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A generalized non-integer Lennard-Jones (L-J) potential function with an additional parameter m is pro-
posed to calculate the cohesive energy and melting point of nanoparticles. The model based on the new
generalized non-integer L-J potential function has been successful in predicting experimental values. The
calculated cohesive energies show an excellent agreement with the experimental values of the cohesive
energies of molybdenum (Mo) and tungsten (W) nanoparticles (Kim et al., 2002). Moreover, the calcu-
lated melting points based on the generalized non-integer L-J potential function agree with the experi-
mental values for large gold (Au) nanoparticles including n � 1000 atoms (Buffat and Borel, 1976) and
small silica-encapsulated gold (Au) nanoparticles including n � 1500 atoms (Dick et al., 2002). The sta-
bility of nanoparticles is due to two conditions: the increase of the range of the attractive force and
the high gradient attractive interaction in the potential function when rij � r0.
� 2021 The Author. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction:

The size dependence of the physical properties of nanoparticles
is one of the most important research topics which relates to the
cohesive energy of nanoparticles (Qi, 2016). Many theoretical mod-
els were produced such as the surface-to-volume atomic ratio (Xie
et al., 2004) which was modified to consider the surface/interface
energy as a key parameter in the calculation of cohesive energy
(Davari and Jabbareh, 2020), the surface-area-difference model
(Qi et al., 2005), a nonlinear lattice type sensitive model (Safaei,
2010a,b; Safaei et al., 2007), the thermodynamics model (Ouyang
et al., 2012), the embedded-atom-method potential (Liu et al.,
2013) and the bond energy model (Qi, 2005, 2016). Other theoret-
ical models were also proposed in order to calculate the cohesive
energy of nanoparticles based on the potential function by summa-
tion of the bond energies of all the atoms such as the Lennard-
Jones (L-J) potential function (Qi et al., 2004; Nayak et al., 2019),
the Mie-type potential function (Barakat et al., 2007), the Morse
potential function (Aldossary and Al Rsheed, 2020a), and the gen-
eralized Morse potential function (Aldossary and Al Rsheed,
2020b). Moreover, density functional theory was used to calculate
the melting point of nanoparticles (Abdullah et al., 2018), which
allows the study the structural stability of nanoparticles (Nanba
et al., 2017, Dietze et al., 2019).

The available measured values of the cohesive energies have
reported for molybdenum (Mo) nanoparticles containing 2000
atoms and tungsten (W) nanoparticles containing 7000 atoms with
an FCC structure (Kim et al., 2002). The cohesive energies of the Mo
and W nanoparticles was successfully predicted by different mod-
els such as the surface-to-volume ratio dependent cohesive energy
(Xie et al., 2004) and a nonlinear lattice type sensitive model
(Safaei, 2010b). The cohesive energy of the nanoparticles contain-
ing n atoms in an equilibrium configuration was based on the L-J
12;6ð Þ potential function (Qi et al., 2004). The cohesive energies
that ware calculated by the Qi et al. (2004) model for nanoparticles
in an FCC structure disagree with the experimental values of Mo
and W nanoparticles. However, the experimental values of Mo
and W nanoparticles can be predicted by the Qi et al. (2004) model
if the structure of the Mo and W nanoparticles are a regular octa-
hedron (Nayak et al., 2019). Other potential functions have also
succeeded to predict the cohesive energy of Mo and W nanoparti-
cles such as the Mie-type 6;5ð Þ potential function (Barakat et al.,
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2007), and the Morse potential function with a � 3 (Aldossary and
Al Rsheed, 2020a; Aldossary and Al Rsheed, 2020b).

The size-dependent melting point of nanoparticles has been
observed in many metals such as Au (Buffat and Borel, 1976;
Dick et al., 2002), Sn (Jiang et al., 2006), Cu (Yeshchenko et al.,
2007), Ag (Little et al., 2012), etc. Many theoretical models were
found that the size-dependent melting point of nanoparticle fol-
lows the Gibbs-Thompson relation (Pawlow, 1909). The Gibbs-
Thompson relation has been formulated by three different thermo-
dynamic models: the homogeneous liquid-dropmodel (LDM) (Dick
et al., 2002), the liquid shell nucleation model (LSN) (Zhang et al.,
2000), and the liquid nucleation and growth model (LNG)
(Vanfleet and Mochel, 1995). Other hypothetical models were pro-
posed to formulate the Gibbs-Thompson relation such as the
surface-to-volume ratio model (Qi and Wang, 2004; Qu et al.,
2017), the surface-area-difference (SAD) model (Qi et al., 2005),
and a nonlinear lattice type sensitive model (Safaei, 2010a,b). The
surface-to-volume ratio model (Qu et al., 2017) and the thermody-
namic models were used to calculate the melting point of Au
nanoparticle as a function of thickness in agreement with experi-
mental values (Buffat and Borel, 1976). Moreover, a nonlinear lat-
tice type sensitive model (Safaei, 2010b) and a model based on the
generalized Morse potential function (Aldossary and Al Rsheed,
2020b) were used to predict the experimental values of Au
nanoparticles melting points (Buffat and Borel, 1976; Dick et al.,
2002).

The potential functions that have been used to calculate the
cohesive energy and the melting point of the nanoparticle consist
two types of interactions between the atoms in: the short-range
repulsive interaction and the long-range attractive interaction
(Kittel, 2005). The stability of nanoparticles is due the equilibrium
between the short-range repulsive interaction and the long-range
attractive interaction. The stability of the nanoparticles based on
the Mie-type Potential function (Barakat et al., 2007) and the
Morse potential function (Aldossary and Al Rsheed, 2020a) is due
to the softening of the repulsive interaction. However, the stability
of nanoparticles based on the generalized Morse potential function
(Aldossary and Al Rsheed, 2020b) is due to the enlargement of the
long-range attractive interaction.

The generalized Morse potential function that has been used to
calculate the cohesive energy and the melting points of nanoparti-
cles is a modification of the Morse potential function that keeps the
repulsive wall stiff and enlarges the range of the attractive interac-
tion (Aldossary and Al Rsheed, 2020b). The Morse long-range
potential function is a modified potential that has been used to
describe the spectroscopy of diatomic molecules N2 (Le Roy et al.,
2006) and CO2-H2 complexes (Li et al., 2010). The Morse, long-
range potential function is generalized to include a 3-state spin–
orbit coupling (Dattani and Le Roy, 2011). In specific, the asymp-
totic form of the Morse, long-range potential function is used to
predict the spectroscopy of molecular ions (Dattani and
Puchalski, 2014), open shell molecules (Dattani, 2015a), the multi-
ple spin–orbit daughters (Dattani and Le Roy, 2015), highly exited
states (Dattani, 2015b), polyatomic molecules (Dattani, 2018) and
for fitting of pure rotational data (Dattani et al., 2014).

The aim of the present work to modify the Lennard-Jones (L-J)
potential function to predict values for the cohesive energy and
melting points of nanoparticles. Additionally, it aims to investigate
all possible conditions related to nanoparticle stability.

The paper is organized as follows. In Section 2 we describe the
theory of the generalized non-integer Lennard-Jones (L-J) potential
and model to calculate the cohesive energy for nanoparticles. Sec-
tion 3 consists of three subsections: the first focuses on the calcu-
lations of the cohesive energies based on the non-integer Lennard-
Jones (L-J) potential function. The second is on the calculations of
the cohesive energies based on the generalized non-integer
2

Lennard-Jones (L-J) potential function and the effect of the new
parameter m. The last subsection is on the calculation of the melt-
ing point and comparisons to the experimental values of Au
nanoparticles. Finally, in Section 4, discussions about the validity
of the proposed potential function are presented.
2. Theory and model:

The Lennard-Jones (L-J) potential 2n;nð Þ function, where n is an
integer parameter equal to 6 for the classical form of the L-J 12;6ð Þ
potential (Lennard-Jones, 1924), is given by the equation below:

Uij ¼ D
r0
rij

� �2n

� 2
r0
rij

� �n
( )

ð1Þ

where D represents the depth of the potential, rij is the relative dis-
tance between two atoms, and r0 is the nearest distance between
two atoms in the nanoparticle.

A non-integer L-J potential function is proposed in the present
model. However, the integer parameter n of the formal L-J poten-
tial function is replaced by a non-integer parameter b as follows:

Uij ¼ D
r0
rij

� �2b

� 2
r0
rij

� �b
( )

ð2Þ

In the previous work (Aldossary and Al Rsheed, 2020b) a new
generalized Morse potential was proposed as seen in Eq. (3) by
introducing a new parameterm ¼ 1;2;3; � � �ð Þwith the aim to calcu-
late the cohesive energy and the melting point of nanoparticles
such that:

UGMij ¼ D
m

X2m
k¼1

�1ð Þk 2m� ðk� 1Þð Þe�ka
rij
r0
�1

� �
ð3Þ

where a is the dimensionless Morse potential parameter (Morse,
1929; Girifalco and Weizer, 1959).

The modified Morse, long-range potential function has been
proposed to analyze the spectroscopic data of diatomic molecules
(Le Roy et al., 2006). It was found that the asymptotic form of
the Morse, long-range potential function is the Lennard-Jones (L-
J) 12;6ð Þ potential function plus terms with lower power of 1=rij
(Le Roy et al., 2009; Dattani and Puchalski, 2014; Dattani,
2015a). Moreover, if the relative distance between two atoms is
rij � r0 in the generalized Morse potential function, then

e
�ka

rij
r0
�1

� �
¼ 1=e

rij
r0
�1

� � !ka

� r0=rij
� �ka. Therefore, in the present

model a generalized non-integer Lennard-Jones (L-J) potential
function is proposed as follows:

ULJij ¼ D
m

X2m
k¼1

�1ð Þk 2m� ðk� 1Þð Þ r0
rij

� �kb

; ð4Þ

where b is a dimensionless parameter that is related to the general-
ized non-integer (L-J) potential function and m is a parameter that
controls the number of terms of the potential function (whenm ¼ 1,
then the generalized non-integer (L-J) potential function becomes
the normal non-integer (L-J) potential as in Eq. (2)). The new gener-
alized non-integer Lennard-Jones (L-J) potential function satisfies
all conditions (Kittel, 2005) of potential functions that describe
the bond between two atoms as seen in Fig. 1. The potential curves
in Fig. 1 are plotted using Eq. (4) for different values of them param-
eter and for a fixed b parameter. In particular, as the value of them
parameter increases, the repulsive wall of the potential becomes
stiffer and the gradient of the long-range part when rij � r0 becomes
larger.



Fig. 1. The generalized L-J potential curves for different values of the m parameter and a fixed value of the b parameter presented as a function of reduced relative distance
between two atoms.
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The cohesive energy per atom of the nanoparticles can found
using the following formula (Kittel, 2005):

Ea ¼ D
2m

X2m
k¼1

�1ð Þk 2m� ðk� 1Þð Þ Akb

r�ð Þkb
ð5Þ

where r� ¼ r=r0 is the reduced nearest distance between two atoms,

Akb ¼ 1
n

Xn
i¼1

Xn
j¼1
j–i

1
aij

� �kb

ð6Þ

with different values of k ¼ 1;2; � � � ;2mð Þ being the potential param-
eters, and aij ¼ rij=r. The potential parameters Akb are dependent on
the structure and the size of the nanoparticles. Moreover, these
potential parameters depend on the range of potential terms that
they are associated with.

The equilibrium value of the reduced nearest distance between
two atoms r� is r�0 that can be obtained by minimizing Eq. (5) is as
follows:

dEa

dr�

����
r�¼r�0

¼ �bD
2m

X2m
k¼1

�1ð Þk 2m� ðk� 1Þð Þ kAkb

r�0
� �kbþ1 ¼ 0 ð7Þ

For m ¼ 1, the equilibrium reduced nearest distance between
two atoms r�0 is:

r�0 ¼ A2b

Ab

� �1
b

ð8Þ

However, the equilibrium relative distance r�0 for m > 1 is
obtained numerically.

The cohesive energy per atom in the equilibrium configuration
is:

Ea ¼ D
2m

X2m
k¼1

�1ð Þk 2m� ðk� 1Þð Þ Akb

r�0
� �kb ð9Þ

The relative cohesive energy of a nanoparticle is the ratio
between the cohesive energy per atom and the cohesive energy
of the corresponding bulk material E0:

Ea

E0
¼ P0

2m

X2m
k¼1

�1ð Þk 2m� ðk� 1Þð Þ Akb

r�0
� �kb ð10Þ
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where

P0 ¼ 2mP2m
k¼1 �1ð Þk 2m� ðk� 1Þð Þ A

0
kb

r�0ð Þkb
ð11Þ

and A
0
kb’s are the corresponding potential parameters of the bulk

materials (when n ! 1). The values of A
0
kb’s for different cubic

structures can be obtained from Fig. 2 that are calculated by using

Eq. (6) when n ! 1. The values of A
0
kb’s for different cubic struc-

tures grow to infinity when b < 2. Consequently, there is a limit
value for choosing b that can be accepted to keep the values of

A
0
kb’s finite.
3. Results and Discussion:

3.1. Non-integer L-J potential:

The cohesive energies of nanoparticles in an FCC structure are
calculated based on the non-integer L-J potential function that is
given by Eq. (2) for two different values of b parameters and com-
pared to the cohesive energies that were calculated using the
Morse Potential (Eq. (3) with m ¼ 1) for two different values
a ¼ 3:03 and 3:1 with the aim to predict the cohesive energy of a
W and Mn nanoparticle respectively (Aldossary and Al Rsheed,
2020a) as seen in Fig. 3. Moreover, the calculated cohesive energies
are also compared to the experimental values for the cohesive
energy of Mo (0.686 for n ¼ 2000 atoms) and W nanoparticles
(0.751 for n ¼ 7000 atoms) (Kim et al., 2002, Edgar, 1993). The cal-
culated cohesive energies using the non-integer L-J potential agree
with the experimental values for the cohesive energies of Mo and
W nanoparticles. The nanoparticle stability exhibited using the
Morse Potential is due to the softening of the repulsive wall of
potential energy (Aldossary and Al Rsheed, 2020a). However, the
non-integer L-J potential function can predict stable nanoparticles
with stiffer repulsive walls than the Morse Potential as seen in
Figs. 4a and Fig. 5a. In general, the stability of the nanoparticle is
a result of the equilibrium between the repulsive force (Pauli
repulsion force) and the attractive force (such as attractive dipole
force) that are exerting on each atom in the nanoparticle. Both
forces depend on the gradient of the potential function
(Fij ¼ rrUij). As seen in Figs. 4b and Fig. 5b, the gradient of the



Fig. 2. The variation of potential parameter A0
kb for different cubic structures with the kb parameter.

Fig. 3. The variation of the relative cohesive energy of nanoparticles in an FCC structure as function of the number of atoms using L-J potential for different values of b and
compared to the calculated relative cohesive energy using Morse potential (Aldossary and Al Rsheed, 2020a) and the experimental values of Mo and W nanoparticles (Kim
et al., 2002).

Fig. 4. a) The potential curves of the L-J potential function (b ¼ 3:95) and the Morse potential function (a ¼ 3:03) and b) The gradient of the L-J potential function (b ¼ 3:95)
and the gradient of the Morse potential function (a ¼ 3:03) (where F0 ¼ D=r0) as functions of reduced relative distance between two atoms.
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Fig. 5. a) The potential curves of the L-J potential function (b ¼ 4:2) and the Morse potential function (a ¼ 3:1) and b) The gradient of the L-J potential function (b ¼ 4:2) and
the gradient of the Morse potential function (a ¼ 3:1) (where F0 ¼ D=r0) as functions of reduced relative distance between two atoms.

Fig. 6. The variation of the relative cohesive energy of nanoparticles in an SC structure for different values of them parameter and a fixed value of b parameter (b ¼ 3:6) with a
comparison to the experimental values of the relative cohesive energy of Mo and W nanoparticles (Kim et al., 2002).
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attractive interaction in the L-J potential is larger than in the Morse
potential when the distance between two atoms is rij � r0. As
result, the gradient of the long-range attractive (the attractive
force) in the L-J potential when the relative distance between
two atoms in equilibrium is enough strong to cancel the effect of
the gradient of the repulsive wall in the L-J potential (the repulsive
force). Consequently, the stability of nanoparticle is due to the
large gradient of the long-range in the potential function when
the relative distance between two atoms near the equilibrium.

3.2. Generalized Non-integer L-J potential:

The generalized Non-integer L-J potential is used to calculate
the cohesive energy for different values of m and fixed value of b
and for different cubic structures of nanoparticles: SC as in Fig. 6
(b ¼ 3:6), Fig. 7 (b ¼ 3:8), and Fig. 8 (b ¼ 4); FCC as in Fig. 9
(b ¼ 3:6), Fig. 10 (b ¼ 3:8), and Fig. 11 (b ¼ 4); BCC as in Fig. 12
(b ¼ 3:6), Fig. 13 (b ¼ 3:8), and Fig. 14 (b ¼ 4). Moreover, the calcu-
lations of cohesive energies are compared to the experimental val-
5

ues of cohesive energy of Mo and W nanoparticles (Kim et al.,
2002; Edgar, 1993). The calculations show that the value of m
parameter, the value of b parameter, and the structure of nanopar-
ticle effect on the values of cohesive energy of nanoparticle. It is
found that nanoparticles with a given number of atoms (for exam-
ple n ¼ 2000 atoms) can be become stable with a low value of
cohesive energy if the values of m and b parameters in the gener-
alized L-J potential function are decreased as seen in Table 1.

Moreover, the experimental values of the cohesive energy such
as for Mo nanoparticles (Ea=E0 ¼ 0:686 for n ¼ 2000 atoms (Kim
et al., 2002; Edgar, 1993)) can be successfully predicted using lager
values for the m parameter if the value of the b parameter is
decreased in the generalized L-J potential function as seen in
Fig. 15. The values m and b parameters that can predict the exper-
imental value of cohesive energy of Mo nanoparticle are summa-
rized in Table 2. The values m and b parameters in the Table 2
are used to plot the potential curves as seen in Fig. 16a. The poten-
tial curves confirm that the stability of the nanoparticle with large
repulsive force (large value of m parameter) is due to the large



Fig. 7. The variation of the relative cohesive energy of nanoparticles in an SC structure for different values of the m parameter and a fixed value of the b parameter (b ¼ 3:8)
with comparisons to the experimental values of the relative cohesive energy of Mo and W nanoparticles (Kim et al., 2002).

Fig. 8. The variation of the relative cohesive energy of nanoparticles in an SC structure for different values of the m parameter and a fixed value of the b parameter (b ¼ 4)
with comparisons to experimental values of the relative cohesive energy of Mo and W nanoparticles (Kim et al., 2002).

Fig. 9. The variation of the relative cohesive energy of nanoparticles in an FCC structure for different value of the m parameter and a fixed value of the b parameter (b ¼ 3:6)
with comparisons to the experimental values of the relative cohesive energy of Mo and W nanoparticles (Kim et al., 2002).
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Fig. 10. The variation of the relative cohesive energy of nanoparticles in an FCC structure for different values of them parameter and a fixed value of the b parameter (b ¼ 3:8)
with comparisons to the experimental values of the relative cohesive energy of Mo and W nanoparticles (Kim et al., 2002).

Fig. 11. The variation of the relative cohesive energy of nanoparticles in an FCC structure for different values of the m parameter and a fixed value of the b parameter (b ¼ 4)
with comparison to the experimental values of the relative cohesive energy of Mo and W nanoparticles (Kim et al., 2002).

Fig. 12. The variation of relative cohesive energy of nanoparticles in an BCC structure for different value of m parameter and fixed value of b parameter (b ¼ 3:6) and
compared to the experimental values of relative cohesive energy of Mo and W nanoparticles (Kim et al., 2002).
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Fig. 13. The variation of the relative cohesive energy of nanoparticles in an BCC structure for different values of them parameter and a fixed value of the b parameter (b ¼ 3:8)
in comparison to the experimental values of the relative cohesive energy of Mo and W nanoparticles (Kim et al., 2002).

Fig. 14. The variation of the relative cohesive energy of nanoparticles in an BCC structure for different value of the m parameter and a fixed value of the b parameter (b ¼ 4)
with comparisons to the experimental values of the relative cohesive energy of Mo and W nanoparticles (Kim et al., 2002).

Table 1
The values of relative cohesive energy of a nanoparticle containing 2000 atoms in different cubic structures and different values
of m and b parameters.

O.M. Aldossary Journal of King Saud University – Science 33 (2021) 101316
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Fig. 15. The variation of the cohesive energy using the b parameter for a nanoparticle in an FCC structure containing 2000 atoms for different values of them parameter and a
comparison with the experimental values of the cohesive energy of Mo nanoparticles (Kim et al., 2002).

Table 2
The values of m and b parameters of the generalized L-J
potential function that can predict the experimental
value of cohesive energy of Mo nanoparticle
(Ea=E0 ¼ 0:686 for n ¼ 2000 atoms (Kim et al., 2002)).

m b

1 4.2
2 4.04
3 3.98
4 3.94

O.M. Aldossary Journal of King Saud University – Science 33 (2021) 101316
gradient in the long-range in the potential function when the rela-
tive distance between two atoms near the equilibrium as seen in
Fig. 16b.

Similarly, the experimental value of cohesive energy of Mo
nanoparticle was predicted by using generalized Morse potential
function with large value of m parameter if the value of b is low-
ered (Aldossary and Al Rsheed, 2020b). However, the stability of
Fig. 16. a) The potential curves of the L-J potential function and b) the gradient of the L-J
functions of reduced relative distance between two atoms.

9

the nanoparticles that was explained by using the generalized
Morse potential function is due to the increased range of the
attractive interaction part in the potential function.

The potential function that is given by Eq. (4) can be written in
expanded form as follows:

ULJij ¼ D
m

r0
rij

� �2mb

þ 3
r0
rij

� �2mb�2

þ � � � þ 2m� 1ð Þ r0
rij

� �2
 !(
�2
r0
rij

� �2mb�1

þ 4
r0
rij

� �mb�3

þ � � � þm
r0
rij

� �b
 !)

ð12Þ

The first parenthesis inside the curly brackets represents the
repulsive interaction, whereas the second parenthesis represents
the attractive interaction. The enlargement of the attractive force
can be obtained by keeping the parameter m large (which makes
the gradient of the attractive interaction large) and the parameter
b small (which enlarges the range of the attractive interaction).
potential function for different values ofm and b parameters (where F0 ¼ D=r0) a) as
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3.3. The melting point of Au nanoparticles:

It was reported that the cohesive energy of materials is linearly
proportional to its melting point Tm (Dash, 1999), which is
expressed as:

Tmbulk ¼ 0:032
E0

kb
ð13Þ

where kb is the Boltzmann constant.
The melting point is a size-dependent property of nanoparticles

(Buffat and Borel, 1976; Dick et al., 2002; Qi, 2005) which can be
written as a function of the number of atoms n. Therefore, the ratio
of the melting point of nanoparticles with n atoms to the bulk
melting point equals to the relative cohesive energy
(Tm=Tmbulk ¼ Ea=E0), and using Eq. (10) to get:

Tm

Tmbulk
¼ P0

2m

X2m
k¼1

�1ð Þk 2m� ðk� 1Þð Þ Akb

r�0
� �kb ð14Þ

The ratio Tm=Tmbulk is calculated using Eq. (14) for nanoparticles
in an FCC structure as a function of the number of atoms n for dif-
Fig. 17. The variation of the ratio Tm=Tmbulk of nanoparticles in an FCC structure using the
same value of m ¼ 1 with comparison to two experimental sets of melting points of Au

Fig. 18. The variation of ratio Tm=Tmbulk of nanoparticles in an FCC structure using Morse p
of m ¼ 2 with comparison to two experimental sets of melting points of Au nanoparticl

10
ferent values of the m and b parameters: Fig. 17 (m ¼ 1 and
b ¼ 4:6), Fig. 18 (m ¼ 2 and b ¼ 4:52), and Fig. 19 (m ¼ 3 and
b ¼ 4:4). The results are compared to the calculations of the same
ratio using the generalized Morse Potential (Aldossary and Al
Rsheed, 2020b) for different values of m and a parameters:
Fig. 17 (m ¼ 1 and a ¼ 3:3), Fig. 18 (m ¼ 2 and a ¼ 2:8), and
Fig. 19 (m ¼ 3 and a ¼ 2:5). Moreover, the calculations also are
compared to two different experimental sets of melting points of
Au nanoparticles (the mass density is q ¼ 18:4g=cm3 (Haynes,
2005) and the bulk melting point is Tmbulk ¼ 1337:3K (Buffat and
Borel, 1976)). The first of the experimental data represents the
melting point of Au nanoparticles deposited on an amorphous car-
bon substrate (Buffat and Borel, 1976). The second set of the exper-
imental data represents the melting point of silica-encapsulated Au
nanoparticles (Dick et al., 2002). The accuracy for the first set of the
experimental data for the larger Au nanoparticles is better than for
the smaller Au nanoparticles because of the effect of the substrate
(Lee et al., 2005). On other hand, the second set has good accuracy
with small Au nanoparticles because the silica shell does not influ-
ence the melting point for the small Au nanoparticles (Dick et al.,
2002).
Morse potential function (a ¼ 3:3) and the L-J potential function (b ¼ 4:6) with the
nanoparticles (Buffat and Borel, 1976; Dick et al., 2002).

otential function (a ¼ 2:8) and L-J potential function (b ¼ 4:52) with the same value
es (Buffat and Borel, 1976; Dick et al., 2002).



Fig. 19. The variation of ratio Tm=Tmbulk of nanoparticles in an FCC structure using the Morse potential function (a ¼ 2:5) and the L-J potential function (b ¼ 4:4) with the same
value of m ¼ 3 and comparison to two experimental sets of melting points of Au nanoparticles (Buffat and Borel, 1976; Dick et al., 2002).
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The melting points for both sets are given as function nanopar-
ticles diameters Dn, however, the number of atoms of nanoparti-
cle in an FCC structure with given diameters Dn can be found

using the following relation: n ¼ 0:74 Dn=dð Þ3 þ 1:82 Dn=dð Þ2
(Safaei, 2010a; Safaei et al., 2007), where d is the atomic diame-
ter. The calculation of the melting points (with different values of
m and b parameters) in Figs. 17–19 show an agreement with the
experimental values of the melting points of the large Au
nanoparticles (Au nanoparticles that have n > 1000 atoms) from
the first experimental set and disagreement with the small Au
nanoparticles due to the substrate effect. On the contrary, the cal-
culations of melting points show an agreement with the experi-
mental values of melting points of the small Au nanoparticles
(Au nanoparticles that have n � 1500 atoms) from the second
experimental set.

The values of m, b (for L-J potential function), and a (for Morse
potential function) parameters that predict the experimental val-
Fig. 20. a) The potential curves of the generalized L-J potential function (m ¼ 1, b ¼ 4:6) a
the generalized L-J potential function (m ¼ 1; b ¼ 4:6) and the gradient of the general
reduced relative distance between two atoms.

11
ues of melting points of Au nanoparticles in Figs. 17–19 are used
to plot the potential curves of the L-J potential function and the
Morse potential function as seen in Figs. 20–22a. As seen in
Figs. 20a–22a, the range of the attractive interaction part in the
L-J potential function is similar as in the Morse potential function
which plays an important role in the stability of the nanoparticles
(Aldossary and Al Rsheed, 2020b). On other hand, the repulsive
walls in the L-J potential function are stiffer than in the Morse
potential function. Moreover, the gradient of the attractive interac-
tion in the L-J potential is larger than that in the Morse potential
when rij � r0as seen in Figs. 20b–22b. When the value of the m
parameter in the L-J potential function increases then the repulsive
wall becomes stiffer and the gradient of the attractive interaction
part in the potential becomes high when rij � r0. As result, the high
gradient of the attractive interaction in the L-J potential function
when rij � r0. plays an important role in the stability of the
nanoparticles.
nd the generalized Morse potential function (m ¼ 1; a ¼ 3:3) and b) The gradient of
ized Morse potential function (m ¼ 1;a ¼ 3:3) (where F0 ¼ D=r0) as a functions of



Fig. 22. a) The potential curves of the generalized L-J potential function (m ¼ 3, b ¼ 4:4) and the generalized Morse potential function (m ¼ 3; a ¼ 2:5) and b) The gradient of
the generalized L-J potential function (m ¼ 3; b ¼ 4:4) and the gradient of the generalized Morse potential function (m ¼ 3;a ¼ 2:5) (where F0 ¼ D=r0) as functions of the
reduced relative distance between two atoms.

Fig. 23. The potential curves of the L-J potential function (b ¼ 6), the generalized L-J potential functions (m ¼ 2, b ¼ 4:52) and (m ¼ 2; a ¼ 4) as functions of the reduced
relative distance between two atoms.

Fig. 21. a) The potential curves of the generalized L-J potential function (m ¼ 2, b ¼ 4:52) and the generalized Morse potential function (m ¼ 2; a ¼ 2:8) and b) The gradient of
the generalized L-J potential function (m ¼ 2; b ¼ 4:52) and the gradient of the generalized Morse potential function (m ¼ 2;a ¼ 2:8) (where F0 ¼ D=r0) as functions of the
reduced relative distance between two atoms.

O.M. Aldossary Journal of King Saud University – Science 33 (2021) 101316

12



O.M. Aldossary Journal of King Saud University – Science 33 (2021) 101316
4. Conclusions

The non-integer Lennard-Jones (L-J) potential function and its
generalized form can be used to predict the cohesive energies
and the melting points of nanoparticles. The values of the calcu-
lated cohesive energies and the melting points of nanoparticles
depend on the values of the L-J potential parameters m and b
and the structure of the nanoparticles due to the existence of the
lattice structure aij. It is found that the nanoparticles can be stable
with low cohesive energy if the parameters m and b are decreased.

The repulsive wall in the generalized non-integer L-J potential
function is stiffer than in the generalized Morse potential function.
Therefore, the stability of the nanoparticles based on the general-
ized non-integer L-J potential function is because of two conditions
that cancel the Pauli repulsive force: The first condition is the
enlargement in the attractive interaction range of the potential
function (which is also satisfied in the generalized Morse potential
function). The second condition is the high gradient of the attrac-
tive interaction part in the L-J potential function when rij � r0.

The generalized non-integer L-J potential function with m ¼ 2
can predict the experimental values of the cohesive energies of
Mo and W nanoparticles when b ¼ 4 and 4:2 respectively, and
the melting points of Au nanoparticles when b ¼ 4:52. The repul-
sive walls of the generalized non-integer L-J potential function
with m ¼ 2 and b between 4 and 4:5 is around the repulsive wall
of the L-J 12;6ð Þ potential function as seen in Fig. 23. The repulsive
wall of the generalized non-integer L-J potential function with
m ¼ 2 represents the Pauli repulsive force in the L-J 12;6ð Þ poten-
tial function (Lennard-Jones, 1924).

The generalized non-integer L-J potential function withm ¼ 2 is
a useful form of the potential function to explain the bonds
between the atoms in the nanoparticles. This work can push the
scientific research forward by producing more experimental data
that can be used to find the parameter of the generalized non-
integer L-J potential function using fitting procedure as it was done
for diatomic molecules (Coxon and Hajigeorgiou, 2010).
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