBS distribution might be
more flexible than the BS distribution since the corresponding HF
curve can be either decreasing or unimodal. The behavior of the
HF mainly depends on the value of the shape parameter alpha.
The critical point of the hazard function, which represents the
highest point of the peak of the hazard rate, has been estimated
using two estimators based on the moment estimation methodol-
5

ogy. Determining the critical point of the HF is vital to researchers
since it may reduce any potential costs due to unnecessary inter-
ventions to the phenomenon of interest. Based on the Monte Carlo
simulation study outcomes, the obtained estimators of the critical
points, namely, MME and AMME, performed well as the sample
size increases. Both become similar in estimation efficiency for
large values of the shape parameter. Therefore, since the AMME
of the critical value of the HF has a simple explicit form, we recom-
mend using it given that the actual value of the shape parameter is
greater than 0.15. Finally, based on a real data analysis, it is con-
cluded that the LBS distribution might provide a better fit to
real-life data compared to the well-known BS distribution. There-
fore, The LBS distribution should be considered one of the lifetime
distributions used to model either decreasing or unimodal hazard
rates.

Several research directions need further investigation in the
future. First, one can obtain different point estimators for the crit-
ical point of the HF in the case of the LBS distribution. The statisti-
cal literature is rich with other frequentist estimation methods
(e.g., least-squares methods) and the Bayesian estimation
approach. Thus, one may consider conducting a comparative study
to examine these methods’ performances numerically. Assuming
some censoring in the data is another potential research problem
that needs to be addressed. A final research area that one might
consider is obtaining the asymptotic joint distributions of different
estimators and accordingly derive asymptotic confidence intervals
compared to bootstrap confidence intervals in terms of lengths and
coverage probabilities.
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