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The use of white noise analysis is utilized in this study. We consider an open quantum system of coupled
harmonic oscillator with uniform two dimensional electric field in a single harmonic oscillator environ-
ment. We obtain the quantum propagator for the said system by considering the Feynman path integral
as a white noise functional. In addition, the resulting quantum propagator was consistent with the pre-
vious literature and also, this study gives more general form due to the inclusion of the electric field.
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1. Introduction

In order to describe any physical object is to study its properties
and its interaction with its environment. We already know that
everything is made up of particles, so studying the dynamics of
the particle gives meaning to everything that has physical manifes-
tation. One way to describe the particle is to assume that it is a
wave that propagates along a given space at a given time. Har-
monic oscillation is a solid classical theory that describes the prop-
erties of the wave. Perhaps, the very difficult part in describing the
particle as a wave is to know its position and what path it might
take during its motion because of the randomness. One equation
that describes the particle as a wave is the Schrodinger equation,
although it may not give an exact position of the particle at a speci-
fic time, it gives us hint or idea where the particle might be, but
still due to the probabilistic nature of the Scrodinger equation
stems for the measurement which is one of the difficult aspects
to understand.

In 20th century, solution in determining the final state of a par-
ticle throughout its motion was discovered by Feynman and Hibbs
(1965) and developed a path integral that describes the path taken
by the particle at a given range of time. The path integral includes
spaces of the possible dynamics of the system between its initial
state to final state. A very common form of the path integral is
called the propagator which has a mathematical notation given by

Kðr1; r2; tÞ ¼ N
Z

exp
i
�h

� �
S½r�Dr

The propagator gives a probability amplitude for a particle to
travel from initial to final position in a given time. It was named
after Richard Feynman itself as Feynman integral. It is a more effec-
tive tool within the framework of an infinite dimensional analysis
known as white noise analysis (Somerado and Convicto, 2017).
Many authors have studied the use of white noise analysis formu-
lated by Hida (1971) in different interaction. In Butanas and
Caballar (2016) and Pabalay and Bornales (2008), it is shown that
the propagator can be derived even if there is a coupled term of
the systems.

In this paper, we will derive the quantum propagator of a cou-
pled harmonic oscillator in uniform mass and frequency which is
the same as proposed in Butanas and Caballar (2016) but this time,
there is an inclusion effect of the electric field in the harmonic
oscillator of the system coupled to multimode harmonic oscillator.
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Lastly, the obtained result is consistent with the obtained result in
Somerado and Convicto (2017), Hida (1971), Butanas and Caballar
(2016).

2. The white noise theory

A key feature of the White noise analysis is that it operates in
the (Kou, 1996)

SðRÞ � L2 � S�ðRÞ ð1Þ
linking the spaces of Hida distribution S� and test function S through
a Hilbert space of square integrable functions L2. Via Minlo’s theo-
rem, we can formulate a Hida white noise spaceðS�;B;lÞ where l
is the probability measure and B is the r-algebra generated on S
and can be constructed by fixing the characteristic function in the
following way,

CðnÞ ¼
Z

expðhx; niÞdlðxÞ ¼ exp �1
2

Z
n2ds

� �
ð2Þ

where n 2 S and the white noise Gaussian measure dlðxÞ is given
by

dlðxÞ ¼ Nx exp �1
2

Z
xðsÞ2ds

� �
d1x ð3Þ

with Nx ¼
ffiffiffiffiffiffiffiffiffi
1

ð2pÞn
q

as a normalization constant. The exponential term

in dlðxÞ is responsible for the Gaussian fall-off of the propagator
function. Formally, a white noise is a stochastic process zðtÞ such
that zðtÞ’s are independent for each t, has zero mean and has a
covariant in the form EhzðtÞzðsÞi ¼ dðt � sÞ where E is the expecta-
tion value of the two variables. This expression shows that white
noise is delta correlated and can be regarded as a time derivative
of Brownian motion i,ex ¼ db

dt , wherex is the Gaussian white noise.
Furthermore, we can write the Gaussian white noise in terms of

Wiener’s Brownian motion as BðtÞ ¼ R t
to
xðsÞds ¼ hx;1½to ;tÞi.

White noise can also be considered as a generalized stochastic
process which means that for each test function
nðxÞ ¼ nðx1; x2; . . . ; xnÞ;XðnÞ is a gaussian random variable with zero
mean and covariance

R
R n

2ðtÞdt, we can write

XðnÞxðnÞ ¼ hx; ni ¼
Z
xðsÞnðsÞds ð4Þ

Now, a key feature of Hida’s formulation is the treatment of the
set xðsÞ at different instants of time, xðsÞ; t 2 R as a continuum
coordinate system. For the sum over all routes or histories in the
path integral, paths starting from initial point xo and propagating
in Brownian fluctuations are parametrized within the white noise
framework as

xðtÞ ¼ xo þ
ffiffiffiffiffi
�h
m

r Z t

o
xðsÞds ð5Þ

Evaluating the Feynman integral in the context of white noise
analysis is carried by the evaluation of the Gaussian white noise
measure, where the white noise functionals can be described
through their S- and T-Transforms. For the T-transform of a gener-
alized white noise functional HðxÞ has the form Bernido and
Carpio-Berdino (2002)

THðn : n 2 SÞ ¼
Z
S�

expðhx; niÞHðxÞdlðxÞ ð6Þ

Similarly, the S-Transform of the white noise functional is given
by

SHðn : n 2 SÞ ¼ CðnÞ
Z
S�

expðhx; niÞHðxÞdlðxÞ ð7Þ
This implies that S- and T-Transform are related in this manner
(Butanas and Caballar, 2016)

SHðnÞ ¼ CðnÞTHð�inÞ ð8Þ
where CðnÞ is the characteristic functional given in Eq. (2).

3. Feynman path integral as a White noise functional

Hamilton’s Principle states that the least action is the path of
motion of object that it will take (Thornton and Marion, 2004)
and the action can be represented by the expression

S ¼
Z t

to

Lðx; _xÞds ð9Þ

where Lðx; _xÞ is the Lagrangian of the system, and as prescribed by
Feynman and Hibbs (1965), the propagator can be expressed as

Kðx; xo; sÞ ¼
Z

exp
i
�h
Sx

� �
Dx ð10Þ

which is the summation of all thepossible paths of theparticle to take
from initial to final position where Dx is known as the infinite-
dimensional Lebesgue measure. Now, parametrizing the path of the
taken with the Wernier’s Brownian motion in Eq. (5) and taking its
derivative (Bernido and Carpio-Berdino, 2002; Butanas and
Caballar, 2016), we can write the Gaussian integral in (10) as

i
�h
Sx ¼ i

2

Z t

0
x2ðsÞds� i

�h

Z t

0
VðxÞds

� �
ð11Þ

which is in the case for the Lagrangian having the form

Lðx; _xÞ ¼ 1
2
m _x2 � VðxÞ

Now, evaluating the Lebesgue measure Dx will lead us to inte-
grate it over the Gaussian White noise measure dlðxÞ with the
relation (Butanas and Caballar, 2016)

Dx ¼ lim
N!0

YN
Aj
� �YN�1

ðdxjÞ ¼ Nd1x ð12Þ

with

Nd1x ! Nd1x ¼ exp
1
2

Z t

0
x2ðsÞds

� �
dlðxÞ ð13Þ

where N is the normalization constant. Observe that in Eq. (5), only
the initial point is fixed but throughout its position is random. So, to
fix the final trajectory of the particle, we use the Fourier decompo-
sition of the Donsker-Delta (Arfken, 1985) as

d xðtÞ � xð Þ ¼ 1
2p

Z þ1

�1
expðikðxðtÞ � xÞÞdk ð14Þ

With this, the position of particle is located at time t. Thus, with
the Eqs. (11), (13) and (14) we can now rewrite the Feynman prop-
agator in the framework of white noise analysis as

Kðx; xo; sÞ ¼ N
Z

exp
iþ 1
2

Z t

0
x2ðsÞds

� ��

� exp � i
�h

Z t

0
VðxÞds

� �
d xðtÞ � xð Þ

�
dlðxÞ ð15Þ
4. Evaluation of Feynman path integral for coupled harmonic
oscillator with uniform electric field in a bath using white noise
analysis

The Lagrangian for a coupled harmonic oscillator with two-
dimensional electric field and coupled in bath with uniform mass
and frequency is
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L1 ¼ 1
2
m _x2 þ _y2
� �� 1

2
mX2 x2 þ y2

� �þ qEðxþ yÞ � rxy� czðxþ yÞ
ð16Þ

L2 ¼ 1
2
m _z2 � 1

2
mX2

z z
2 ð17Þ

Changing the coordinates x ! X þ qE
mX2 and y ! Y þ qE

mX2

(Somerado and Convicto, 2017) and we can now write L1 as

L1 ¼ 1
2
m _X2 þ _Y2
	 


� 1
2
mX2 X2 þ Y2

	 

þ 1
2
q2E2

mX2 � rXY � czðX þ YÞ
ð18Þ

Notice that we neglected the coupling of the coordinate and the
term qE

mX2 to maintain the system-system coupling and system-bath
coupling. Furthermore, we utilize a transformation of coordinates
(Pabalay and Bornales, 2008) to decouple X and Y, by doing so,
we need the relation

X ¼ X j cos/þ Y j sin/ ð19Þ

Y ¼ �Xj sin/þ Y j cos/ ð20Þ
Substituting Eqs. (19) and (20) into Eq. (18) yields

L1 ¼ 1
2
m _Xj2 þ _Y j2
	 


� 1
2
mX2 X2

j þ Y2
j

	 

þ 1
2
q2E2

mX2

� r �X2
j cos/ sin/þ X jY j cos 2/þ Y2

j cos/ sin/
h i

� cz½Xjðcos/� sin/Þ þ Y jðcos/� sin/Þ� ð21Þ
and imposing the condition / ¼ 2nþ1

4 p to eliminate the system-
system coupling will yield

L1 ¼ 1
2
m _Xj

2 þ _Y j
2

	 

� 1
2
mX2

xX
2
j �

1
2
mX2

yY
2
j þ

q2E2

m X2
x þX2

y

	 
� ffiffiffi
2

p
czY j

ð22Þ

L2 ¼ 1
2
m _z2 � 1

2
mX2

z z
2 ð23Þ

where
X2

x ¼ X2 � r
m

X2
y ¼ X2 þ r

m

Eqs. (22) and (23) are our new Lagrangian, in the last term of
Eq. (22) is the remaining coupling term by system-bath coupling.
Following the previous step but this time / ! h. Thus, we can
successfully decoupled the Lagrangian for harmonic oscillator as

L1 ¼ 1
2
m _Xj

2 þ _Y jj
2

	 

� 1
2
mX2

xX
2
j �

1
2
mU2

1Y
2
jj þ

q2E2

m X2
x þX2

y

	 
 ð24Þ

L2 ¼ 1
2
m _zj2 � 1

2
mU2

2z
2
j ð25Þ

where the new frequencies are
X2

x ¼ X2 � r
m

X2
y ¼ X2 þ r

m

U2
1 ¼ X2 þ r�

ffiffi
2

p
c

m

U2
2 ¼ X2 þ rþ

ffiffi
2

p
c

m

Eq. (24) is identical to the obtained Lagrangian of Somerado and
Convicto (2017) which enabled us to solve for the Feynman path
integral in the framework of white noise analysis. For simplicity,
we will define another variable Q that generalizes the coordinate.
Then parametrizing the possible path taken (as shown in Eq. (5))
we have
QðtÞ ¼ QO þ
ffiffiffiffiffi
�h
m

r Z t

0
xðsÞds ð26Þ

with this, we can write our propagator as

KðQ ;QO; sÞ ¼
Z

exp
i
�h
SQ

� �
DQ ð27Þ

where the Feynman integrand for the free particle can be written as

exp
i
�h
SQ

� �
¼ exp

Z
i
2
x2ðsÞds

� �
¼ exp

i
�h
hx;xi

� �
ð28Þ

which contains a second degree white noise and makes us difficult
to deal with. Now, with the aid of Taylor series expansion (Arfken,
1985), we can write the classical action in (28) as

SQ ¼ SQO þ
1
1!

Z
xðsÞ @SQO

@xðsÞdsþ
1
2!

Z
xðs1Þxðs2Þ @2SQO

@xðs1Þ@xðs2Þds1ds2
ð29Þ

Consequently, the propagator takes the form

KðQ ;QO; sÞ ¼
Z

exp
i
�h

SQO þ hx; S0i þ 1
2
hx; S00xi þ q2E2

m X2
x þX2

y

	 

0
@

1
A

2
4

3
5DQ

ð30Þ

where

S0 ¼ @SQO

@x
¼

ffiffiffiffiffi
�h
m

r Z
s
V 0ðQOÞds ð31Þ

S00 ¼ @2SQO

@x1@x2
¼

ffiffiffiffiffi
�h
m

r Z
s1_s2

V 00ðQOÞds ð32Þ

For convenience, we choose QO ¼ 0 which givesSðQOÞ ¼ 0 and
since path is extremal at QO ¼ 0, it follows that

S0 ¼ @S0
@x

¼
ffiffiffiffiffi
�h
m

r Z
s
V 0ð0Þds ) 0; ð33Þ

S00 ¼ @2S0
@x1@x2

¼
ffiffiffiffiffi
�h
m

r Z
s1_s2

V 00ð0Þds ) �hxQ ðt � s1 _ s2Þ ð34Þ

With these assumptions, we can now construct the Feynman
Propagator to be

KðQ ;0;sÞ¼N
Z

exp
iþ1
2

hx;x;i� i
�h
hx;S00xiþ i

�h
q2E2

2mXQ

 !
dðQðtÞ�QÞ

" #
dlðxÞ

ð35Þ

Where the first,second and third term of Eq. (35) is the relation
of the flat and Gaussian measure, due to the harmonic potential
and the potential due to the uniform electric field. Now, the role
of the Donsker-Delta is to specify the trajectory of the particle to
any Q at time t and defined as

dðQðtÞ � QÞ ¼ 1
2p

Z
k
exp ik

�h
m

Z
xðsÞds

� �
exp �ikQð Þdk ð36Þ

Now, we let

IR ¼ exp
iþ 1
2

hx;x; i � i
�h
hx; S00xi þ i

�h
q2E2

2mXQ

 !
ð37Þ

to become white noise functional and to simply write (35) as

KðQ ;0; sÞ ¼ N
Z

IRdðQðtÞ � QÞdlðxÞ ð38Þ

We can evaluate the Gaussian white noise measure where
our white noise functional IR can be described by its S- and
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T-Transforms. Substituting the integrand of (38) to (7) we can have
our S-Transform of our functional

SIRðnÞ ¼ 1
2p

CðnÞN exp
i
�h

q2E2

2mX2
Q

t

 ! Z
expð�ikQÞdk

� �

�
Z

exp
1
2
hx;�ðiþ 1Þxþ i

�h
S00xi

� �
exp hx; nþ ikx1½0;t�i

� �� �
dlðxÞ

ð39Þ
Imposing the definition of the Gaussian measure and letting the

second integral of (39) as

R ¼
ffiffiffiffiffiffiffi
1
2p

n

r Z
exp

1
2
hx;�ðiþ 1Þxþ i

�h
S00xi

� �
exp hx; nþ ikx1½0;t�i

� �� �
d1ðxÞ

ð40Þ

and consider a Gaussian Integral of the formZ
exp � ax2

2
þ bx

� �
dx ¼

ffiffiffiffiffiffiffi
2p
a

r
exp

b2

2a

 !
ð41Þ

then we can write Eq. (40) as

R ¼ 1

ð2pÞnþ1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

detð1� �h�1S00Þ

s

� exp
1
2
h nþ ik1½0;t�
� �

; ð1� �h�1S00Þ�1
nþ ik1½0;t�
� �i� �

ð42Þ

for n ¼ 0, then we can write the S-Transform Eq. (39) as

SIðn ¼ 0Þ ¼ 1
2pCðnÞN det ð1� �h�1S00Þ�

1
2 � exp

i
�h

q2E2

2mX2
Q

t

 !

�
Z
k
exp � i�h

2m
k2h1½o;t�; ð1� �h�1S00Þ�1

1½o;t�i
� �

expð�ikQÞdk
� �

ð43Þ
Since for n ¼ 0 ) SI ¼ TI and applying the Gaussian integral

shown in (41) to (38). Thus we can have the propagator as

KðQ ;0; sÞ ¼ SIðn ¼ 0Þ

¼ detð1� �h�1S00Þ
h i�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2pi�hthe; ð1� �h�1S00Þ�1
ei

s

� exp
imQ2

2�hthe; ð1� �h�1S00Þ�1
ei

" #
ð44Þ

where the unit vector e ¼ t�
1
21½0;t� (Pabalay and Bornales, 2008) and

in the diagonalization of ð1� �h�1S00Þ, then defined the

he; ð1� �h�1S00Þ�1
ei ¼ 1

XQ t
tanðXQ tÞ ð45Þ

Now, defining the eigenvalues of ð1� �h�1S00Þ as

Ak ¼ 1� XQ t
ðk� 1

2Þp

 !2

ð46Þ

which solves

detð1� �h�1S00Þ
h i�1

2 ¼ 1
cosXQ t

� �1
2

ð47Þ

Hence, for the Gaussian integral for shown in (41) we have the
propagator

KðQ ;0; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mXQ

2pi�h sinXQ t

s
exp

imXQ

2�h
Q2 cotðXQ tÞ

� �
ð48Þ
Now, using (37) as Gaussian Integral and for n ¼ 0, we have the
S�transform

SIR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mXQ

2pi�h sinXQ t

s
exp

i
�h

q2E2

2mX2
Q

t þ imQ2

2�hthe; ð1� �h�1S00Þ�1
ei

 !

ð49Þ
Finally, we can have our propagator for Xj and Y jj as

K Xj;Y jj; s
� � ¼ m

2pi�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XxU1

ðsinXxtÞðsinU1tÞ

s
exp

i
�h

q2E2

m X2
x þX2

y

	 
 t
0
@

1
A

� exp
imXx

4�h
cotðXxtÞ Xj � qE

m X2
x þX2

y

	 

0
@

1
A

2
2
64

3
75

� exp
imU1

4�h
cotðU1tÞ Y jj þ qE

m X2
x þX2

y

	 

0
@

1
A

2
2
64

3
75 ð50Þ

Our next step is to obtain the full propagator and by doing so,
we need to transform back the transformed coordinate to their
respective original coordinates and gives the following relations

Y jj ¼ Y j cos h� zj sin h

zj ¼ Y j sin hþ zj cos h

and imposing the condition h ¼ 2nþ1
4 p we have the expressions

Y jj ! 1ffiffiffi
2

p ðY j � zÞ

zj ! 1ffiffiffi
2

p ðY j þ zÞ

Repeating the process above to get X and Y

X j ¼ X cos h� Y sin h

Y j ¼ X sin hþ Y cos h

In Addition, imposing the condition / ¼ 2nþ1
4 p to get

X j ! 1ffiffiffi
2

p ðX � YÞ

Y j ! 1ffiffiffi
2

p ðX þ YÞ

Now we can write the Transformed coordinate as

X j ! 1ffiffiffi
2

p ðX � YÞ

Y jj ! 1ffiffiffi
2

p ðX þ Y �
ffiffiffi
2

p
zÞ

zj ! 1ffiffiffi
2

p ðX þ Y þ
ffiffiffi
2

p
zÞ

Substituting these relations in Eq. (50), therefore, the full prop-
agator can be written as

KðX;Y ; Z; tÞ ¼ m
2pi�h

	 
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XxU1U2

ðsinXxtÞðsinU1tÞðsinU2tÞ

s
exp

i
�h

q2E2

m X2
x þX2

y

	 
 t
0
@

1
A

� exp
imXx

4�h
cotðXxtÞ 1ffiffiffi

2
p ðX � YÞ � qE

m X2
x þX2

y

	 

0
@

1
A

2
2
64

3
75

� exp
imU1

4�h
cotðU1tÞ 1ffiffiffi

2
p ðX þ Y �

ffiffiffi
2

p
zÞ þ qE

m X2
x þX2

y

	 

0
@

1
A

2
2
64

3
75

� exp
imU2

4�h
cotðU2tÞ 1ffiffiffi

2
p ðX þ Y þ

ffiffiffi
2

p
zÞ

� �2
" #

ð51Þ
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Which is the exact propagator when there is an effect of uni-
form electric field on the coupled harmonic oscillators in a single
multimode harmonic oscillator. Eq. (51) agrees with the result in
Butanas and Caballar (2016) when E ¼ 0; in Pabalay and Bornales
(2008) when E ¼ 0 and z ¼ 0; and in Somerado and Convicto
(2017) when z ¼ 0.

5. Conclusion

We solved the Feynman propagator for a system of coupled har-
monic oscillator with two dimensional electric field interacting
with a bath consisting a single multimode harmonic oscillator in
the framework of white noise analysis. By having a two successive
transformation of coordinates, the full propagator was obtained by
multiplying the propagator where there is a presence of electric
field and the propagator along the bath coordinate. In addition,
the obtained full propagator was consistent with some previous
articles for different cases.

It has been shown that the method of white noise analysis
(Hida, 2001) can be used. To evaluate the propagators for open
quantum systems and quantummechanical problems. Particularly,
it can also be applied to systems with N coupled harmonic oscilla-
tors which are all coupled to an environment, which can then be
used to model quantum transport of energy excitations in solid
state and biological systems (Butanas and Caballar, 2017). Further-
more, an extension of this study is to explore (Butanas and
Caballar, 2017) with an inclusion of electric and magnetic fields
and consider a non-quadratic form of the Lagrangian such as in the
form of Virial theorem in thermodynamics.
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