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ARTICLE INFO ABSTRACT

Article history: Using the methods of IR-spectroscopy and quantum chemical calculations, we determined the formation
Received 11 November 2022 of an H-bond between the 1,2,3-benzotriazole molecule and the molecules of acetone, dioxane, DMF, and
Revised 2 December 2022 DMSO. Quantum chemistry methods have been used to calculate the sums of charge changes in the
252?&;‘312 i;l&eecgrggeercggfer 2022 atoms of the 1,2,3-benzotriazole molecule and of proton acceptor molecules (acetone, dioxane, DMF,

and DMSO) due to the formation of their complexes with an H-bond (H-complexes N—H...0). The
sum of charge changes was taken as a contribution of a covalent component to H-bond formation. It

Keywords: has been established that as the sum of charge changes in N, H, and O or H and O, forming the
H-bond . .

1.2.3 - benzotriazole H-complex, increases, the enthalpy of H-complex formation (EF) decreases. On the contrary, the EO of
DFT H-complexes increases when the product of the initial charges on the H and O atoms increases. In the
AIM absence of H-complexes, the product of charges was considered the electrostatic component of
ELF H-bond formation. The criterion of the value of H-bond EF was the value of a low-frequency shift of
NCI the initial position of the maximum IR absorption band of the N—H vibration of the 1,2,3-
RDG benzotriazole molecule relative to its position in a neutral CCl, solvent. The results of QTAIM, NCI, and

RDG analyses showed that the values of energy densities in BCPs have a positive value in the complexes
formed by 1,2,3-benzotriazole with acetone, dioxane, and DMFA, and such hydrogen bonds are electro-
static in nature. In the complex formed by 1,2,3-benzotriazole and DMSO, it has a negative value and a
covalent character. The data obtained have allowed for two main conclusions: (i) In the formation of
the H-complexes of the 1,2,3-benzotriazole molecule with proton-acceptor molecules containing oxygen
atoms, the main contribution to H-bond formation is made by the electrostatic component. (ii) The con-
tribution of the covalent component increases with increasing enthalpy of H-bond formation.
© 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction
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acceptor. At present, the concepts of hydrogen (H) bonds are
widely used to explain the peculiarities of protein structure and
. nucleic acids, the mechanism of numerous enzyme catalyzed pro-
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Nielson, 1997), and other chemical reactions, involving proton
transfer (Zundel et al., 2000).

As understanding the effect of H-bonds on physicochemical
molecule parameters is highly relevant for molecular biology and
chemistry, the characteristics of H-bonds have been studied in
many theoretical and experimental works by methods of IR spec-
troscopy, NMR spectroscopy, X-ray, and neutron diffraction
(Allerhand and Schleyer, 1963; Hobza et al., 2000; Howard et al.,
2010; Paesani et al., 2009; Wang et al., 2017; Smith et al., 2019;
Brauer et al., 2005; Tuttle and Graefenstein, 2004; Allen, 2002),
and more recently, theoretical and quantum-chemical studies have
become widespread (Nemes et al.,, 2018; Gilli and Gilli, 2010;
Grabowski, 2011; Reed et al,, 1986; Dolgonosov, 2019; Stone,
2017).

Despite numerous studies on the effect of hydrogen bonds on
the physical and chemical properties of substances, the question
of which factor predominates—electrostatic (Stone, 2017;
Pauling, 1960) or covalent (Nemes et al., 2018; Dolgonosov,
2019; Mulliken, 1952)—remains open.

Earlier (Mulloev et al., 2021), a semi-empirical technique had
been proposed to obtain information on the contribution of the
electrostatic component to hydrogen bond formation. It was based
on a comparison of the data from IR spectroscopy (information
about the effectiveness of H-bond formation) with the results of
quantum chemical calculations of the initial charges on the H
atoms of the N—H bond of pyrrole, indole, and carbazole molecules
forming H-complexes with an acetone molecule (a proton accep-
tor), i.e., in the H-complex D—H...A (N—H...0O), the charge value
varied on the H atom. However, the authors (Mulloev et al.,
2021) did not analyze the contribution of covalent component
change to H-complex formation.

Even earlier, in Egorochkin and Voronkov (2000), a linear
correlation was also established between the charge on the H atom
of the phenol molecule and the enthalpy of formation of the
H-bond during the formation of the H-complex with proton-
acceptor molecules (Pauling, 1960; Rekik et al., 2007). The
presence of a correlation allowed the authors to conclude that
the electrostatic interaction plays a predominant role in the forma-
tion of the H-complex. However, the possible contribution of the
covalent component to the formation of the H-complex was also
not discussed. In Egorochkin and Kuznetsova (2002), using the
STATGRAPHICS 3.0 non-quantum chemical program, the change
in the charges on the A atom of the proton acceptor molecule (co-
valent component) in the phenol-proton acceptor H complex was
calculated and compared with the change in the efficiency of the
formation of the H complex (from the literature data on IR spectra).
Based on the IR shift of the OH vibration band of phenol, the
authors established that the decrease in the enthalpy of formation
of the H-complex is proportional to the decrease in the charge
transfer in the proton acceptor molecule, and since, in their opin-
ion, the change in the electrostatic interaction is proportional to
the change in charge, the paper concludes that the main contribu-
tion to the value of the enthalpy of formation is introduced by the
electrostatic interaction, i.e., the analysis of the direct covalent and
electrostatic contributions was not carried out. Thus, information
on the study of changes in the electrostatic and covalent compo-

Table 1
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nents during the formation of H-complexes of the same type was
absent until recently. In this work, to estimate the contributions
of the electrostatic and covalent components to the formation of
the H-complex {D—H...A}, an approach is proposed, the essence
of which is to compare the experimental results (IR spectra) and
the data of quantum chemical calculations of the charge values
on the D, H, A atoms up to and after the formation of H-
complexes, i.e., the change in EO from the change in the covalent
and electrostatic components is analysed separately.

In this work, a simple approach is proposed to estimate the con-
tributions of electrostatic and covalent components to the forma-
tion of the H-complex (D-H...A).

2. The essence of the approach

A methodical method consists in comparing the change in the
enthalpy of H-bond formation to the values of the change in the
covalent and electrostatic components in the molecular fragment
{D—H. . .A}. The change in the enthalpy of H-bond formation corre-
lates well with the low-frequency shift, Av, of the A—H vibration
band in IR spectra (Av = vo-V¢, Vo and vc are the frequencies of
A-H vibration without and with H-complex (Mulloev et al,
2021). Thus, the Av value can be taken as the relative value of EF.

In the structural fragment {D—H...A} on the atoms D, H and A
(Z3;) or A and H (Z;;) the sum of charge changes on these atoms
is taken as the covalent contribution to H-bond formation.

> = |Agp| + |Aqy| + |Aqy

3i

=1(q5 —ad)| + | (a5 — af)| + | (a5 — a%)| (1)
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In (1), (2), g5, q% ~ are the charges on the atom of the proton
donor molecule with and without H-complex; qS, q% are the
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Fig. 1. Experimental absorption IR-spectra of 1,2,3-benzotriazole monomer in the
monomeric state (a) and its H-complexes with acetone (b) and dioxane (c).

The Mulliken atomic charges on the N and H atoms of the 1,2,3-benzotriazole molecule and on the Oi atoms of proton acceptor molecules without (superscript 0) and with

(superscript C) H-complex.

A proton-acceptor molecule a’ ans, i’ auS, qQo, aQoi, AV = VoV,
a.u. a.u. a.u. au. au. a.u. cm!

Acetone —0.361 —0.158 0.373 0.532 —0.267 —0.422 228

Dioxane —0.361 -0.138 0.373 0.607 —0.336 —0.401 272

DMF -0.361 -0.16 0.373 0.517 -0.502 —0.552 318

DMSO -0.361 -0.231 0.373 0.542 -0.479 —-0.474 390
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charges on the hydrogen atom of the proton donor molecule with
and without H-bond; q5%;, q3; are the charges on the atom of the
proton acceptor molecule with and without H-bond; the index
“i* means the charge value on the A atom of the ;-th molecule of
the proton acceptor.

The value a; can be taken as the value of absolute change of
electrostatic interaction between atoms H and Ai (3)
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a; = |qy - gk — a5 - g3 3)

Thus, the approach proposed makes it possible to determine
both the change in both the covalent and electrostatic contribu-
tions with varying EF value and in their ratio.

In this work, the method is probed to determine the covalent
and electrostatic contributions in relation to the enthalpy of H-
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Fig. 2. The optimal geometries and the Mulliken atomic charge distribution of 1,2,3-benzotriazole and its H-bonded complexes with acetone, dioxane, DMF, DMSO.
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bond formation. To this end, 1,2,3-benzotriazole was used as a pro-
ton donor molecule. The 1,2,3-benzotriazole molecule is a typical
representative of the class of molecules that form intermolecular
H-bonds due to the presence of the N—H group, and for it there
is spectral information on the frequency shifts of the position of
the absorption band maximum during the formation of H-
complexes with these molecules, except for H-complexes 1,2,3-ben
zotriazole-dioxane (Narziev and Mulloev, 1999). Thus, the studied
H-complexes were formed by the same atomic structural fragment
{N—H...0}, but having a different initial charge on the O acceptor
atom (Table 1).

3. Experimental and computational methods
3.1. Experimental

The IR spectra of 1,2,3-benzotriazole were obtained using a
Specord-75 IR. The resulting spectra were digitized with the Get
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Fig. 3. Dependence of the shift in the value of charge change on atoms H (a), N (b)
of 1,2,3-benzotriazole molecule and on atom O; (c) of proton acceptor molecules. 1
- H-complex with acetone molecule; 2 - H-complex with dioxane molecule; 3 - H-
complex with DMF molecule; 4 - H-complex with DMSO molecule.

Table 2
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Data Graph Digitizer program. The concentration of 1,2,3-
benzotriazole amounted to 0,0047 M. The concentration of proton
acceptor molecules was 0,46 M. T = (24 £ 1)°C.

The acetone, dioxane, DMF, and DMSO solvents of the “Aldrich”
brand were applied without further purification.

3.2. Computational details

All calculations were carried out in the Gaussian 09 W program
(Frisch et al.,, 2010) using the Density functional theory (DFT)
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Fig. 4. Dependence of the N—H—vibration band shift of 1,2,3-benzotriazole-
molecule,Av, on the values of X3;(a) and X,;(b) (insert). The numbers represent
complexes and correspond to the designations in Fig. 3.
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Fig. 5. Dependence of the N—H vibration band shift of 1,2,3-benzatriazole
molecule, Av on the o; values. The numbers represent complexes and correspond
to the designations in Fig. 3.

Topological parameters at the BCP of the 1,2,3-benzotriazole complexes. All calculations are performed using the B3LYP/6-311++G (d,p).

Laplacian of electron

Energy density, H Potential energy density, V. H-bond energy, Eyp

Complex BCP Electron density, p

density, V?p
1.2.3-benzotriazole + acetone  Ny5-Hy4...0; 0.0326 0.1122
1.2.3-benzotriazole + dioxane  N;;-Hyg...Os  0.0334 0.1144
1.2.3-benzotriazole + DMFA Ni7-Hze...0;  0.0348 0.1275
1.2.3-benzotriazole + DMSO Nis-Has...0;  0.0427 0.1354

0.0008 —0.0265 8.31
0.0003 —0.0279 8.75
0.0006 —0.0305 9.57
—0.0029 —0.0398 12.49
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method. The DFT method, particularly with the B3LYP hybrid func-
tional, has been used successfully to compute the energies and var-
ious physicochemical parameters of molecular complexes in
various solutions (Chetry and Devi, 2021; Jumabaev et al., 2022).
To investigate intermolecular hydrogen bonding, we used the
B3LYP functional and the 6-311++G(d,p) basis set, which includes
diffusion and polarization functionals (Ghalla et al 2018). In addi-
tion, the topological properties of the electron density distribution
in the most stable structure were obtained using the MULTIWFN
(Lu and Chen, 2012) program. VMD (Humphrey et al., 1996) soft-
ware was used to perform non-covalent interaction (NCI) and
reduced density gradient (RDG) analyzes and to plot the results.

4. Results and discussion

It is known (Muthu et al., 2013; Muthu and Prabhakaran, 2014)
that the N—H stretching frequency is located in the region 3300-
3500 cm™~'. The N—H stretching frequency of 1,2,3-benzotriazole
was determined at 3462 cm™! (Fig. 1a). The experimental IR spec-
tra of N—H stretching vibration of pure benzotriazole and its solu-
tions in acetone and dioxane are shown in Fig. 1. In the process of
solvation and association, intermolecular interaction forces affect
the vibrational parameters of molecules (Rekik et al., 2007).
Fig. 1 shows that when 1,2,3-benzotriazole is dissolved in acetone,
the N—H stretching frequency shifts to 3234 cm ™!, while it shifts to
3190 cm~' when dissolved in dioxane..

In the Fig. 2, the optimal geometries and the Mulliken atomic
charge distribution of 1,2,3-benzotriazole and its H-bonded com-
plexes with acetone, dioxane, N,N-dimethylformamide (DMF),
dimethylsulfoxide (DMSO) calculated at the B3LYP/6-311++G(d,p)
level are described.

We can see from the Fig. 2, 1,2,3-benzotriazole molecule is
formed H-bonded complexes with acetone, dioxane, DMF and
DMSO molecules by N—H' 0. The H-bond lengths are 1.86, 1.85,
1.82 and 1.77 A, respectively.

Table 1 shows the Mulliken charge distribution on N and H
atoms of 1,2,3-benzotriazole and O atoms of proton-acceptor
molecules.

The dependences of the enthalpy of H-bond formation on the
atomic charge variations on the H, N, and O atoms are demon-
strated in Fig. 3. Fig. 3a plots Av versus Aqy. As follows from the
data, there is no systematic change in Av with Aqy. However, it
is worth noting that the sign of Aqy is positive for all H-
complexes, which indicates that the H atom is the electron donor
in the formation of the H-complex.

For the N atom (Fig. 3b), Av decreases with increasing Aqy.
Thus, a negative charge decreases on the N atom with increasing
enthalpy of H-bond formation in the H-complex, i.e., the N atom
(as the H-atom) is also the electron donor in the formation of the
H-complex.

Fig. 3c plots Av versus Aqp; for the O; atoms of proton acceptor
molecules. As seen from the figure, electron acceptance is recorded
for the complexes of 1,2,3-benzotriazole with acetone, dioxane,
and DMF (the negative charge increases), but the value of growth
decreases with increasing Av. Thus, for the H-complexes, the elec-
tron accepting ability of O atoms in a given series decreases with
increasing enthalpy of H-bond formation and in the H-complex
of benzotriazole with DMSO the O atom is generally the electron
donor, i.e., the negative charge decreases. Note that such a decrease
of the negative charge holds for the N atom of the 1,2,3-
benzotriazole molecule in all H-complexes (see Table1).

Fig. 4 presents the dependences of the band shift of N—H vibra-
tion, Av (H-bond EF), on the X; values, and the insert of Fig. 4
demonstrates the dependences of the shift of the N—H vibration
band, Av (EF), on the values of X,;. As follows from the data, the

Journal of King Saud University - Science 35 (2023) 102530

value of Av decreases with increasing both X3; and X, i.e. the
enthalpy of H-bond formation decreases with increasing value of
charge transfer.

a) 1,2,3-benzotriazole + acetone

¢) 1,2,3-1,2,3-benzotriazole +tDMF

d) 1,2,3-1,2,3-benzotriazole+tDMSO

Fig. 6. AIM molecular graphs of the complexes of 1.2.3-benzotriazole with acetone
(a), dioxane (b), DMF (c), and DMSO (d).
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Fig. 5 presents the dependences of the N—H vibration band
shift, Av (the enthalpy of H-bond formation), on the product of
charges on the H and O atoms. According to the data obtained,
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the value of the enthalpy of H-bond formation increases with
increasing electrostatic component. Thus, as follows, the enthalpy
of the formation of 1,2,3-benzotriazole H-complexes with proton

@
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acceptor molecules is proportional to the value of the electrostatic
component. Thus, as both the covalent ¥; and the electrostatic o
components increase, the EO value of the H-complexes decreases.

It is assumed that a broader application of the approach pro-
posed to studying the question of the ratio between the covalent
and electrostatic contributions to the formation of H-bonding to
other H-complexes will favor further progress in understanding
the nature of the hydrogen bond.

5. The AIM, RDG, NCI and ELF analysises

Atoms in Molecules (AIM) (Bader, 1985) theory is a very useful
tool for analyzing hydrogen bonding. The formation of hydrogen
bonds is associated with the presence of a critical point (BCP)
between the hydrogen atom of the donor group and the acceptor
atom. Poplier (Poplier and Badr, 1992) proposed a set of criteria
for the presence of hydrogen bonding within the AIM formalism.

The electron density p(r) and electron density Laplacian V?p(r)
at the critical points of the hydrogen bond are 0.002-0.035 and
0.024-0.139 a.u., respectively (Chetry and Devi, 2021; Tang et al.,
2006).

Table 2. lists some topological parameters calculated for the
complexes formed by 1,2,3-benzotriazole with acetone, dioxane,
DMF and DMSO molecules. It can be seen from the table that the
values of electron density and Laplacian of electron density for
the listed complexes are in the range of 0.0267-0.0427 au and
0.0875-0.1354 au, respectively. These values are in the range of
hydrogen bonds. This means that the 1,2,3-benzotriazole molecule
forms a complex with acetone, acetonitrile, dioxane, DMF and
DMSO molecules by hydrogen bonding. Hydrogen bond energies
were calculated using the following formula (Espinosa et al., 1998):

1
Enp = 3 Viep

Journal of King Saud University — Science 35 (2023) 102530

The values of energy densities in BCPs have a positive value in
the complexes formed by 1,2,3-benzotriazole with acetone, diox-
ane and DMF, and such hydrogen bonds are electrostatic in nature.
In the complex formed by 1,2,3-benzotriazole with DMSO, it takes
a negative value and has a covalent character.

Fig. 6 shows the of AIM molecular graphs of the complexes of
1.2.3-benzotriazole with acetone, dioxane, DMF and DMSO. The
lines linking the nuclei are the bond paths, the orange dots on
the bond paths are the BCPs, and the yellow dost are the ring crit-
ical points (RCPs).

Fig. 7 shows the results of NCI and RDG analysis of weak inter-
actions between 1,2,3-benzotriazole and acetone, dioxane, DMF,
DMSO molecules.

Blue colors represent hydrogen bonding, green colors represent
van der Waals interactions, and red colors represent strong repul-
sion (steric effect). The results of the analysis showed that there are
N—H. ..0 hydrogen bonds, C—H...N Van der Waals interactions in
the complexes. Hydrogen bonding also plays a dominant role in the
formation of complexes.

The electron localization function (ELF) is widely used to inves-
tigate charge transfer, classify chemical bonds on the molecular
surface with a high electron path, and describe lone pairs, nuclear
regions, and valence shells in atoms (Silvi et al., 2005; Fuentealba
et al.,, 2007; Kazachenko et al., 2022). The ELF value is typically dis-
played in a range of colours ranging from 0.0 to 1.0. Fig. 8 repre-
sents the ELF diagrams of complexes formed by 1,2,3-
benzotriazole with proton acceptor molecules (acetone, dioxane,
DMF and DMSO). Charge delocalization regions (blue) with
ELF < 0.5 are shown in this figure, indicating that the regions con-
tain both bonded and non-bonded localized electrons. Electron
localization sites (ELF > 0.5) describe regions where covalent elec-
tron delocalization is expected (Silvi et al., 2005).
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Fig. 8. ELF diagrams of complexes of 1,2,3- benzotriazole with acetone (a), dioxane (b), DMF (c) and DMSO (d).
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6. Conclusion

The results obtained using IR spectroscopy and quantum chem-
ical calculations made it possible to conclude that the predominant
contribution to the formation of the H-bond between the 1,2,3-
benzotriazole molecule and the molecules of acetone, dioxane,
DMF, and DMSO is made by the electrostatic component. The
DFT approximation at the B3LYP/6-311++G(d,p) level was used
to study the mechanism of the formation of H-complexes of the
1,2,3-benzotriazole molecule with proton-withdrawing solvents.
In addition, AIM, NCI and RDG analyzes confirmed that intermolec-
ular hydrogen bonds play a key role in the formation of H-
complexes of 1,2,3-benzotriazole with various proton acceptor sol-
vents. The values of energy densities in BCPs have a positive value
in the complexes formed by 1,2,3-benzotriazole with acetone,
dioxane and DMF, and such hydrogen bonds are electrostatic in
nature. In the complex formed by 1,2,3-benzotriazole with DMSO,
it takes a negative value and has a covalent character.

The proposed method for investigating the relationship
between covalent and electrostatic contributions during H-bond
formation in D—H. . .A H-complexes appears to contribute to a bet-
ter understanding of the nature of hydrogen bond formation.
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