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A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏̃𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 

Original Article

The dual role of bio-inspired palladium nanoparticles in antibacterial action and wound 
healing: An in vitro and in vivo study
Ashwini Singhala,#, Gyan Prakash Meghwalb, Apurva Jaiswalc,#, Neha Kaushikd, Anita Kumaria, Nighat 
Fahmia, Rizwan Wahabe, Dev Dutt Patelb, Abdulaziz A. Al-Khedhairye, Priyadarshi Meenab,*, Nagendra 
Kumar Kaushikc,*, Ramhari Meenaa,*

aDepartment of Chemistry, University of Rajasthan, Rajasthan-302004, India
bDepartment of Zoology, University of Rajasthan, Rajasthan-302004, India
cPlasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
dDepartment of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
eChair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
#These authors equally contributed to this work.

A R T I C L E  I N F O

Keywords:
Antimicrobial
Antioxidant
Bio-inspired synthesis
Palladium nanoparticles
Plectranthusamboinicus
Wound healing

A B S T R A C T

Nanoparticles have become essential in theragnostic applications due to their multi-functionality. However, 
conventionally synthesized nanoparticles are often limited by high production costs and moderate efficacy. 
To address these challenges, this study focuses on bio-inspired palladium nanoparticles (PdNPs), an entirely 
novel nanomaterial synthesized with the Plectranthus amboinicus leaf extract offering an economical, green, 
biocompatible, and stable substitute. To characterize biosynthesized PdNPs, Fourier-transform infrared 
spectroscopy (FTIR), X-ray diffraction (XRD), UV-Vis spectroscopy, energy-dispersive X-ray spectroscopy (EDS), 
field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (TEM), 
and zeta potential analysis were employed. The nanoparticles, measuring 5–40 nm, displayed diverse shapes 
(spherical, triangular, and rectangular), with XRD revealing a face-centered cubic (fcc) crystalline structure. The 
zeta potential value of -12.9 mV indicated high stability due to the surface charge of the PdNPs. Therapeutically, 
PdNPs exhibited broad-spectrum antibacterial activity, particularly against E. coli (14 ± 0.3 mm inhibition 
zone), along with potent antioxidants (71.41 ± 0.94%), anti-diabetic (77%), and anti-inflammatory (72%) 
properties. Remarkably, PdNPs-based ointments in a mouse excision wound model demonstrated a 74.76% 
wound closure within 10 days in a mouse model, with complete healing achieved by day 14. This study therefore 
underscores the broad applicability of PdNPs emphasizing its novelty and potential as a competitive alternative 
to conventional therapies making it ideal for numerous biomedical applications such as wound healing, tissue 
repair, dentistry, regenerative medicine, and biosensing platforms.

1. Introduction

Metal nanoparticles (MNPs), which involves a broad range of 
examples with at least one dimension between 1 and 100 nm, have 
become an appealing class of materials in recent years. MNPs have 
unique properties beneficial in various applications like industrial 
catalysis (Solomon et al., 2024), food packaging (Joshi et al., 2024), 
biosensing (Kumalasari et al., 2024), batteries (J. Zheng et al., 2024), 
superconductor systems (Atchaya and Meena Devi, 2024), medicine 
(Issaka et al., 2024; Naser et al., 2024; Panda et al., 2021; Puri et 
al., 2024; Todaria et al., 2024; Q. Zheng et al., 2024), and bacterial 
disinfection (Paul et al., 2018). Palladium nanoparticles (PdNPs) have 
diverse applications due to their unique characteristics and catalytic 
activity (Lin et al., 2023; Losada-Garcia et al., 2022; Seku et al., 2024; 
Vinnacombe-Willson et al., 2023). PdNPs play a crucial role in the 
automobile industry specifically in catalytic converters by neutralizing 
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harmful gases, including carbon monoxide, unburned hydrocarbons, 
and nitrogen oxides and turning them into less detrimental compounds 
(Aarzoo et al., 2022). They also serve as catalysts in various organic 
syntheses and electro-catalysts in fuel cells to promote the oxidation 
and reduction reactions involved in electricity generation (Dhumal 
et al., 2024; Shukla et al., 2023). In water treatment, PdNPs remove 
impurities and minimize pollutants, such as chlorinated hydrocarbons 
and heavy metals (Arsiya et al., 2017; Emam, 2022; Shokouhimehr et 
al., 2019; Vijwani et al., 2012). They use air purification devices to 
catch and neutralize pollutants, hazardous gases, and conductive inks 
for flexible and wearable electronics (Cai et al., 2018; Chen et al., 2011; 
Palliyarayil et al., 2020). Palladium nanoparticles are functionalized 
and implemented in cancer therapy (Alinaghi et al., 2024; Li et al., 
2024), drug delivery systems (Shanthi et al., 2015), biosensors (Orzari 
et al., 2024; Phuong et al., 2024), imaging agents (Liu et al., 2020; Nie 
et al., 2014), and antimicrobial agents (Hamid et al., 2024; Nie et al., 
2014).
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Several approaches have been designed modified to synthesize MNPs 
including the widely adopted top-down and bottom-up techniques (Lin 
et al., 2023; Vinnacombe-Willson et al., 2023). Broadly divided into two 
primary categories, chemical and physical, each of these approaches 
has their pros and cons, and selecting one is influenced by some aspects, 
such as preferred nanoparticle properties, scalability, and intended 
applications (El-Khawaga et al., 2023; Gupta et al., 2023; Verma et 
al., 2016). While these processes provide for the accurate regulation 
of nanoparticle size and morphology, they are energy-intensive and 
often generate hazardous by-products (Kumari et al., 2023; Saleh and 
Fadillah, 2023). To address these limitations, green synthesis methods 
utilize biological agents such as biomass or organisms as eco-friendly 
reducing and stabilizing agents (C and T, 2024; Shahid-ul-Islam et 
al., 2023). These strategies employ various microorganisms (viruses, 
bacteria, yeast, algae and fungi) and organisms (plants) to synthesize 
MNPs under mild reaction conditions, minimizing energy consumption 
and ecological impact (Arteaga-Castrejón et al., 2024; Bokolia et al., 
2024; Karunakaran et al., 2023; Verma et al., 2022).

Despite these advanced relatively greener approaches, there is 
a critical need to explore greener and more sustainable synthesis 
methods for MNPs, which do not rely on energy-intensive chemical and 
physical techniques that produce hazardous by-products (Bokolia et 
al., 2024) (Meena et al., 2024). Bio-inspired methods that utilize plant 
extracts have become a green alternative to conventional techniques, 
leveraging phytochemicals, such as alkaloids, flavonoids, polyphenols, 
and terpenoids serving as naturally occurring stabilizing and reducing 
agents. These aid in the reduction of metal ions to generate nanoparticles 
without the need of synthetic reducing agents and act as capping agents, 
providing stability, preventing aggregation, and improving colloidal 
stability of the nanoparticles (O. Adeyemi et al., 2022). It is considered 
environmentally benign because it does not require the use of noxious 
chemicals and solvents that are frequently used in traditional synthesis 
processes (Vijayaram et al., 2024). Bio-inspired synthesis frequently occurs 
under mild conditions, such as reduced temperatures and air pressure. 
Compared to traditional methods, plant-based synthesis is cost-effective, 
environmentally benign, and biocompatible. Moreover, the resultant 
nanoparticles exhibit excellent therapeutic properties, including stability, 
permeability, and reduced toxicity (Huang et al., 2024). Therefore, 
researchers continue investigating and developing new methods to make 
MNPs emergence more sustainable and environmentally friendly.

This study focuses on Plectranthusamboinicus, a perennial Solanaceae 
herb with a wide distribution in tropical and warm regions. It has a 
variety of cultural uses in traditional medicine. Diverse phytochemicals 
in the plant extract of  P. amboinicus, such as carvacrol, thymol, 
flavonoids, triterpenoids, and rosmarinic acid, contribute to the herb's 
biological activities, including antimicrobial, anti-inflammatory, 
antiviral, antiepileptic, antitumorigenic, wound healing, and antioxidant 
effects (“Health-promoting properties of Plectranthus amboinicus: 
a comprehensive review,” 2023; Nizar Ahamed et al., 2023). The 
phytochemical composition of P. amboinicus has shown high therapeutic 
and nutritional properties, garnering significant interest from the 
pharmaceutical industries for its potential medicinal applications 
(Augustus et al., 2024; Gupta et al., 2024; Paramasivam et al., 2020).

The primary objective of this research was therefore the development 
of a green synthesis technique to synthesize bioinspired PdNPs using 
alcoholic leaf extracts of  P. amboinicus. By integrating the unique 
properties of PdNPs and P. amboinicus-derived phytochemicals, this 
study aimed to develop a multifunctional nanotherapeutic agent. The 
bio-inspired PdNPs were assessed for their antimicrobial, antioxidant, 
anti-diabetic, and anti-inflammatory activities, as well as their wound-
healing efficacy in a mouse excision wound model. By utilizing the 
combined advantages of the MNPs and plant extract, this strategy 
aimed to establish the synthesized PdNPs as a promising candidate for 
multifaceted therapeutic applications.

2. Experimental section

2.1. Materials and characterization techniques

Before employing glassware for synthesis, it is correctly cleansed 
with aqua regia (a mixture of HCl and HNO3 in a 3:1 ratio) followed by 

rinsing with double-distilled water. Palladium chloride (PdCl2, 99.9%) 
procured from Sigma-Aldrich was applied without further processing. 
Analytical-grade chemicals and Milli-Q-grade water were used for 
all experiments. The leaves of P. amboinicus were harvested from the 
university nursery, University of Rajasthan, Jaipur, India. The UV-visible 
(UV-Vis) absorption spectra of biosynthesized PdNPs were measured 
using an Agilent Technology Cary 60 Visible spectrophotometer with 
wavelength of 200–800 nm. Fourier transform infrared (FTIR) spectra of 
PdNPs were recorded on a FT-IR Spectrum 2 (Perkin Elmer) in the 400-
4000 cm-1 range. Energy-dispersive X-ray spectroscopy (EDS)-equipped 
field emission scanning electron microscopy (Apreo 2S Highvac, 
Thermofisher Scientific) was utilized to investigate the morphology and 
element mapping of PdNPs. Transmission electron microscopy (Tecnai 
G2 S-TWIN, 200KV) was used to examine the size. The zeta potential 
of the re-dispersed nanoparticles was assessed using a Zetasizer Nano 
ZSP (ZEN 5600). The X-ray diffraction (XRD) pattern of PdNPs was 
determined using XPERT PRO PANAlytical XRD. 

2.2. Leaf extract preparation

The leaves of P. amboinicus were obtained from the university nursery 
on the university campus. The acquired leaves were cleansed with tap 
and distilled water to eliminate any impurities. The cleaned leaves were 
grated into little pieces. In a 500 mL conical flask, 40 g of the grated 
leaves were placed, and 200 mL of water was added (leaves: water = 
1:5 ratio). The conical flask was placed at heating plate and heated at 
70-80 °C until the water began to boil. The solution changed to a brown 
color during heating and was subsequently cooled after boiling. The 
extract was kept at room temperature for later use after being cooled 
and filtered through Whatman No.1 filter paper to separate the liquid 
component (leaf extract) from the solid plant material.

2.3. Synthesis of PdNPs

The procedure for synthesizing palladium nanoparticles (PdNPs) is 
as follows. For a 1 mM PdCl2 solution (100 mL), dissolve 0.0741 g of 
PdCl2 in 90 mL of ultrapure water. While stirring on a hot magnetic 
stirrer, add 2–3 drops of HCl to the solution to ensure complete 
dissolution. Next, 10 mL of the leaf extract was added to 90 mL of 
the 1 mM PdCl2  solution and stir the mixture at 80°C for 30 mins. 
The reaction solution was kept undisturbed until the color changed 
from yellow to black. After the color shift, the solution was left to 
stabilize the nanoparticles under static conditions for 48 hrs. Finally, 
the solid nanoparticles were then collected by centrifuging the reaction 
mixture for 10 mins at 6000 rpm and dispersed again in Milli-Q water. 
The centrifugation and scattering processes were performed twice to 
eliminate any remaining PdCl2 and P. amboinicus leaves extract solution 
from the final product. Following collection, the nanoparticles were 
dried up in a hot air oven (Fig. 1).

2.4. Antibacterial efficacy of PdNPs

The Agar Well Diffusion approach was employed for the  in 
vitro antibacterial assay. The individual test materials were diluted with 

Fig. 1. Schematic diagram of the green synthesis of PdNPs using an aqueous extract of 
P. amboinicus. PdNPs: Palladium nanoparticles.
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0.5% dimethyl sulphoxide (DMSO), and four varying concentrations 
(conc.) (25 µg/mL, 50 µg/mL, 75 µg/mL, and 100 µg/mL) of palladium 
chloride, P. amboinicus leaf extract, and PdNPs were created. Sterilized 
petri dishes containing the nutritional agar (NA) medium were 
employed to inoculate gram-negative and -positive bacterial strains 
including Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), 
and Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), 
respectively. This inoculum was spread evenly across the plate with a 
spreader and let to stand for 30 mins. Wells of 6 mm diameter were 
created in the seeded agar plates. A control well was also constructed 
at the same distance. All concentrations of palladium chloride, P. 
amboinicus leaf extract, PdNPs, and the standard medication (30 µg/
mL) were poured into the pre-organized wells of seeded plates. The 
plates were incubated for 24 hrs at 37°C. The inhibition zone (IZ) 
around each well was employed to estimate the antibacterial spectrum 
of the test material. The sizes of the inhibition zones developed from 
the test samples and the commercial positive control (Streptomycin) 
were compared. The studies were carried out in triplicate, with the 
mean absorbance values reported.

2.5. Antioxidant activity of PdNPs

The efficiency of the PdNPs in scavenging DPPH radicals was 
compared to that of the standard ascorbic acid. For the experiment, 3 
mL of a 0.1 mM DPPH solution in methanol was dissolved with variable 
conc. (20, 40, 60, 80, 100, 100, 150, 200, 250, 300, 500, and 1000 μg/
mL) of palladium chloride, leaf extract, and synthesized PdNPs. The 
Mixture was agitated vigorously to achieve consistency and then kept 
for 30 mins in dark at an ambient temperature. The optical density 
was assessed at 517 nm using a UV-Vis spectrophotometer. The DPPH 
radical inhibition (%) was estimated using the following Eq. (1): 

%�DPPH�radical�inhibition� �
A A

A
control sample

control

�
�

�100 (1)

The control samples’s absorbance (Acontrol) and test sample’s 
absorbance (Asample) are key components in the formula for evaluating 
the DPPH radical inhibition. It's important to substitute the correct 
values of Acontrol and Asample into the formula to accurately determine the 
percentage of DPPH radical inhibition.

2.6. Anti-inflammatory activity of PdNPs

Anti-inflammatory activity was assessed employing a altered BSA 
method established by Williams et al. with varying conc. of 100, 250, 
500, 1000, and 2000 µg/mL of aspirin and PdNPs (Williams et al., 
2002). A 0.4% w/v BSA solution was made by dissolving one Tris-
buffered saline tablet in 15 mL deionized water, producing a buffer 
containing 0.05 M Tris and 0.15 M sodium chloride at pH 7.6 at 25°C. 
The pH was lowered to 6.4 using glacial acetic acid. PdNPs were 
dissolved in DMSO to prepare stock solutions at a concentration of 50 
µg/mL (0.005% w/v). These PdNPs aliquots were mixed with 1 mL 
of 0.4% w/v BSA buffer in test tubes. The mixtures were incubated in 
a water bath at 72°C for 20 mins, followed by cooling for another 20 
mins. A spectrophotometer was used to determine turbidity at 660 nm, 
with air serving as the blank. The studies were carried out in triplicate, 
with the mean absorbance values reported. The following formulae was 
used to determine the inhibition of BSA denaturation:

Percentage�inhibition�of�BAS�Denaturation� %
A

A
( ) � � �

�

�
100 1 1

2

���
�

�
��

where A1 is the reference's absorbance and A2 is the sample's 
absorbance.

2.7. Anti-diabetic assay of PdNPs

The chromogenic DNSA method was employed in order to conduct 
an inhibition study. The assay solution contains 500 μL of 0.02 M 
sodium phosphate buffer (pH 6.9, supplemented with 6 mM NaCl), 
along with 1 mL of salivary amylase, and 400 μL test samples with conc. 

varying between 20 to 1000 µg/mL incubated for 10 mins at 37°C. 
Subsequently, 580 μL of a 1% w/v starch solution was added to each 
tube, followed by further incubation for 15 mins at 37°C. To terminate 
the reaction, 1.0 ml of DNSA reagent was added, followed by 5 mins 
in boiling water, cooling at room temperature, and OD measurement 
at 540 nm. The control without PdNPs had 100% enzymatic activity. 
Acarbose was added as a negative control along with the test sample 
in the reaction mix without any enzyme to remove the absorbance 
brought on by PdNPs. The percentage of alpha amylase inhibition was 
computed using the following:

% Relative enzyme activity

Enzyme activity in test sample 
�

wwith PdNPs

Enzyme activity in control
100�

% Inhibition in the alpha-amylase activity = 100 - % Relative 
enzyme activity

2.8. Wound healing activity of PdNPs

2.8.1. Preparation PdNPs ointment

In order to formulate the ointment with PdNPs, 30 g of absolute 
Vaseline is heated in a water bath at 60°C using a bain-marie technique. 
Then, 0.3 g of PdNPs is added (1% w/w). Ultimately, the ointment that 
had been created undergoes sonication at 60°C for 30 mins in order 
to achieve a consistent and uniform texture (Zare-Bidaki et al., 2023).

2.8.2. Animal care and handling 

The mice (male Swiss albino mice) weighing 25–30 g were utilized 
in the present study. Animals were acquired from the Central Animal 
Facility (CAF) National Institute of Pharmaceutical Education and 
Research (NIPER), Mohali, Chandigarh (Reg. No: (108/GO/Re/Rc/
Bi/Bt/99/CPCSEA). All animal experiment were approved from the 
Institutional Animal Ethical Committee, Department of Zoology, 
University of Rajasthan, Jaipur India letter no. UDZ/IAEC/V/07 dated 
16-03-2022. Animals were kept in the animal house facility at the 
Department of Zoology, University of Rajasthan, Jaipur, during the 
experimental work. Polyacrylic cages were used to house the animals, 
ensuring standard conditions of 20–30°C temperature, 50–70% 
humidity, and a 12:12 light-to-dark cycle. A 7-day acclimation period 
was observed prior to the experiments, and the animals were fed dry 
pellets and tap water ad libitum. The study design for the wound healing 
potential of the biosynthesized PdNPs animals was divided into three 
groups as follows. 

Group A:  Control Group: - No treatment was administered to the 
animals in this group.

Group B: Positive Control Group: - Animals of this group were treated 
with Nitrofurazone (0.2%w/w) ointment

Group C: Drug Treated Group: - Animals of this group were treated 
with the Vaseline ointment containing PdNPs.

2.8.3. Excision wound model

Excisional wounds are widely used as a model for studying 
wound healing, as they closely mimic acute clinical wounds that heal 
by second intention, where the skin edges are left unsutured. The 
experimental procedure involved anesthetizing animals with diethyl 
ether, followed by shaving the dorsal back to prepare for a wound. 
Ethanol (70%) served as an antiseptic for the shaved area. A circular 
excision wound, extending through the full thickness of the skin, was 
then created on the predetermined shaved region without subsequent 
dressing. No local or systemic antimicrobial agents were administered. 
Each mouse was housed individually in a separate cage throughout 
the study. This methodology aimed to investigate the wound healing 
efficacy of the PdNPs without the interference of antimicrobial 
treatments, allowing for an assessment of natural recovery with and 
without drug treatment. Nitrofurazone (0.2%w/w) ointment was 
applied as a positive control.
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2.8.4. Assessment of wound contraction

The experimental animals were divided into three groups following 
the production of wounds, as previously mentioned. The excision 
wound margins were traced via a clear plastic sheet, and the surface 
area of the wound was evaluated planimetrically. The size of wounds 
was measured in mm2 by putting the transparent sheet on graph paper 
every day throughout the monitoring period; photographs of the dorsal 
surface of the mice were taken on the 1st, 6th, 12th, and 18th day. Wound 
contraction was estimated using the following formula:

Percent wound contraction

Initial wound area-unhealed area
�

IInitial wound area
100�

2.9. Statistical analysis

The experiment was carried out in three replicates for each treatment 
and overall results are presented as mean ± standard deviation. Student's 
t-test and one-way ANOVA were used to analyze the collected data. 
p-values < 0.05 imply statistical significance.

3. Results and discussion

3.1. UV−vis analysis of PdNPs

UV-vis spectroscopy is a common technique employed to 
characterize metal nanoparticles. The UV−vis absorbance of P. 
amboinicus  leaves extract, PdCl2 solution and bio-inspired synthesized 
PdNPs was observed within 200−800 nm wavelength. The reaction 
occurs between  P. amboinicus  leaves extract and PdCl2; the reaction 
mixture's color shifts from yellow to black. The reaction mixture showed 
a dark brown color due to the stimulation of surface plasmon resonance 
(SPR) of PdNPs.UV-vis absorption spectra of the PdCl2 solution showed 
a distinct absorption peak at 425 nm, revealing Pd (II) ions presence 
in the solution. After the reaction, the absorption peak at 425 nm of 
the precursor PdCl2had disappeared, indicating that the precursor Pd 
(II) reduction was completed (Basavegowda et al., 2015; Kuniyil et al., 
2019). Due to the surface Plasmon, PdNPs often do not exhibit any 
noticeable peaks (Fig. 2a).

3.2. FT-IR analysis of PdNPs

FT-IR spectroscopy is an incredibly effective analytical technique that 
reveals important information about chemical structures and functional 
groups. The FT-IR spectrum of the P. amboinicus leaves extract revealed 
important absorption peaks at 3420, 2925, 2853, 1617, 1430, 1385, 
1078 and 617 cm−1 (Fig. 2(b), blue). P. amboinicus leaf extract’s FTIR 
spectra showed absorption peaks at 3420 and 1617 cm−1, indicating 
O−H and >C=C< stretching of flavonoids or polyols. The vibrations 
at 1078 and 1385 cm−1 were related to C–O stretching and the C–H 
bending of flavonoids or polyols. Additionally, the leaf extract displayed 
bands at 2925 and 2853 cm−1, which corresponded to the C–H stretching 
vibrations mode of aliphatic compounds. In contrast, the FT-IR spectrum 
of PdNPs showed significant absorption peaks at 3372, 2920, 2820, 
1560, 1410, 1342, 1024 and 648 cm−1, clearly indicating the occurrence 
of phytoconstituents that serve as capping agents (Fig. 2(b), red). After 
the bio reduction of PdCl2 by the leaf extract, there were noticeable 
modifications in the positions and intensity of the stretching vibrations, 
suggesting the involvement of polyphenols or flavonoids. The presence 
of the O–H group of polyols in the bio reduction process was confirmed 
by the band at 3372 cm-1. Furthermore, the minor peaks at 2920 and 
1560 cm-1 corresponded to C–H and C-O stretching vibrations, while the 
peaks at 1024 cm-1 were associated with the C–O stretching vibration 
in flavonoids or polyols (Dauthal and Mukhopadhyay, 2013; Jayamani 
et al., 2023; Sarmah et al., 2019).

3.3. X-ray diffraction analysis

The XRD diffractograms in Fig. 2(c) display the PdNPs synthesized 
through plant mediation. These diffractograms exhibit intense diffraction 
peaks at 2θ = 40.0, 46.4, 67.9, 81.8, and 86.5°, corresponding to the 

crystallographic planes of metallic palladium (Pd0) nanoparticles' fcc 
crystalline structure (JCPDS No: 89−4897) (111), (200), (220), (311), 
and (222) (Sarmah et al., 2019; Wang et al., 2015). In the determination 
of the average nanocrystalline size, the Debye–Scherrer method was 
employed (Al-Fakeh et al., 2021). The formula D = λk/βcosθ was 
utilized, where D represents the crystal size, k is a constant with a value 
of 1, λ represents the X-ray wavelength (0.1541 nm), β is the full width 
at half maximum and θ corresponds to the diffraction angle related 
to the lattice plane (111). Application of the Debye–Scherrer equation 
revealed an average crystallite size of 5.58 nm.

3.4. FESEM and EDS analysis of PdNPs

Scanning electron microscopy (SEM) is a helpful technique utilized in 
materials science and numerous other fields to achieve high-resolution 
images of surfaces at the nanoscale. FESEM (Field Emission Scanning 
Electron Microscopy) is further enhanced with energy-dispersive X-ray 
spectroscopy (EDS) detectors, allowing for elemental analysis of the 
sample. According to the SEM images displayed in Fig. 3(a), it was 
observed that the PdNPs were almost spherical, even at higher resolutions. 
Additionally, these particles were evenly distributed on the surface 
with minimal clustering or agglomeration. The EDS spectrum detected 
unique signals based on the analysis of the elemental composition of 
PdNPs synthesized using P. amboinicus  leaves extract. In Fig. 3(b), the 
absorption peaks ranging from 0.277 to 2.83 keV were attributed to 
forming PdNPs in the EDS spectra of PdNPs. In the EDX analysis, a strong 
signal for Pd was identified at 2.8 keV with a 57.92 weight percentage, 
indicating palladium PdNPs in the sample. In contrast, signals for C, O, 
N, and S were also present at 0.27, 0.52, 0.39, and 2.30 keV with 16.17, 
16.60, 2.61, and 8.70 weight percentages, respectively, which is likely 
due to the plant leaf extract and conductive coating.

Fig. 2. (a) UV Visible spectrum of Plant extract, Pd2+ solution, and PdNPs. (b) FT-IR 
spectra of plant extract and PdNPs. (c) Powder XRD pattern of PdNPs. UV-Vis spectrum: 
Ultraviolet-Visible spectrum, PdNPs: Palladium nanoparticles, FT-IR: Fourier transform 

infrared spectroscopy, XRD: X-ray diffraction.

(a)

(b)

(c)
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3.5. TEM−HRTEM−SAED analysis

The particle size and structure of bio-inspired PdNPs were assessed 
by transmission electron microscopy (TEM), and the crystallinity 
was evaluated via selected area electron diffraction (SAED) pattern. 
According to the TEM−HRTEM images of PdNPs, they are triangular 
and rectangular shaped with particle sizes ranging from 5 to 40 nm 
displayed in Fig. 3c(I-III).  The TEM image analyzed using ImageJ 
software revealed that the PdNPs have an average particle size of around 
21.31 nm (Fig. 3c(iv)). Additionally, the lattice space was determined 
through HR-TEM, showing a d-space value of approximately 0.558 nm, 
as illustrated in Fig. 3c(v). The crystalline structure of plant-mediated 
PdNPs was established using the SAED pattern. Circular dots in the 
SAED pattern indicated the interplanar distances corresponding to 
the fcc crystalline structure of the PdNPs, including planes 111, 200, 
220, and 311, confirming their crystalline nature (Fig. 3c(vi)). The 
PdNP sample's selected-area electron diffraction analysis displays 
clear concentric circles with bright intermittent spots, confirming the 
outstanding crystalline purity of the PdNPs. The diffraction patterns 
are categorized according to the PdNP crystallinity and are in line 
with JCPDS card No. 89-4897. The diffracted rings correspond to the 
crystallographic planes (111), (200), (220), (311), and (222) of the fcc 
PdNPs, and the results align with the XRD lattice plane of the PdNPs.

3.6. Zeta potential analysis

Zeta potential is paramount in colloidal systems as it measures the 
electrical charge at the interface between a particle surface and a liquid. 

It determines the stability and behavior of the system, making it vital in 
industrial and medical applications. The stability of PdNPs synthesized 
by the green method was determined by zeta potential parameters. 
Fig. 3(d) shows the zeta potential value for PdNPs is -12.9 mV. The 
zeta potential value of PdNPs suspension revealed even distribution 
and assessed its potential stability of particles (Aarzoo et al., 2021; Al-
Fakeh et al., 2021). The synthesized PdNPs surfaces have a negative 
charge (-12.9 mV) and stable particle suspensions generally have a zeta 
potential range of +30 to -30 mV, as per published research (Han et al., 
2019).

3.7. Antibacterial assay

The synthesized PdNPs were assessed for their antibacterial 
efficiency against gram-positive and -negative bacteria. The results, as 
illustrated in Fig. 4(a), revealed that PdNPs have higher effectiveness 
than the plant extract and palladium chloride. Increase in the conc. 
of plant extract, Pd salt and PdNPs increased the zones of inhibition 
(Fig. 4b). The highest antibacterial effect with inhibition zone 14 ± 0.3 
mm was observed against Escherichia coli with a minimum inhibitory 
concentration (MIC) of 5μg/mL. In contrast, the lower inhibition zone 
were observed against B. subtilis, S. aureus and P. aeruginosa with an 
MIC around 5 ± 0.3, 5± 0.6 and 5 ± 0.3 μg/mL with inhibition zone 11 
± 0.6, 11 ± 0.6 and 11 ± 0.4 mm respectively (Table 1). These findings 
suggest that PdNPs have a potent antibacterial effect, attributed to 
their ability to inhibit a broad range of bacterial strains (Gangwar et al., 
2023b; Jayakumar et al., 2023; Sadalage and Pawar, 2023).

Fig. 3. (a) FESEM image and (b) EDX spectra of biosynthesized PdNPs. TEM image 
of PdNPs at 100 nm (c) HRTEM images of PdNPs at different magnifications (i) 50 
nm and 20 nm magnification (ii-iii).  Particle size distribution curve (iv). d-spacing of 
PdNPs (v). SAED pattern (vi). (d) Zeta potential of synthesized PdNPs. FESEM: Field 
emission scanning electron microscopy, EDX: Energy dispersive X-ray spectroscopy, 
TEM: Transmission electron microscopy, HRTEM: High-resolution transmission electron 
microscopy, SAED: Selected area electron diffraction, PdNP: Palladium nanoparticles.

(a)

(c)

(d)

(b)

(a)

(b)

Fig. 4. Antimicrobial susceptibility of plant extracts, palladium chloride and PdNPs 
and streptomycin by disk diffusion method. (a) Antibacterial activity of plant extract, 
palladium chloride, PdNPs and streptomycin, (b) Zones of inhibition of plant extract, 
palladium chloride, PdNPs and streptomycin against the pathogenic strains Bacillus 
subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Results are 
shown as means ± S.D for triplicate with error bars indicating statistical significance at 

p < 0.05. PdNPs: Palladium nanoparticles, S.D.: Standard deviation.
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Once inside, Pd²⁺ ions bind to phosphorus and sulfur in proteins, or 
nucleic acid can ultimately destroy bacterial function (Skłodowski et al., 
2023; Tahir et al., 2016).

3.8. Antioxidant assay

The in vitro antioxidant efficency of PdCl2, P. amboinicus leaves 
extract, and PdNPs was estimated via a DPPH assay. The samples 
were measured for their absorbance against the DPPH radical at 517 
nm using a UV−vis spectrophotometer. The findings demonstrated 
that the samples' capacity to scavenge DPPH radicals increased in a 
dose-responsive manner (Fig. 5a). Both the precursor salt PdCl2 and 
P. amboinicus leaves exhibited the highest anti-DPPH scavenging 
activities at 1000 μg/mL, with values of 52.35 ± 0.08 and 50.50 ± 
0.53, respectively. Meanwhile, DPPH radical scavenging percentages of 
PdNPs and ascorbic acid at 1000 μg/mL were 71.41 ± 0.94and 95.27 ± 
0.88, respectively. The IC50values of PdCl2, P. amboinicus leave extract, 
and PdNPs were 773.81, 910.72, and 425.26 μg/mL, respectively 
(Fig. 5a). However, the IC50 values of precursor salt were much higher 
than those of the PdNPs and the positive control. The DPPH analysis 
indicates that the P. amboinicus leaves extract has less DPPH scavenging 
potency than PdNPs and ascorbic acid. Previous research has shown 
that PdNPs exhibit excellent antioxidant activity compared to precursor 
salts due to free charge transfer from the containing PdNPs to the DPPH 
radical (Gangwar et al., 2023a; Tiri et al., 2024).

Table 1.  
Comparison of MIC and IZ for Plant extract, Pd salt and PdNPs.

Bacteria 
strains 

Minimum inhibitory concentration (MIC) with inhibition zone 
(IZ)

Plant extract Pd salt PdNPs

MIC  
(µg/mL)

IZ (mm) MIC  
(µg/mL)

IZ (mm) MIC  
(µg/mL)

IZ (mm)

B. subtilis 25 ± 0.3 7 ± 0.4 18 ± 0.3 7 ± 0.5 5 ± 0.3 11 ± 0.6

S. aureus 18 ± 0.4 7 ± 0.6 15 ± 0.6 7 ± 0.4 5 ± 0.6 11 ± 0.6

P. areuginosa 25 ± 0.4 7 ± 0.4 15 ± 0.4 7 ± 0.3 5 ± 0.3 11 ± 0.4

E. coli 20 ± 0.6 7 ± 0.3 20 ± 0.3 7 ± 0.3 5 ± 0.6 14 ± 0.3

Pd salt: Palladium salt, PdNPs: Palladium nanoparticles

Fig. 5. (a) DPPH radical scavenging activities of Pd salt, plant extract, PdNPs and ascorbic acid, (b) Anti-diabetic assay of Pd salt, plant extract, PdNPs and acarbose, (c) Anti-
inflammatory activity of Pd salt, plant extract, PdNPs and aceclofenac sodium by analysing the percentage bovine serum albumin inhibition of respective groups. Results are shown 
as means ± S.D for triplicate with error bars trough one-way analysis of variance (ANOVA) and Tukey multiple comparison test indicating statistical significance at *p < 0.05. 
DPPH: 2,2-Diphenyl-1-picrylhydrazyl, Pd salt: Palladium salt, PdNPs: Palladium nanoparticles, BSA: Bovine serum albumin, S.D.: Standard deviation, IC50: Half-maximal inhibitory 

concentration.

(a)

(b)

(c)
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A study of phytochemical-synthesized AgNPs (9.1 nm) showed DPPH 
scavenging activity of 80% at 250 μg/mL (Gur et al., 2025). Another 
study on biosynthesized AuNPs (5-23 nm) indicated 57.7% scavenging 
at 300 µg/mL (Hosny et al., 2021). Research on plant-mediated PtNPs 
(1-3 nm) and PdNPs (7.4 nm) found scavenging activities of 72.0% at 
50 µg/mL and 79.6% at 500 mg/mL, respectively (Eltaweil et al., 2022; 
Gulbagca et al., 2021). Additionally, studies on CuO-NPs (35.8-49.2 
nm) and ZnO-NPs (8-12 nm) revealed scavenging activities of 29.30% 
at 500 µg/mL and 81.92% at 100 µg/mL (Das et al., 2020; Ghareib et 
al., 2019). The findings reveal that both particle size and concentration 
play a notable role in modifying antioxidant activity. To provide a more 
robust evaluation of our results, we performed a comparative analysis 
alongside the findings of other metal and metal oxide nanoparticles, as 
outlined in Table 2. Therefore, the biosynthesized PdNPs from the P. 
amboinicus  leaves extract could be a promising antioxidant drug for 
oxidative stress-related ailments.

3.9. Anti-diabetic assay

α-amylase is an enzyme that has a critical function in converting 
complex carbohydrates into simpler sugars. Inhibiting α-amylase 
can be beneficial in managing blood sugar levels in individuals with 
diabetes, or as a potential strategy for weight control. In this study, 
biosynthesized PdNPs were evaluated for their anti-diabetic activity by 
measuring the inhibition of α-amylase. When this enzyme is inhibited, 
the absorption rate of glucose can be reduced. Acarbose was used 
as a control to serve as a reference point, and the results showed a 
77.00% inhibition at the conc. of 1000 μg/mL. The biosynthesized 
PdNPs showed a more substantial inhibition of α-amylase than the 
PdCl2 and plant extract. Fig. 5(b) provides the percentage inhibition 
and IC50 values for the PdNPs, plant extract, and control. The results 
indicated that biosynthesized PdNPs exhibited higher inhibition of 
alpha-amylase than the P. amboinicus leaves extract and the palladium 
salt. A maximum inhibition (51.78%) of alpha-amylase was observed 
at 1000 μg/mL by biosynthesized PdNPs. Fig. 5(b) shows a graphical 
representation of alpha-amylase inhibition.

A comparison of biosynthesized PdNPs with other metal and metal 
oxide nanoparticles, including AgNPs (Rehman et al., 2023), AuNPs 
(Rokkarukala et al., 2023), CuO-NPs (Ameena et al., 2022), and ZnO-
NPs (Rehman et al., 2023) has been illustrated in Table 3, highlighting 
the moderate anti-diabetic properties of biosynthesized PdNPs.

3.10. Anti-inflammatory assay

The results of the anti-inflammatory assay suggest that the 
biosynthesized PdNPs were more effective in inhibiting bovine serum 
albumin than the P. amboinicus  leaves extract and the palladium salt 
(Fig. 5c). The analysis showed a significant relationship between 
PdNPs and protein denaturation (72.00% inhibition at 50 μg/mL and 
the P. amboinicus  leaves extract (51.89% inhibition). The Pd salt and 
P. amboinicus leaves extract showed inhibition ranging from 4.85% to
45.71% and 5.32 % to 51.89 % respectively and biosynthesized PdNPs

showed anti-inflammatory activity ranging from 11.60% to 72.00% at 
concentration 10-50 μg/mL (Fig. 5c). These findings align with other 
studies using PdNPs synthesized from diverse medicinal plants (Bi and 
Srivastava, 2024; Sandhya et al., 2024).

A study on phytochemicals used to synthesize AgNPs (34.2 nm) 
showed an anti-inflammatory activity of 82% at 500 μg/mL (Sharifi-
Rad et al., 2020). Biosynthesized AuNPs (15.96 nm) had an anti-
inflammatory activity of 57.7% at 20 mg/kg (Khuda et al., 2021). CuO-
NPs (6.89 nm) and ZnO-NPs (70.37 nm) exhibited anti-inflammatory 
activities of 75.16% at 500 μg/mL and 77.89% at 50 μg/mL (Manasa et 
al., 2021; Nandhini et al., 2025). A comparison between biosynthesized 
PdNPs and other nanoparticles (AgNPs, AuNPs, CuO-NPs and ZnO-NPs) 
to suggest the higher protein denaturation efficacy of biosynthesized 
PdNPs has been presented in Table 4. The eco-friendly synthesis of 
PdNPs demonstrated excellent anti-inflammatory properties without 
any negative impacts typically associated with chemically synthesized 
medications.

3.11. Wound healing efficacy

In addition to its antibacterial properties, PdNPs also exhibit 
anti-inflammatory activity, which collectively contributes to their 
remarkable wound-healing efficacy. In this study, all the animals 
treated with PdNPs showed a sizable increase in the percentage of 
healed wounds in comparison with the control groups during the 18-day 
experiment using the excision wound model. Application of the PdNPs 
for 10 days led to 74.76% wound being healed compared to 55.56 % 
of negative control animals and 80.77 % of the positive control group 
i.e. nitrofurazone (0.2%w/w) ointment treated. The area of the wound
expressed in mm2 reduced significantly faster in the PdNPs treated and
positive control group compared to control group. It has taken 14 days
to heal completely using the PdNPs compared to 18 days in the negative 
control group and 14 days in the positive control group. Photographs
taken on the 1, 6, 12, and 18th day also reflect the same (Fig. 6a). The
efficiency of PdNPs in facilitating wound healing is reflected in both
the percentage of wound contraction(mm2) and the faster reduction

Table 2.  
Comparison of metal and metal oxide nanoparticles’ DPPH scavenging capa-
bilities.

Nano­
particles

Average 
size (nm)

Concentration DPPH 
scavenging (%)

References

PdNPs 21.31 1000 μg/mL 71.41 Present study

AgNPs 9.1 250 μg/mL 80.00 Gur et al., 2025

AuNPs 5-23 300 μg/mL 57.70 Hosny et al., 2021

PtNPs 1-3 50 μg/mL 72.00 Eltaweil et al., 2022

PdNPs 7.44 500 mg/L 79.60 Gulbagca et al., 2021

CuO-NPs 35.8-49.2 500 μg/mL 29.30 Das et al., 2020

ZnO-NPs 8-12 100 μg/mL 81.92 Ghareib et al., 2019

PdNPs: Palladium nanoparticles, AgNPs: Silver nanoparticles, AuNPs: Gold 
nanoparticles, PtNPs: Platinum nanoparticles, CuO-NPs: Copper oxide nanoparticles, 
ZnO-NPs: Zinc oxide nanoparticles, DPPH: 2,2-Diphenyl-1-picrylhydrazyl.

Table 3.  
Comparison of the anti-diabetic efficiencies of metal nanoparticles and 
metal oxide nanoparticles.

Nano­
particles

Average 
size (nm)

Concentration Inhibition of 
alpha-amylase 

(%)

References

PdNPs 21.31 1000 μg/mL 51.78 Present study

AgNPs 34.43 100 μg/mL 75.00 Rehman et al., 2023

AuNPs 5-50 100 μg/mL 68.00 Rokkarukala et al., 2023

CuO-NPs 63.46 100 μg/mL 64.50 Ameena et al., 2022

ZnO-NPs 16-28 100 μg/mL 71.90 Rehman et al., 2023

PdNPs: Palladium nanoparticles, AgNPs: Silver nanoparticles, AuNPs: Gold 
nanoparticles, CuO-NPs: Copper oxide nanoparticles, ZnO-NPs: Zinc oxide 
nanoparticles

Table 4.  
Comparison of the anti-inflammatory activity of metal nanoparticles and 
metal oxide nanoparticles.

Nano­
particles

Average 
size (nm)

Concentration Protein 
denaturation 

(%)

References

PdNPs 21.31 50 μg/Ml 72.00 Present study

AgNPs 15.96 20 mg/kg 57.08 Sharifi-Rad et al., 2020

AuNPs 34.2 500 μg/mL 82.00 Khuda et al., 2021

CuO-NPs 6.89 500 μg/mL 75.16 Manasa et al., 2021

ZnO-NPs 70.37 50 μg/mL 77.89 Nandhini et al., 2025

PdNPs: Palladium nanoparticles, AgNPs: Silver nanoparticles, AuNPs: Gold 
nanoparticles, CuO-NPs: Copper oxide nanoparticles, ZnO-NPs: Zinc oxide 
nanoparticles.



Singhal, et al.� Journal of King Saud University - Science Article in Press

8

effective in promoting keratinocyte growth and angiogenesis at 
low concentrations (Dykman and Khlebtsov, 2012). Cerium oxide 
nanoparticles (CeO₂ NPs) function as redox modulators, scavenging 
excessive ROS and activating angiogenic pathways such as hypoxia-
inducible factor-1α (HIF-1α) (Sreejith et al., 2016). Although PdNPs 
may require functionalization to enhance their antimicrobial efficacy, 
they provide a versatile and cost-effective alternative for wound-healing 
applications due to their superior catalytic efficiency and balanced ROS 
modulation (Zhang and Liu, 2019).

A comparison of wound healing activity of biosynthesized PdNPs 
alongside various other types of nanoparticles, including AgNPs 
(Chinnasamy et al., 2021), AuNPs (Soliman et al., 2022) and ZnO-NPs 
(Shoukani et al., 2024), has been provided in Table 5. This comparison 
underscores the significant wound healing properties demonstrated by 
the biosynthesized PdNPs, showcasing their potential use in wound 
healing dressing.

Conventional nanoparticle synthesis methods often use toxic 
solvents, require high energy input, and generate hazardous byproducts, 
endangering the environment and human health. Eco-friendly synthesis 
methods using plant extracts or green chemistry present a promising 
alternative to reduce environmental costs and have the prospective 
to lead to more economical and ecologically sustainable production 
in the long run. MNPs, including silver, gold, and zinc oxide, present 
significant safety concerns primarily because of their small size and 
distinct physicochemical features. These nanoparticles can easily 
penetrate biological barriers such as cell membranes, leading to 
potential cytotoxic effects. This cytotoxicity can stem from various 
mechanisms, including ROS production, which contribute to oxidative 
stress within cells. Oxidative stress can disrupt cellular homeostasis, 
leading to inflammation as the immune system responds to the 
perceived threat of these foreign particles.

In Table 6, a comparison is made between the safety, sustainability, 
and cost-effectiveness of biosynthesized PdNPs and various other 
types of nanoparticles, including AgNPs (Bharathi et al., 2024), AuNPs 
(Khan et al., 2024), PtNPs (Shabani et al., 2023), CuO-NPs (Khairy 
et al., 2024), and ZnO-NPs (Alnehia et al., 2022). This comparison 
highlights the biosynthesis method for producing PdNPs using aqueous 
leaf extract from P. amboinicus, which is not only sustainable and 
more economical but also uses less time and energy compared to the 
synthesis of other nanoparticles. Oxidative stress may result from 
an excess of ROS production, impairing the cells' ability to maintain 
normal physiological redox-regulated functions. This disruption to 
cell function and development can result in oxidative modifications 
of proteins, the generation of protein radicals, DNA strand breaks, 
and nucleic acid modifications, ultimately leading to cell death and 
genotoxic effects. Additionally, in contrast to other metal and metal 
oxide nanoparticles, biosynthesized PdNPs demonstrate lower toxicity 
toward E. coli bacterial cells. The toxicity is affected by the type of 
nanomaterial, its shape, size, surface charge, and the specific bacterial 
strain involved, as shown in Table 6.

Fig. 6.  In vivo wound healing efficacy study in mice. (a) Representative photographs 
capturing the wound healing process at specific timepoints (days 0, 6, 12, and 18) 
in different treatment groups: control (untreated), PdNPs-treated, and positive control 
(nitrofurazone 0.2% w/w ointment). (b) Simulation analysis photographs of wound 
healing with respective treatments, (c) Effect of treatments on wound contraction 
(mm2) over time across the treatment groups. (d) A comparison of the Percentage of 
wound healed between the PdNPs, positive control compared to control with p<0.05 
statistically significant difference in comparison with untreated group. PdNPs: 

Palladium nanoparticles.

(a)

(b)

(c) (d)

Table 5.  
A comparison of wound healing activity of biosynthesized PdNPs alongside 
various other types of nanoparticles.

Nano­
particles

Types of 
wound 
healing 
agents

Dosages/
con­

centration

Wound 
contraction

(%)

Exposure 
to wound 

area

References

PdNPs Ointment 1% w/w 74.76 10 days Present study

AgNPs Hydrogel 30% w/v 60.42 10 days Chinnasamy  
et al., 2021

AuNPs Ointment 30 µg/kg 80.00 14 days Soliman et al., 
2022

PEG 
coated 
ZnO-NPs

Spray  10 mg 
/500 µL 

89.00 10 days Shoukani et al., 
2024

PdNPs: Palladium nanoparticles, AgNPs: Silver nanoparticlesm, AuNPs: Gold 
nanoparticlesm, ZnO-NPs: Zinc oxide nanoparticles, w/w: Weight/Weight, w/v: 
Weight/Volume, PEG: Polyethylene glycol.

in wound area observed in this study compared to control have been 
depicted in Fig. (6a-d), respectively (Arumugam et al., 2024; Hamid et 
al., 2024; He et al., 2022; Yin et al., 2023).

Nanoparticles play a critical role in wound healing by moderating 
biological mechanisms like cellular migration, proliferation, 
angiogenesis, and antimicrobial defense. PdNPs exhibit promising 
wound-healing potential due to their ability to generate ROS in 
controlled amounts (Mubarak-Ali et al., 2023), which act as signaling 
molecules to promote angiogenesis and fibroblast migration (Liu et al., 
2024). Additionally, PdNPs modulate oxidative stress by balancing 
ROS levels, creating an optimal environment for tissue repair. They can 
also initiate key signaling mechanisms such as PI3K/AKT and MAPK 
(Kumar and Sood, 2020), which regulate keratinocyte proliferation 
and migration, as well as upregulate vascular endothelial growth factor 
(VEGF) to enhance angiogenesis and collagen synthesis (Khosravi and 
Khamari, 2019). These mechanisms make PdNPs a valuable candidate 
for wound-healing applications, particularly when incorporated into 
advanced nano scaffolds or drug delivery systems.

Compared to other nanoparticles, PdNPs are uniquely advantageous 
in their recyclability and catalytic properties, which can be leveraged 
for sustained therapeutic effects (Liu and Zheng, 2017). AgNPs excel in 
antimicrobial activity, disrupting microbial membranes and generating 
ROS (Rai et al., 2009), while AuNPs are highly biocompatible and 
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4. Conclusion

In conclusion, this study showcases the successful green and 
bio-inspired synthesis of PdNPs using biogenic reduction through 
aqueous leaf extract of P. amboinicus. Numerous characterization 
methods were utilized, including UV-Vis spectroscopy, FTIR, FESEM, 
EDS, high-resolution TEM, XRD, and zeta potential analysis. The 
synthesized PdNPs demonstrated the structural and morphological 
properties of the PdNPs, while biological assays demonstrated 
their multifunctional therapeutic potential, including significant 
antibacterial activity. Notably, enhanced wound healing efficacy in 
laboratory mice was observed within a period of 14 days emphasizing 
their suitability for diverse biomedical applications. Moving forward, 
future research may focus on conducting in-depth in vivo studies 
to further validate the mechanistic activities of PdNPs and their 
potential in drug delivery. This study offers an excellent starting 
point for scientists interested in the field of nanobiotechnology and 
nanomedicine, providing insight into nanocarrier systems and drug 
delivery metabolism.

The future prospects of biosynthesized PdNPs for wound healing 
are highly promising due to their ability to modulate oxidative stress, 
enhance angiogenesis, and promote cellular proliferation through ROS-
mediated signaling pathways. Advancements in functionalization and 
integration with biomaterials could further optimize their therapeutic 
efficacy, biocompatibility, and targeted delivery, paving the way for 
innovative wound-care solutions.
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