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Abstract This study proposes a non-linear programming optimization model that could simulta-

neously consider the ramp metering efficiency and equity issue. Equity indexes are defined to cap-

ture the degree of equity of the ramp metering, which are formulated as constraints in the model.

Dynamic penalty method is adopted to deal with the constraints since they are soft in nature in

which solutions with small violations could be acceptable. A modified cell transmission model

(MCTM) is chosen to simulate the traffic flow propagation in the network where the objective func-

tion value is derived from it. The results of the case study show that the proposed methodology

could give better solutions compared to initial solutions. However, the equity indexes obtained

are low. It is anticipated that the results for equity indexes can be improved if the penalty coeffi-

cients could be fine tuned properly.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Ramp metering is a cost-benefit strategy which is implemented
to mitigate traffic congestion due to merging of on-ramps vehi-
cles on expressways. By systematically regulating the entrance
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of vehicles at the on-ramps, ramp metering increases express-
ways’ throughput, reduces total system travel time and en-

hances traffic safety (Papageorgiou and Kotsialos, 2002).
There are many studies carried out since the past decades to
improve and enhance the efficiency of the ramp metering strat-

egy, for example, Yang and Yagar (1994), Papageorgiou et al.
(1990), and Zhang et al. (1996). In these studies, algorithm de-
signs and analyses of the optimal ramp metering rate are the
main focuses in order to minimize the total travel time of the

system. Some other studies, such as Jacobson et al. (1989),
Papageorgiou et al. (1991), Hellinga and Van-Aerde (1995),
and Chu et al. (2004) tend to focus on the operational algo-

rithm of the ramp metering.
Nevertheless, none of the above studies address the ramp

metering equity issue. There are two types of the ramp meter-

ing equity, namely temporal and spatial equity (Levinson and
Zhang, 2006). Temporal equity measures the difference of
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travel time, delay or speed among drivers who travel on the

same route but arrive at the on-ramp at different times. Spatial
equity measures these differences among drivers who arrive at
different on-ramps at the same time. A perfect equitable meter-
ing is the one with no difference among drivers, whenever and

wherever they access to the expressways through the on-ramps.
The equity issue is important as Levinson and Zhang (2004)
showed that current ramp metering algorithm provokes an

inequity issue in Twin Cities, in which long trip drivers are
favored compared to short trip drivers. Such inequity issue
has adversely affected the public acceptance of the application

and handicapped the widespread adoption of ramp metering.
There are some studies addressing the ramp metering

equity issue. Benmohamed and Meerkov (1994) proposed a

dynamic traffic control architecture that considers the local
measurements for the benefit of individual expressway’s segment.
Papageorgiou and Kotsialos (2001) defined an equity constraint
that could keep the queuing length at the on-ramp within

a desired threshold. The constraint is associated into the
objective function by defining a static penalty term. Kotsialos
and Papageorgiou (2004) imposed a maximum queue require-

ment to the optimization model in order to distribute evenly
the burden of queuing among the on-ramps in the system.
Zhang and Levinson (2005) proposed a framework that weighs

the on-ramps waiting time nonlinearly in their transformed
objective function in order to give more priority to ramps’
users. Yin et al. (2004) proposed a concave transformation
function to capture the equity issue. It could be observed that

there are limitations in the existing studies. They are either ad
hoc in nature or require some transformation relationship
(which might not exist in practice) in capturing the equity issue.

Meng and Khoo (2010) defined an equity index to measure the
degree of spatial equity of the ramp metering system. They
proposed a multiobjective optimization model incorporating

with the dynamic traffic flow model to simultaneously consider
the efficiency and equity issue. This can overcome some of the
difficulties encountered by the previous studies.

This study aims to formulate an optimization model that
can consider ramp metering equity and efficiency issue simul-
taneously. An equity index which takes the ratio of the mini-
mum to the maximum average travel delay incurred by on-

ramp members in a group is defined to express the equity issue
of ramp metering. A non-linear optimization model that aims
to optimize the efficiency of the ramp metering, expressed by

minimizing the total travel time of the expressway–arterial1

system is developed. Instead of formulating the equity indexes
as objectives of the model (Meng and Khoo, 2010), this study

shows that they could be formulated as constraints of the opti-
mization model. Dynamic penalty is adopted to transform the
equity constraints to the objective function in solving the opti-

mization model. Genetic algorithms (GA) are employed as the
solution method for the optimization model. The modified cell
transmission model (MCTM) (Meng and Khoo, 2010) is
adopted as the dynamic traffic flow model to simulate the traf-

fic flow propagation on the expressway–arterial system in
which the total travel time of the system is derived.

Dynamic penalty is suitable to be adopted in solving the

constrained optimization model developed in the study. This
is because the ramp metering equity constraint defined by
1 An expressway–arterial system consists of expressway mainline

segment, on-ramps, off-ramps, and arterial streets.
the equity index is soft in nature. Practically, a perfect equity

could not be achieved. One could, however, accept the solu-
tions with small constraint violations. Dynamic penalty is
appropriate in such cases as it could allow the search algorithm
to include infeasible solutions into the search procedure. In

addition, this could prevent GA from being trapped in the lo-
cal minima. Long stagnation periods at each of minima may
lead to serious difficulties in achieving satisfactory exploration

efficiency of GA. Dynamic penalty has advantages over the
static penalty as it could adjust the penalty value according
to the degree of constraint violation for each solution. Accord-

ingly, solutions with small constraint violation will have higher
probability to stay through the iterations compared to other
infeasible solutions. For more information of dynamic penalty,

readers could refer to Richardson et al. (1989), Smith and Coit
(1995), Gen and Cheng (1996), Tessema and Yen (2006), and
Paszkowicz (2009). Penalty function approach has been ap-
plied in a few transportation studies that deal with equity.

For instance, some of the notable studies are: Meng et al.
(2001), Yang and Zhang (2002), Kalashnikov et al. (2008),
and Sumalee et al. (2009). Nevertheless, the proposed adoption

of dynamic penalty in solving the ramp metering equity issue
in the study is a novel attempt in the transportation study.

2. The dynamic traffic flow model: modified cell transmission

model (MCTM)

The cell transmission model (CTM) is developed by Daganzo
(1994, 1995). It is an approximate method solving the hydro-
dynamic traffic flow model. The model assumes the fundamen-
tal relationship of traffic flow to follow piecewise linear

functions. The links of the CTM network are divided into
three types, namely ordinary links, merging links, and diverg-
ing links. The maximum connection for a link is three. In the

case of a network with some nodes whose degree is greater
than three, Daganzo (1995) demonstrated that the cell-based
network can be constructed by shortening the time interval.

The vehicle flow among the cells within the time horizon is cal-
culated by two procedures. The first procedure calculates the
flow of the vehicle on a link from the current time interval

to the next time interval. The second procedure updates the
vehicle volume of the cell according to the flow conservation
equations. Daganzo (1994, 1995) did not explain in detail
how to deal with the traffic flow stream at the on-ramps merg-

ing points. Meng and Khoo (2010) proposed sets of modified
rules to the first procedure in order to incorporate the FIFO
rules to govern the merging process. A rule of thumb is to find

out the minimum waiting time of the merging traffic stream.
Streams of traffic that have waiting time more than the mini-
mum is allowed to have the priority to flow. If they have equal

waiting time, only parts of them are allowed to flow. No vehi-
cle is allowed to merge if their waiting time is lesser than the
minimum waiting time. The full derivation of the model is

not shown herein in view of the length limitation. Interested
readers could refer to Meng and Khoo (2010).
3. Problem formulation

Let the expressway–arterial system be represented by a direc-
ted graph G = (N, A), where N is the set of nodes denoting

heads and tails of on-ramps or off-ramps, A is the set of
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directed arcs denoting the on-ramps, the off-ramps, the express-

way stretches, and the arterial roads, connecting two consecutive
points meeting an on-ramp or an off-ramp, namely A � N · N.
More specifically, let set A ¼ Aþon [ A�on[ Aoff [ AE [ Aart,
where Aþon, A�on, Aoff, AE, and Aart, are the sets of metered

on-ramps, un-metered on-ramps, off-ramps, expressway
stretches, and arterial segments. Note that any two of these five
subsets are disjoint. Let R and S denote the sets of origins and

destinations, respectively, and R, S ˝ N. Let also Krs denote
the set of all routes from an origin r e R to a destination
s e S, namely OD pair rs and r „ s. Assume that the demand

for an OD pair rs at time t is denoted by qrs(t) and is loaded
at the origin node r. The traffic will travel to the destinations
via Krs routes. At each node, the stream of traffic chooses to

move to the next node according to a pre-determined route
of the best route in terms of travel time. The traffic is allowed
to enter the expressway through any on-ramp and to leave the
expressway using any off-ramp between the origin–destination.

Alternatively, traffic may choose to use arterial roads to travel.
An interested time period is discretized into T equal time
intervals of length Dt, namely, [0, Dt, 2Dt, 3Dt, . . . , (T � 1)Dt].
Without loss of generality, it is assumed that Dt = 1 for easy
of exposition.
3.1. The non-linear programming model

The objective of the ramp metering problem is to find the opti-
mal ramp metering rate that can improve the efficiency of the

ramp metering by minimizing the total travel time of the
expressway–arterial system. Nonetheless, an acceptable ramp
metering rate solution should be the one that could address

the ramp metering equity issue as well. Accordingly, the equity
index defined to capture the ramp metering equity is formu-
lated as the constraint of the optimization model.
3.1.1. Decision variables, objective function, and constraints
The entrance flow of the traffic is controlled by the on-rampme-

ters, which is defined by the metering rates. The metering rate is
allowed to vary aftermultiple consecutive time intervals, but not
at every time interval, in order to ensure stability of traffic flow in

the expressway–arterial network system.As such, the discretized
time horizon is partitioned into N disjoint ramp metering peri-
ods, where N is a positive integer, named by (Dl�1, Dl],
l= 0, 1, 2, . . . , N, in which D0 = 0 and DN = (T � 1)D. Let
Za(t) be the metering rate from clock tick t to clock tick t + 1,
where t 2 [0, 1, 2, . . . , T � 1], for on-ramp a 2 Aþon, and Z is a
dynamic ramp metering rate solution, denoted by a row vector

of all on-ramp time-dependent metering rates, namely:

Z ¼ ZaðtÞ; a 2 Aþon; t ¼ 0; 1; . . . ;T� 1 ð1Þ

To imitate the traffic responsive type of ramp metering opera-
tion, the ramp metering rate should be adjusted according to

the average queuing length of the on-ramp in the previous
metering period, expressed by,

ZaðtÞ ¼ qa �HaðDl�1Þ; 8t 2 ðDl�1;Dl�;
l ¼ 1; 2; . . . ;N; a 2 Aþon ð2Þ

where 0 6 qa 6 1, referred as the metering ratio for ramp a, is a
decision variable to be determined. Ha(Dl�1) is the average

vehicle volume at the on-ramp a in the previous metering per-
iod that is computed by the following equation:
HaðDl�1Þ ¼
P

t2ðDl�1 ;Dl �
Pla

i¼1 naiðtÞ �
P

hm2C�ðaiÞyaihmðtÞ
h i
Dl�1 � Dl

ð3Þ

where naiðtÞ is the vehicle volume in cell (a, i) of arc a e A at
time t; yaihmðtÞ is the vehicle flow on link (ai, hm) of the cell-

based network, which connects cell (a, i) of arc a e A to cell
(h, m) of arc h e A, from clock tick t to t+ 1; la is the total
number of cells for arc a.

To consider the efficiency of the ramp metering, the objec-
tive function of the optimization model is to minimize the total
travel time of the expressway–arterial network system. Essen-
tially, the total travel time is defined as the summation of the

travel time spent by drivers on all used routes for all OD pairs
during the time period. It is expressed as follows:

FðZÞ ¼
X
8rs

X
8k

X
8t

grs
k ðt; fÞfrsk ðt;ZÞ ð4Þ

where grs
k ðt; fÞ and frsk ðt;ZÞ are the actual route travel time and

the flow on route k of OD pair rs, respectively.

3.1.2. Equity index as a constraint
In order to capture the spatial equity, i.e. to ensure fair distri-
bution of the delay encountered by drivers at the on-ramps, an

equity index could be derived. To facilitate this, the average
travel delay encountered by drivers at the on-ramp is derived
from the MCTM. The delay is computed as the extra time a

vehicle spends in waiting or queuing in the system. Accord-
ingly, if a vehicle could not proceed to the next cell at current
time interval, it will encounter extra one time interval delay.

The average travel delay of vehicles incurred at an on-ramp
over the time horizon is computed as:

DaðZÞ ¼
PT

t¼1
Pla

i¼1 naiðtÞ �
P

hm2C�ðaiÞyaihmðtÞ
h i

VaðTÞ
ð5Þ

where Va(T) is the volume of vehicle that experiences at least
one time interval delay at the on-ramp a 2 Aþon [ A�on over time

horizon [0, T]. Essentially, Eq. (5) determines the average
travel delay of the vehicles at on-ramps by dividing the total
travel delay of all vehicles with the total number of vehicles

with travel delay.
By grouping the on-ramps, the equity index is defined for

the on-ramp group by the ratio of the minimum and maximum
average travel delay incurred by the on-ramp members in the

group, expressed as:

IkðZÞ ¼
mina2Ak

on
fDaðZÞg

maxa2Ak
on
fDaðZÞg

; k ¼ 1; 2; . . . ;K ð6Þ

It follows that:

0 6 IkðZÞ 6 1; k ¼ 1; 2; . . . ;K ð7Þ

The average travel delay for each on-ramp in the on-ramp
group k is the same if Ik(Z) = 1. In other words, a dynamic

ramp metering rate solution with the equity index of Ik(Z) = 1
exhibits the perfect equity for drivers using on-ramps within
the same group. More interestingly, the nearer the equity index

to one, the system ensures a fairer spatial equity. Therefore,
the index Ik(Z) is competent for quantifying the equity issue
for ramp metering.
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3.2. The ramp metering optimization model with penalty
function

Thus, the optimization model for ramp metering operation is

presented as:

min FðZÞ ð8Þ
s:t: gaðZaðtÞ; tÞ 6 0; 8a 2 Aþon; t ¼ 0; 1; . . . ;T� 1 ð9Þ

1� IkðZÞ ¼ 0; k ¼ 1; 2; . . . ;K ð10Þ

Eq. (10) indicates that the perfect equity condition which
takes after Eq. (7). Nevertheless, in many of the cases, the per-

fect equity is difficult to achieve. As such, Eq. (10) should be a
soft constraint rather than a hard constraint. Solutions with
some violation to this constraint could be acceptable if there

is no other better solution found. Hence, the implementation
of the dynamic penalty function is appropriate in such situa-
tion. The adoption of the dynamic penalty function allows
the algorithm to improve the solution in the feasible and infea-

sible solution space. Eq. (9) indicates the ramp metering rate
function at time t for ramp a. The function Za(t) in Eq. (9)
is identical to Eq. (2) which indicates the traffic responsive type

of ramp metering scheme adopted in regulating the entry of
vehicles.

The constrained optimization model shown in Eqs. (8)–(10)

can be transformed to an unconstrained one by letting the new
objective function as:

bFðZÞ ¼ FðZÞ þ agen maxðga; 0Þ þ
XK
k¼1

maxð1� IkðZÞ; 0Þ
" #

ð11Þ

where agen is a penalty coefficient and is defined as (Richardson

et al., 1989):

agen ¼ l � gen

GEN

� �c
� Fgen�1 ð12Þ

where l and c are input parameters, gen is the current genera-

tion number, GEN is the total number of generations specified,
Fgen�1 is the average of the objective function value (without
penalty) of all populations in the generation gen � 1.

The performance of the genetic algorithms depends criti-
cally on the value of the penalty coefficient (Richardson
et al., 1989). Adopting too high a value may restrict the search

region too quickly that traps at the local optimal. However, if
setting a too low value, the algorithm might spend too much
effort in searching within the infeasible solution space. It is
also worth noting that the value of agen is also affected by

the input parameters, l and c, which might need calibration
to determine their values.
4. Solution method

The non-linear optimization model could be solved by using

the meta-heuristics method. In this study, MCTM is embedded
in the genetic algorithms in order to find the optimal solution.
A dynamic ramp metering rate solution, Z, is encoded into a

binary string, of which a specified portion represents a meter-
ing rate for a particular on-ramp at time t. More specifically,
the metering ratio, fqa; a 2 Aþong for the period-dependent

ramp metering rate schemes shown in Eq. (2) is encoded as
the binary strings. The strings then are decoded to find the
corresponding dynamic ramp metering rate solution by means

of Eq. (2). This is then embedded into MCTM to compute the
corresponding actual route travel time.

The step-by-step procedure is shown as follows:

� Step 0. (Initialization of penalty parameters’ value). Set the
values of l and c. Set gen = 1.
� Step 1. (Computation of the value for agen). Compute the

value of agen according to Eq. (12).
� Step 2. (Initialization). Randomly generate a population of
B strings.

� Step 3. (Decoding). For each string, decode the string to get
the dynamic time dependent ramp metering rate for the on-
ramps of the expressway–arterial network, Z.

� Step 4. (Call MCTM). Decode each string b in the popula-
tion and run the MCTM to get the total travel time accord-
ing to Eq. (4).
� Step 5. (Fitness function calculation). Compute the value of

objective function defined by Eq. (11) for each string. Note
that for each infeasible string, a penalty value is imposed on
it.

� Step 6. (Generation of a new population). Repeat the
following four sub-steps until the new population is
completed.

s Step 6.1. (Selection). According to the objective func-
tions value evaluated in Step 3, use the rank selection
method to choose two parent strings from the
population.

s Step 6.2. (Crossover). With a crossover probability, de-
noted by pc, crossover the parents to form a new off-
spring according to the one point crossover method. If

no crossover is performed, offspring is the exact copy
of the parents.

s Step 6.3. (Mutation). With a mutation probability, deno-

ted by pm, mutate new offspring at selected position in
string.

� Step 7. If all the strings in the population have been
decoded, go to Step 8. Otherwise, go to Step 3.
� Step 8. (Stopping criterion). If a stopping criterion is
fulfilled, terminate the algorithm. Otherwise, set gen =
gen+ 1, and go to Step 1.

The stopping criterion of the algorithm is that it must have
at least three consecutive generations with the objective func-

tions’ value differing by less than 10%.
5. An illustrative case study

5.1. Network and algorithm setting

An illustrative expressway–arterial network system shown in
Fig. 1 is used to test the applicability of the proposed method-

ology. It is a hypothetical network based on the I210W
expressway–ramp network in Pasadena, CA (Munoz et al.,
2004). It is 22-km long and consisted of 21 on-ramps and 18
off-ramps. From the figure, it is observed that the expressway

mainline is connected to the arterial roads through the on-
ramps and off-ramps. The arterial roads serve as alternative
roads to the expressway–ramp system. The origins and desti-

nations nodes are labeled in the figure. In addition, dummy
links are created to load the demand from these origins into
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Figure 1 The hypothetical expressway–arterial network system.
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the network. The origin cells serve as the big parking lots that
store all the vehicles that will be loaded into the network sys-

tem. The vehicles are loaded into the network through dummy
links/cells. The on-ramps are divided into groups to facilitate
the definition of equity index. Each of the groups consists of

three vicinities on-ramps, in which a total of seven groups
are defined for the network.

The input parameters for the MCTM are such as follows –
the free flow speed for expressway mainline section, ramps,

and arterial roads are 100, 60, and 60 km/h, respectively.
The backward shock wave speed is 28 km/h, and the jam den-
sities are 17 veh/km/lane for the expressways, ramps, and arte-

rial roads. The size of a cell on the expressway mainline
Table 1 The OD pair and the route number.

OD pair Origin node Destination node Total demand

1 1 16 750

2 2 16 500

3 3 16 200

4 6 16 200

5 11 16 155

6 14 16 195

7 4 15 200

8 4 13 150

9 4 9 200

10 4 16 150

11 5 16 200

12 5 12 150

13 5 15 200

14 7 12 150

15 7 15 200
segments, ramps, and arterial roads are 0.28, 0.17, and
0.17 km, respectively. The time interval, d, also termed as a

time step, is 10 s, and the time dependent ramp metering per-
iod is 5 min. The capacity of the expressway is set to be
2200 veh/h/lane while the arterial roads’ capacity is 2000 veh/

h/lane. The ramp capacity is 2000 veh/h for one-lane ramp
with speed of 60 km/h and 2400 veh/h for two-lane ramp. This
is obtained by referring to the Highway Capacity Manual
( HCM, 2000). Assume that there are 30 pairs of origin–

destination (OD) trips in the network system with assumed de-
mand value. These OD pairs and their demand are presented
in Table 1. The departure time of the drivers is fixed and is

carried out during the first 10 time step of the assignment
OD pair Origin node Destination node Total demand

16 7 16 150

17 8 16 200

18 8 15 150

19 8 10 200

20 12 16 150

21 12 14 200

22 12 15 150

23 12 15 200

24 12 13 150

25 3 10 200

26 3 9 150

27 6 15 200

28 6 10 150

29 11 9 200

30 11 10 150
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period. The simulation is run until all the vehicles arrived at the

destinations, which takes about 40 min of the simulation time.
For the genetic algorithms setting, each ramp metering ra-

tio in Eq. (2), 0 6 qa 6 1; a 2 Aþon , is encoded by a 7-bit bin-

ary chromosome. With a total of 21 on-ramps, the length of a
chromosome is 147 genes in the GA embedding with the
MCTM. In addition, the population size is 50, the crossover
probability is 0.7 and the mutation probability is 0.03. The l
and c in Eq. (12) are set as 1 and 0.05, respectively.

5.2. Results

Fig. 2 shows the results obtained for the case study. The algo-
rithm has gone through six outer loop iterations while the

number of inner loop completed is different for each genera-
tion. The algorithm is terminated when there are continuously
three generations with the objective function value differing by
less than 10%. From the figure, it is observed that after the

first outer loop, the inner loop converges at the objective func-
tion value of 3000 veh-h. It is thus believed that this is the local
optimum of the solution. However, with dynamic penalty

function, the algorithm can escape from the local optimum.
As the penalty value increases with the number of generations,
the algorithm will start a new search at the search space with

higher objective function value. This could be observed from
loops 3, 4, and 5 of Fig. 2. The best objective function obtained
is 2717 veh-h. The equity index obtained for each of the ramp

groups are 0.07, 0.13, 0.08, 0.49, 0.04, 0.06, and 1, respectively.
The average equity index obtained is 0.27. The equity index va-
lue is low except for the last group in which a perfect equity is
obtained. The corresponding ramp metering rate obtained is

presented in Fig. 3. Despite the low equity index value, the re-
sults show that the proposed methodology is viable in search-
ing for the best ramp metering rate solution by considering the

equity issue. It is expected that the value setting of l and c of
Eq. (12) has certain effect on the low equity index value ob-
tained. With the value chosen, the fitness function is linearly

related to the objective function according to Eq. (11). As
such, the penalty value imposed on the violated solutions is
not efficient enough to direct the algorithm to search in a
highly feasible space. In the future study, calibration of the
penalty coefficients is necessary besides investigating the im-
pact of these values on the solution.
6. Conclusions

This paper addresses the ramp metering equity issue. Equity
indexes are defined to quantify the degree of equity achieved.
They are formulated as the constraints of the non-linear opti-

mization model which is then solved by the dynamic penalty
method. The advantage of adopting the dynamic penalty
method is that it allows the heuristic algorithm to search in

the infeasible spaces in order to avoid the local optimum. Be-
sides, the equity constraints in this study are soft constraints in
which the perfect equity could not be achieved in practical. By

applying the dynamic penalty method, it could search in the
infeasible space in order to find a better solution. The case
study tested shows that the proposed methodology could give
a better solution compared to the initial solution, although the
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equity indexes obtained are low. In order to obtain higher equity

indexes, the penalty coefficients need to be properly fine tuned.
There is some work left for the future study. First, more

runs can be carried out to test the efficiency of the proposed
methodology. Current results are based on only one run. Sec-

ond, sensitivity analysis can be carried out to test the impact of
penalty coefficients on the objective function and equity in-
dexes values. Third, a comparison of the solutions with other

methods could be carried out in order to justify the quality
of the solutions.
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