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Modelling leaves accurately is important in the improvement of a virtual plant model. Therefore an accu-
rate illustration of the leaves are important which can be achieve via mathematical models. These models
can be used to study biological procedures for instance, a canopy light environment or photosynthesis. In
this research we proposed a new surface fitting method called Gaussion radial basis function Clough-
Tocher method (RBF-CT) for modelling a leaf surface. The Gaussion RBF-CT method strategy based on
joining the Gaussion radial basis function (RBF) and Clough-Tocher (CT) methods. The accuracy of the
presented method is validated by applying it to scattered data taken from Franke (1982) as well as to
a real scattered data set collected using a laser scanner from an Anthurium leaf (Loch, 2004). Our method
is shown to produces a realistic representation of the leaf surface.
� 2017 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The leaves are vital in the plant development and are essential
in any plant model. Our aim in this research is to construct leaf sur-
face model based on scattered data interpolation methods to
achieve a continuous surface. The interpolation methods are CT
and Gaussion RBF methods.

Modelling of virtual plant has been studied by Anderson (1994),
Davydov and Zeilfelder (2004), Espana et al. (1999), Prusinkiewicz
(1998), Room et al. (1996), Kempthorne et al. (2015a,b), Dorr et al.
(2014), Oqielat et al. (2007, 2011). Loch (2004) sampled data points
using laser scanner for Elephant’s ear, Anthurium, Flame and
Frangipani leaves and then used finite element method to model
the surface of these leaves.

In this paper we reviews the interpolation surface fitting meth-
ods based on the RBF and CT techniques. Then, a new hybrid RBF-
CT method that combines the CT and Gaussion RBF methods is pro-
posed. Finally, the accuracy of the RBF-CT method is assessed by
applying it to a real data points collected using laser scanner from
an Anthurium leaf.

The research in this paper is comprises of four main sections. In
Section 2, the surface fitting techniques is given. In Section 3, the
precision of the methods are evaluated using six test functions
and data points chosen from Franke (1982). The quality of the
approximation of the methods is measured numerically using the
maximum error and the root mean square error. In Section 4,
Anthurium leaf surface is constructed using these surface fitting
methods. Finally, conclusion and future work is presented in
Section 5.
2. Surface fitting techniques

In this section, we will illustrate the RBF, CT and the Gaussion
CT-RBF interpolation techniques as well as the application of the
methods to two sets of data. The scattered data interpolation prob-
lem is given by:

Given M distinct scattered points ðxi; yiÞT , and their function val-
ues zi, find a function C : D � R2 ! R that interpolates these data
satisfying

Cðxi; yiÞ ¼ zi; i ¼ 1; . . . ;M: ð1Þ
Finite element methods consist of a triangulation (adopted in

this paper) or rectangulation, where the domain is divided into
subdomains and then piecewise interpolant is constructed on each
element (triangle or rectangle). The value of the function is given at
the vertices of the triangle and interpolation polynomial is con-
structed over each triangle. If the derivatives are not given then
they need to be estimated. Finally, by joining the interpolant on
each triangle the whole surface is then constructed. For more infor-
mation see (Lancaster and Salkauskas, 1986).
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2.1. The Clough-Tocher method

The Clough-Tocher (CT) method (Clough and Tocher, 1965) is a
seamed element method, where each triangle is divide into three
micro-elements (subtriangles). A polynomial of degree three is
then built on each micro-element to allow a continuous differen-
tiable piecewise cubic polynomial over the whole domain, see
(Oqielat et al., 2009, 2007). The form of the CT interpolant is given
by:

/ðx; yÞ ¼
X3
i¼1

ðf ibi þ ðci; diÞT � rf iÞ þ
X3
j¼1

@f
@nj

ej: ð2Þ

In this representation the twelve functions
biðx; yÞ; ciðx; yÞ; diðx; yÞ and ejðx; yÞ; i ¼ 1;2;3 are cardinal basis
functions (Lancaster and Salkauskas, 1986). To determine /, twelve
independent pieces of information are required which consists of
the gradient and function values at each vertex as well as the edges
normal directional derivative (see Fig. 1). The authors (Turner et al.,
2008; Belward et al., 2008) presented analysis for the least square
gradient estimation method as well as an error bounds for the
method.

2.2. Radial basis functions

The approximation radial basis function C to the function f ðxÞ,
is given by:

CðxÞ ¼
XN
i¼1

aiRðkx� xikÞ; x 2 R2 ð3Þ

where ri ¼ kx� xik and k:k is the Euclidean norm. The centres of the
approximation RBF are xi; i ¼ 1;2; . . . ;N. If the coefficients of the RBF
ai; i ¼ 1; . . . ;N satisfies the system

Aa ¼ F with Aij ¼ Rðkxj � xikÞ i; j ¼ 1; . . . ;N ð4Þ

and F ¼ ðf 1; . . . ; f NÞT . Then CðxÞ is called interpolation function of f
at x1; . . . ; xN .

Radial basis function approach proposes a smooth surface to
approximate the values of the function at points. This method
has many application in fields for instant, hydrology (Borga and
Vizzaccaro, 1997), medical imaging (Carr et al., 1997), geodesy
(Junkins et al., 1971), software to drive laser scanners (Carr et al.,
2001, 2003), and the partial differential equations solution
(Hardy, 1990). Powell (1990) review the theory of RBF.

The computational costs in assessing the RBF to large sets of
data points can become time consuming because a large compact
matrix system of size N � N has to be solved in order to calculate
Fig. 1. The Triangle of the Clough-Tocher.
the RBF coefficients ai; i ¼ 1;2; . . . ;N in Eq. (4). Franke (1982), com-
pared around 30 interpolation schemes and located that the RBFs
are the most accurate methods for surface fitting. Beatson et al.
(1999, 2001), Cherrie (2000) used fast evaluation techniques to
reduce the computational cost of the RBF. An examples of the
RBF comprise thin plate splines, Hardy’s multiquadric (Hardy,
1990) and Gaussian RBF which is adopted in this paper. The Gaus-
sian RBF is given by:

Rðkx� xikÞ ¼ e�c2kx�xik2 : ð5Þ
The accuracy of RBF interpolant depends strongly on the param-

eter c where this parameter is specified by the user, see for exam-
ple (Carlson and Foley, 1991; Niceno, 2003; Sinoquet et al., 1998).
For some values of c the problem may become ill-conditioned.
Franke (1982) and Foley (1987) used c ¼ 1:25 Dffiffi

n
p where D is the

diameter of the minimal circle enclosing all data points.
Carlson and Foley (1991) and Franke (1982) studied the accu-

racy of the multiquadric and inverse multiquadric interpolant
and found that the choice of the parameter c has great impact on
the accuracy of the RBF. Carlson recurrent the computation of the
RMS error with different choices of c and stated the optimal value
of c that minimizes the RMS. Rippa (1999) performed experiments
on the influence that the parameter c has on the approximation
quality achieved using different RBF. Rippa proved that the value
of c has impact on the quality of the RBF. Nine test functions and
two sets of data are considered by Rippa. He constructed the data

vector F ¼ ðf 1; f 2; . . . ; f NÞT by computing each test function over the
set of data points so that

SðxiÞ ¼ f i; i ¼ 1;2; . . . ;N: ð6Þ
An algorithm is proposed by Rippa for the choice of a good value

for the parameter c that minimizes the RMS error between the RBF
interpolant and the unknown function from which the data vector
F was sampled. The value of c is selected by minimizing the cost
function. The mnbrak and brent routines from Numerical Recipes
[36] were used to do the minimization. Themnbrak routine is given
some tolerance and two initial values c1 and c2. It returns three
numbers b1;b2 and b3 that bracket the minimum. After bracketing
the minimum, the three numbers and the tolerance parameter are
passed into the function brent that uses Brent’s method to mini-
mize the cost function. We refer to the minimum value of the cost
function as the ‘‘good value” of c. The cost function is given by:

Let E be the vector

H ¼ ðH1; . . . ;HNÞT ð7Þ

with

Hs ¼ f s � CsðxsÞ; s ¼ 1; . . . ;N; ð8Þ
where Cs is the interpolant to the data set with the point ðxs; f sÞ
removed, so that:

CsðxÞ ¼
XN

i¼1; i – s

asiRðkx� xikÞ: ð9Þ

Rippa showed that

Hs ¼ as
ass

; ð10Þ

where as is as defined in Eq. (6) and as is the solution of

Kas ¼ es; ð11Þ
where es is the sth column of the N � N identity matrix. Ultimately,
the cost function CðcÞ is defined by:

CðcÞ ¼ kHðcÞk1; ð12Þ
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and

copt ¼ argmin
c2R

kHðcÞk1: ð13Þ

In this research we used another way to minimize the cost func-
tion based on using the Matlab command call fminbnd. The
Fminbnd return the local minimum of a single-variable function
on a fixed interval using either the bisection method twice on
the interval or the trisection method which divide the interval into
three equal parts. One can see from our numerical result that the
value of c obtained using fminbnd are comparable to the values
of c obtained using the Rippa method.

2.2.1. The solution of the linear system Ka ¼ F
The matrix K in (6) is invertible if and only if Eq. (4) has a

unique solution. Micchelli (1984) propose conditions on invertibil-
ity of K that can be checked for the multiquadric RBF and Gaussion
RBF. However, the approximation solution of the linear system is
computed by applying the truncated singular value decomposition
(TSVD) of K (Tony et al., 1990).

K ¼ URVT ¼
XN
i¼1

uirivT
i ; ð14Þ

where the left and right singular vectors ui and v i are the columns
of the matrices U and V , respectively, and ri are the singular values
of K .

We applied TSVD (Moroney, 2006) to castoff the small singular
values regarding to the benchmark where the singular values that
are equal to, or less than, the product of the largest singular value
with a chosen target e (machine epsilon) are ignored. Thus, if
ri 6 r1e we ignore ri; i ¼ 2; . . . ;N. A new matrix Kt is then formed
with rank t defined by:

Kt ¼
Xt

i¼1

uirivT
i ; t 6 rankðKÞ ð15Þ

and the solution to (6) is then approximated by:

a ¼ Ky
t F ¼

Xt

i¼1

uT
i F
ri

v i; ð16Þ

where the matrix Ky
t is the pseudoinverse of the matrix Kt .

2.3. Gaussion radial basis function-Clough-Tocher method

A new radial basis function Clough-Tocher (RBF-CT) method for
surface fitting is proposed in this paper. This method is based on
using local Gaussion RBF or global Gaussion RBF to evaluate the
gradient at the midpoints and the vertices of the Clough-Tocher tri-
angle. The Gaussion RBF is given by:

CðxÞ ¼
XN
i¼1

aiRðriÞ;

where RðrÞ is given in Eq. (5). Then, the gradient of C is given by:

rCðxÞ ¼
XN
i¼1

airRðriÞ; ð17Þ

where

rRðriÞ ¼ x� xi
ri

R0ðriÞ; ð18Þ

and R0 is the Gaussion radial basis function derivative given by

R0ðriÞ ¼ @R
@xk

;
@R
@yk

� �
¼ �2ðxk � xiÞc2e�r2c2 ;�2ðyk � yiÞc2e�r2c2

� �
:

2.3.1. Global and local Gaussion RBF-CT approximations
Our surface fitting method based on choosing a subset of n

points (the triangles vertices) from the whole data set to produce
a surface triangulation. Then the global Gaussion RBF-CT and local
Gaussion RBF-CT variants are considered. In the global Gaussion
RBF-CT method we constructed a global Gaussion RBF interpolant
CnðxÞ using these n points, subsequentlyrCnðxÞ is used to compute
the gradients for all CT triangles in the mesh. On the other hand, for
the local Gaussion RBF-CT method we used a local subset of size m
of the N points (m ¼ 20 or m ¼ 40 in our numerical experiments)
to build a local Gaussion RBF interpolant CmðxÞ for each triangle.
rCmðxÞ is then used to compute the CT triangle gradients. Note
that we choose these m points to be the closest points to each of
the edge midpoints and to the vertices of the CT element of
interest.

The process that uses this RBF-CT method for the purpose of
surface reconstruction is given in the following algorithm:

Algorithm 1: The Gaussion RBF-CT Method for Surface
reconstruction

INPUT: N data points fðxi; f iÞ; i ¼ 1; . . . ;Ng
Step 1: select a subset of n � N data points for the surface

triangulation.
Step 2: compute the RBF linear system (4) Using either a local

Gaussion RBF built on each triangle from m points OR a global
Gaussion RBF from n points.

Step 3: use the TSVD approach to estimate the solution of the
linear system

Step 4: construct the local or the global gradient using the coef-
ficients of the RBF

Step 5: construct the surface by applying the hybrid method
either locally rCmðxÞ Or globally rCnðxÞ to obtain the derivatives
of the CT interpolant.

Two methods to select the parameter c for use in the Gaussion
RBF were investigated. The first method based on using the algo-
rithm of Rippa either globally or locally while the second method
based on using the Matlab command Fminbnd given in Section 2.2.
In the global strategy, a total of n ¼ 100 points (all points) are used
to create one global value of copt for all CT elements; whereas in the
local approach, a total of m ¼ 20 or m ¼ 40 points are used to
obtain a local estimate of copt for each CT element.
3. Numerical Investigation for the Franke data set

The mathematical technique given in Section 2 is assessed using
numerical experiments presented in this section. To evaluate the
accuracy of these methods we used six test functions and two sub-
sets of data taken from Franke (1982). The first subset contains 33
points used to assess the accuracy of the methods by computing
the root mean square error (RMS) given in Eq. (19), while the sec-
ond subset consist of 100 data points which are used to construct
the triangulation of the surface, see Oqielat et al., 2009, 2007).

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

i¼1

½Zðai; biÞ � f ðai; biÞ�2

q

vuuuut
; ð19Þ

where f ðai; biÞ is the exact value of the function and Zðai; biÞ is the
estimate value at the equivalent points.

3.1. Gaussion radial basis function Clough-Tocher method

As mentioned before, the gradients of the CT element are not
given, we applied the global Gaussion RBF approach that uses all
N ¼ 100 data points and the local Gaussion RBF approach that
use m ¼ 20 or m ¼ 40 data points to compute the gradient of the
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CT triangle for the Franke data. The parameter c in the two cases
was approximated either globally using the n ¼ 100 data points
(Table 3), or locally using a selection of m ¼ 20 or m ¼ 40 neigh-
bouring points for each CT triangle (Table 4).Tables 2 and 3 show
the RMS errors for the six test functions using the global and local
RBF-CT method where the parameter c computed using Rippa
method. We observe that the RMS errors in both cases are almost
as good as the exact values given in Table 1. Moreover, the RMS
errors obtained using the global RBF-CT method appear similar to
those produced using the local RBF-CT method. The parameter c
computed using global method is less computationally costly than
using c locally because a new value of c must be calculated each
time the local RBF is constructed. Table 3 shows as expected the
global values of c were always contained in the local ranges of c
given for each of the functions.

Another observation from Tables 2 and 3 was that the RMS error
produced using the local RBF-CT method constructed with m ¼ 40
points was always found to be more accurate than the RMS pro-
duced for the surface representation constructed from m ¼ 20
points (for both cases whether c is approximated globally or
locally). Furthermore, it appears from our numerical experimenta-
tion for the Franke data that the local gradient estimates obtained
when m ¼ 40 using a globally determined value of c would be the
most computationally competitive of all of our methods when m is
large.

In fact the Gaussion RBF-CT method gives RMS errors quite
close to the case where the exact gradient is used (see Table 1).
We now carry this finding to the next section and explore the suit-
ability of the Gaussion RBF-CT surface fitting strategy for a real leaf
data set.

By profiling the codes in Matlab, we observed for the local and
global RBF-CT methods that most of the computational time was
spent in solving the gradient RBF problems via the TSVD. In conclu-
sion, we found that the global Gaussion RBF-CT method was the
most efficient of all methods tested, followed by the local Gaussion
RBF-CT method.

4. Application of the Gaussion RBF-CT method to a leaf data set

A set of points collected from real surface of a leaf are required
to be able to reconstruct the leaf surface. To evaluate the accuracy
of the Gaussion RBF-CT technique, the Gaussion RBF are used to
estimate the gradients of the clough-Tocher triangle for the
Anthurium leaf triangular mesh (Loch, 2004). The data of the
Anthurium leaf comprises of 4,688 leaf surface points and 79
boundary points, see Fig. 2.

Now to apply the Gaussion RBF-CT method to the Anthurium
data, a new reference plane for the data as well as a triangulation
for the surface of the leaf are required, see (Oqielat et al., 2009,
2007).

4.1. Reference plane of the leaf data

The leaf data points reference plane may not essential corre-
spond with the xy-plane in the coordinate system of the data
points. To solve this issue a least squares fit to the leaf points is
then used as reference plane and then rotating the coordinate sys-
tem to obtained the xy-plane as the new reference plane. To
achieve the rotations we need at first rotating the reference plane
normal vector about the y-axis into the yz-plane and then rotating
Table 1
The precise gradients for the Franke functions.

Function F1 F2 F3

Exact Gradient 2.6e�3 2.1e�3 1.
about the x-axis into the xz-plane, for more details about this pro-
cedure, see Oqielat et al. (2007, 2009).
4.2. Leaf surface triangulation

A subset of the Anthurium leaf data set (N ¼ 4688 points) is
selected to reduce the computational cost for surface fitting, these
subset are used to generate a triangulation of the surface of the leaf
using software written in the C language by Niceno (2003) called
EasyMesh mesh generator. EasyMesh produce two-dimensional
Delaunay and constrained Delaunay triangulations in general
domains. If the domain is convex then a better quality triangula-
tion can be achieved. EasyMesh was not capable to create the
wanted triangulation because the 79 Anthurium leaf boundary
points do not represent a convex set. To solve this issue we
employed an algorithm (Sedgewick, 1988) to produce the convex
hull, this algorithm return 49 points. After that, the closest points
to these 49 points from the original 79 boundary points were then
found using dsearch which is Matlab command. As a result of this
process the convex domain shown in Fig. 4(a) is defined using 38
boundary points.

To facilitate EasyMesh to construct fewer and better formed tri-
angles we can define either a vertical line or horizontal or in the
inner of the convex hull. Its appear that the vertical line produced
a more appropriate triangulation for the Anthurium leaf.

The following steps are applied to generate the triangulation of
the Anthurium leaf using EasyMesh:

Step 1: An input file that consists of the vertical line description,
the 38 boundary points and the length of the triangle edge for the
mesh elements is provided to the EasyMesh. A node file that con-
tained an extra 28 boundary points (introduced during the mesh-
ing process) to the original boundary points is return from
Easymesh in addition to 146 internal points (vertices of the mesh)
distributed inside the leaf shown in Fig. 4(a).

Step 2: We imported the node file that we got in step 2 into
Matlab and then the closest points in the leaf data set were located
from the internal points generated in step 1 using dsearch. These
resulting points were used as the triangle vertices of the leaf sur-
face mesh structure.

Step 3: The surface values of the nearest points from the leaf
data points to the EasyMesh boundary points are used as the
boundary points of the leaf for which we do not have surface
values.

Step 4: The leaf data points that were got from steps 2 and 3 are
then used to construct the surface triangulation using the Matlab
command delaunay. These four steps produce the final triangula-
tion for the leaf surface shown in Fig. 4(b).

After we generated the triangulation of the Anthurium leaf sur-
face, we applied the local and global Gaussion RBF-CT methods to
generate the leaf surface where the gradients at the triangles edge
midpoints and the vertices are approximated using the Gaussion
RBF (shown in Fig. 3). The global RBF-CT approach based on using
the triangulation points to built one global Gaussion RBF and then
using it to compute the gradients at the midpoints and vertices of
whole triangles in the leaf surface. The local Gaussion RBF-CT
approach is based on selecting the closest 30 points to the triangle
center and to each of the triangle vertices and then built one local
Gaussion RBF from the 120 points on each triangle. This local Gaus-
sion RBF is then used to estimate the gradient at the midpoints and
F4 F5 F6

4e�4 4.1e�5 2.6e�4 8.7e�5



Table 2
The RMS error comparison using the global Gaussion RBF-CT (n ¼ 100 points) and local Gaussion
RBF-CT interpolants (m ¼ 20 or m ¼ 40 points) for the six test functions. The parameter c was
computed globally by Rippa method using the n ¼ 100 points.

Function c Global RBF-CT Local RBF-CT

m = 40 m = 20

F1 5.1410 4.1e�3 4.2e�3 6.8e�3
F2 5.3375 4.9e�3 4.6e�3 3.5e�3
F3 3.3918 2.1e�4 2.4e�4 5.7e�4
F4 2.3529 2.1e�4 2.4e�4 2.9e�5
F5 4.3286 2.1e�4 2.5e�4 5.3e�4
F6 1.0750 2.0e�5 5.0e�5 4.6e�5

Table 3
The RMS error comparison using the local Gaussion RBF-CT interpolant (m ¼ 20 or m ¼ 40 points) for the six test functions. The parameter c was computed locally by Rippa
method using the same (m ¼ 20 or m ¼ 40) points.

Function Local RBF-CT (m = 40) Local RBF-CT (m = 20)

½cmincmax� RMS ½cmincmax � RMS

F1 [2.4813 5.1762] 2.7e�3 [0.5239 6.0677] 4.2e�3
F2 [2.1843 13.0018] 4.4e�3 [0.3399 26.2243] 3.1e�3
F3 [1.382 3.2387] 1.9e�4 [0.3942 3.3897] 4.2e�4
F4 [2.1202 2.3270] 1.9e�4 [1.8912 2.3070] 3.9e�5
F5 [3.6589 4.5927] 2.6e�4 [2.1005 10] 3.3e�4
F6 [0.5724 2.7912] 2.4e�5 [0.2375 0.4812] 2.9e�5

Fig. 2. The data points for the Anthurium Leaf. There are 79 boundary points
(characterized by the larger dots) and 4,688 surface points (characterized by the
smaller dots).

Fig. 3. The Anthurium leaf model constructed from the points (shown in Fig. 2)
using the Gaussion RBF-CT technique.

Table 4
Maximum error and Relative RMS error calculated using the global and local Gaussion
RBF-CT technique for the data points of the Anthurium leaf.

Local RBF-CT Global RBF-CT

RMS Error 0.03234 0.0194
Max. Error 0.9260 0.1206
Triangles Number 178 178
RMS Error 0.1177 0.0098
Max. Error 0.0810 0.0472
Triangles Number 391 391
RMS Error 0.0086 0.0079
Max. Error 0.5331 0.4560
Triangles Number 1486 1486
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vertices of the CT triangle. In both cases we used Rippa method
(Rippa, 1999) to estimate the parameter c globally using the trian-
gular mesh points. The Numerical results for these methods are
given in Table 4.

4.3. Leaf surface numerical experiments

The outcome of applying the Gaussion RBF-CT technique to the
data of the Anthurium leaf is given in this section. As mentioned
before a subset of the leaf surface data are used for triangulation
purposes, the remaining data points of the leaf data (say m) were
used to assess the method quality by two error metrics. These
two error metrics are the RMS error (see Eq. (19)) and the maxi-
mum error associated with the surface fit in relation to the maxi-
mum variation in z as

MaximumError ¼ maxðjSðai; biÞ � zijÞ
maxðziÞ �minðziÞ ;

where zi and Sðai; biÞ; i ¼ 1;2; . . . ;m are respectively the given values
of the function and the CT estimated values at the data points (m).

To achieve a high accurate representation of the leaf surface and
to confirm that our results were consistent as the mesh was
refined, we used EasyMesh to construct three different triangula-
tion (178, 391 and 1,486 triangles) given in Figs. 4(b) and 5(a)-(b).

Table 4 shows the maximum errors and the relative RMS using
the local and global Gaussion RBF-CT techniques for the Anthurium
leaf for three different triangulations, see Figs. 4 and 5. The relative
RMS was calculated using:

RelativeRMS ¼ RMS
maxðziÞ �minðziÞ ; i ¼ 1;2; . . . ;m:

Note that three sets of the Anthurium leaf points were employ
to measure the accuracy of the leaf surface. The first set consist of
4,427 data points where the EasyMesh triangulations contained
103 vertices (178 triangles) including 52 boundary points; While



Fig. 5. The triangulation of the Anthurium leaf surface constructed using EasyMesh of (a) Rougher mesh of 103 points and (b) a improved mesh of 762 points.

Fig. 4. a) The interior (Triangle vertices) and boundary points of the mesh build by Easymesh. The � points are the 146 internal points; the dot points are the 28 extra points
added by Easymesh, while The square points are the 38 boundary points that are given to Easymesh. b) Triangulation of the 212 points of the Anthurium leaf surface
constructed by EasyMesh.
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the second set consist of 4,460 data points where the EasyMesh
triangulations contained 212 vertices (391 triangles) including 66
boundary points; whereas the third set consist of 3,793 data
points and the EasyMesh triangulations contained 762 vertices
(1486 triangles) including 106 boundary points.

We observed from Table 4 that using the global Gaussion RBF-
CT method gave more accurate maximum errors and RMS values
than using the local Gaussion RBF-CT method in all three cases.
Moreover, a more accurate representation of the surface is
obtained for the global method when the number of triangular ele-
ments increases. This observation is expected and provides a
reasonable justification for the Gaussion RBF-CT method for
achieving the leaf surface representation.

The number of points used to build the local Gaussion RBF is
important for the gradients estimate accuracy. In our research
we have used the closest 30 points to the centroid of the triangle
and to each vertex where the computational cost is reasonable
and we got the best result, whereas using more points increase
the computational expense and does not improve the accuracy
much. Moreover using less points result in decreasing the precision
of the fit because of inadequate points being employed to deliver a
accurate local surface representation to guarantee esensible esti-
mation of the gradient.
5. Conclusions

In this research, we presented a surface fitting method based on
mathematics for modelling the surface of the leaf from three-
dimensional scanned data points and shown that our method pro-
duce an accurate leaf surface representation. The surface represen-
tation can be used to find the path of pesticide or water droplet on
a leaf surface and then to determine the effectiveness of treatment
of different pesticide formulations.
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