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Abstract In this paper, the Nystrom method is developed to approximate the solutions for hybrid
fuzzy differential equation initial value problems (IVPs) using the Seikkala derivative. A proof of
convergence of this method is also discussed in detail. The accuracy and efficiency of the proposed
method are demonstrated by applying it to two different numerical experiments.
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1. Introduction

Fuzzy differential equation (FDE) models play a prominent
role in a range of application areas, including papulation mod-
els (Guo and Li, 2003; Guo et al., 2003), civil engineering
(Oberguggenberger and Pittschmann, 1999), particle systems
(El Naschie, 2004a,b, 2005), medicine (Abbod et al., 2001; Bar-
ro and Marn, 2002; Helgason and Jobe, 1998; Nieto and Tor-
res, 2003), bioinformatics and computational biology
(Bandyopadhyay, 2005; Casasnovas and Rossell, 2005; Chang
and Halgamuge, 2002). Particularly, the use of hybrid fuzzy
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differential equations (HFDEs) is a natural way to model
control systems with embedded uncertainty (containing fuzzy
valued functions) that are capable of controlling complex sys-
tems which have discrete event dynamics as well as continuous
time dynamics.

In recent years, many works have been performed by several
authors in numerical solutions of fuzzy differential equations
(Fard, 2009a,b; Fard et al., 2009, 2010; Fard and Kamyad,
2010; Friedman et al., 1999; Hullermeier, 1999). Furthermore,
there are some numerical techniques to solve hybrid fuzzy differ-
ential equations, for example, Pederson and Sambandham
(2007, 2008) have investigated the numerical solution of HFDEs
by using the Euler and Runge—Kutta methods,respectively, and
Prakash and Kalaiselvi (2009) have studied the predictor—cor-
rector method for hybrid fuzzy differential equations.

In this study, we develop numerical methods for hybrid fuz-
zy differential equations by an application of the Nystrom
method (Khastan and Ivaz, 2009). This paper is organized as
follows: in Section 2, we provide some background on ordin-
ary differential equations, fuzzy numbers and fuzzy differential
equations. Section 3 contains a brief review of the hybrid fuzzy
differential equation IVPs. In Sections 4 and 5, the Nystrom
method for hybrid fuzzy differential equations, a convergence
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theorem are discussed. Finally in Section 6, we present two
numerical examples based on examples in Pederson and Sam-
bandham (2007, 2008) to illustrate the theory.

2. Preliminaries

2.1. Notations and definitions

Definition 2.1 Khastan and Ivaz (2009). Consider the initial
value problem

}’/(l) :f(t7y(t))7 y(o) =)o (1)
where f: [a,b] X R" — R". A m-step method for solving Eq. (1)
is one whose difference equation for finding y,,, as approxima-
tion y(#;,) at the mesh point #;,; can be represented by the fol-
lowing equation:

m—1

m—1
Vit = D am Vi Y by Ut Vig) 2
=0 =0

for i=m—1,m,...,N—1, such that a=1t <t < - <
in=b, h="f=1ty —t and ag,ay,...,au1, bo,by,.... b,
are constant with the starting values y, = a, y, = 0a,...,
V-1 = %mn—1-

When b,, = 0, the method is known as explicit, since Eq. (2)
gives y;,, explicit in terms of previously determined values.
Also, when b, # 0, the method is known as implicit, since y,,,
occurs on both sides of Eq. (2) and is specified only implicitly.

A especial case of multistep method is Nystrém’s methods
(Henrici, 1962). Here, we set

q
yi+1 :yi—l+hZKmvmf(ti7yi)7 q:071727--~7 (3)

m=0

where the constants

o] (2)e

are independent of f, 1 = 1ty + sh, Vf{t;,y,) is the first backward
difference of the f{z, y(¢)) at the point of # = ¢; and higher back-
ward differences are defined by V*f(#;,y,) = V(V*"'f1;, ).
The special case ¢ =0 of Nystrom method is known as the
midpoint rule:

Vet = Vit + 201, ;).

Definition 2.2. (Henrici, 1962) Associated with the difference
equation

Yigl = AmaYi + moyiy + o+ Yy

+hF(t[ahayi+l7yi7 s 7yi+17m)7

Yo =%, Vy = %15 Yo =02y Vi = Ol
the following, called the characteristic polynomial of the meth-
od is
p(A)=2"— A A" = 4 AT — ) — a.

If |4;] < 1 for each i =1,2,...,m and all roots with abso-

lute value 1 are simple roots, then the difference method is side
to satisfy the root condition.

Theorem 2.3. A multistep method of the form (2) is stable if and
only if satisfies the root condition.

Proof. See Isaacson and Keller (1966). O

Definition 2.4. A fuzzy number u is a fuzzy subset of the real
line with a normal, convex and upper semicontinuous member-
ship function of bounded support. The family of fuzzy num-
bers will be denoted by E. An arbitrary fuzzy number is
represented by an ordered pair of functions (u(x),#w(a)), 0 <

o < 1 that, satisfies the following requirements:

—u(o) is a bounded left continuous nondecreasing function
over [0, 1], with respect to any o.

—u(a) is a bounded left continuous nonincreasing function
over [0, 1], with respect to any .

—u(a) <u(a), 0<a< 1.

Then, the a-level set

" = {slv(s) = 0}
is a closed bounded interval, denoted

o = [, 7

Definition 2.5. A triangular fuzzy number is a fuzzy set u in E
that is characterized by an ordered triple (1, u.,u,) € R® with
u; < u, < uy such that [u)” = [u; 4] and [u]' = {u.}.

The o-level set of a triangular fuzzy number u is given by

[ = fue = (1 = o) (e — ), e + (1 = o)ty — )] (4)
for any o € I =0, 1].

Definition 2.6 (Dubois and Prade, 2000). Let A4, B two non-
empty bounded subsets of R. The Hausdorff distance between
A and B'is

dy(A, B) = max |sup inf|a — b|,sup inf |a — b||.
ac4 beB beB a€A

The supremum metric D on E is as follows:

D(u,v) = sup{dy([u]*, v]") : « € I}.

With the supremum metric, the space (E, D) is a complete
metric space.

Definition 2.7 (Dubois and Prade, 2000). A fuzzy set-valued
mapping F: T — E is continuous at ¢, € T if for every € > 0
there exists a 6 = 6(t,€) > 0 such that D(F(t), F(ty)) < e, for
all 1 € T with || — ]| < 4.

Definition 2.8 (Dubois and Prade, 2000). A mapping F: T —
E is Hukuhara differentiable at ¢, € T C R if for some Ay > 0,
the Hukuhara differences F(ty + At)—,F(ty) and F(ty)—,F(to—
Ar) exist in E, for all 0 < At < hy and if there exists an
F(ty) € E such that

lim D(—F("’ ha AAti*’lF(’O) - F’(zo)) ~0

At—0
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and
. F([())—hF([() — Al) .
tm p (=2 () =0

The fuzzy set F/(1y) is called the Hukuhara derivative of Fat ¢.

Definition 2.9 (Dubois and Prade, 2000). The fuzzy integral

b
/ymm,ogagbgL

a

is defined by

o] -[[ v e

provided the Lebesgue integrals on the right exist.

Remark 2.10 (Kaleva, 1987). If F: T — E is Hukuhara differ-
entiable and its Hukuhara derivative F' is integrable over [0, 1],
then

= F(to) + /[F(s)ds

for all values of ¢y, where 0 < 7y << 1.

Definition 2.11 (Seikkala, 1987). Let I be a real interval. A
mapping y: I — E is called a fuzzy process, and its a-level
set is denoted by

D@ = (1, %), 7(1,2)],

The Seikkala derivative y'(r) of a fuzzy process y is defined by

teloe(0,1].

D" = (80), 5 (1, 2)),

provided the is equation defines a fuzzy number )/(¢) € E.

tel, 0<a<l

Remark 2.12 (Seikkala, 1987). If y : I — E is Seikkala differ-
entiable and its Seikkala derivative )’ is integrable over [0, 1],
then

o0 =)+ [ V(s)ds,

lo

for all values of 1, where ¢, ¢, € L.

2.2. Interpolation of fuzzy number

The problem of interpolation for fuzzy sets is as follows:

Suppose that at various time instant ¢ information f{¢) is
presented as fuzzy set. The aim is to approximate the function
1), for all ¢ in the domain of /. Let ty < ¢; < --- <, ben+1
distinct points in R and let ug, uy,---,u, be n+ 1 fuzzy sets in
E. A fuzzy polynomial interpolation of the data is a fuzzy-va-
lue continuous function f: R — F satisfying:

Q) f@&)=w, i=1,...,n.
(i) If the data is crisp, then the interpolation f is a crisp
polynomial.

A function f which fulfilling these condition may be con-
structed as follows. Let C) = [u]* for any « € [0,1], i=0,
1,...,n. For each X = (xo,xy,...,%,) € R, the unique poly-
nomial of degree < n denoted by Py, such that

PX(ti):xh i:0717"'7n

and

=0 i)

B n . t— [/_
_ D,(n = tj).
Finally, for each r € R and all & € R is defined by f(1) € E
by
(F))(E) =sup{x€[0,1]: X e x CL x--- x "
such that Py (1) = &}.
The interpolation polynomial can be written level setwise as

[f(t)]a = {_}’ERI}':P)((]/‘LX,*G [u[}17i: 1,2,...71’1},
for0 <a<l1

when the data u; presents as triangular fuzzy numbers, values
of the interpolation polynomial are also triangular fuzzy num-
bers. Then f{¢) has a particular simple form that is well suited
to computation.

Theorem 2.13. Let (t;,u;), i=0,1,2,.
data and suppose that each of u; = (u},u
Then for each t € [ty, t,)], f(t) = (f (1),

0= Lu+ > L(u

li(1)=0 li(1)<0

0= "h(nu
i=0

0= L+ > L(nu
1i(1)=0 li(1)<0

where (1) = Hj#, f’_'[’

Proof. See Kaleva (1994). O

,n be the observed
, ,, ,’) is a element of E.
(1) €E,

3. The hybrid fuzzy differential system

Consider the hybrid fuzzy differential system

xl(t) :f(t7 x(t)>j-k(x/c))7 te [t/m tk+1}7
(5
(tk) = Xk,
where 0 < tg <t <+ <l < ,f > 00, fEF[R" x EX E,E|,

ik € %[E7 E]

Here, we assume that the existence and uniqueness of solu-
tion of the hybrid system hold on each [#, #] to be specific
the system would look like:

Xé(l) :_f(f,X()(f)7 20()%))7 X(lo) = Xo, te [[0,[]],

x((0) =ft,x1(1), A(x)), x(t)=x1, te€[n,t],
X (1) =

i (0) =S x5 (0), Ak (k) X)) = X, 1€ [trs i

By the solution of (5) we mean the following function:
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xo(t), te [t07t1]7
xi1(0), te[n, ],
(1) = x(t, 19,%0) = {
xi(1), 1€ [tk ],

We note that the solutions of (5) are piecewise differentiable
in each interval for € [t, 1] for a fixed x, € E and
k=0,1,2,....

4. Nystrom methods

In this section, for a hybrid fuzzy differential equation (5), we
develop the Nystrom method via an application of the Ny-
strom method for fuzzy differential equations in (Khastan
and Ivaz, 2009) when f and /4, in Eq. (5) can obtained via
the Zadeh extension principle form f€ C[R* x R x R, R] and
/% € C[R,R]. We assume that the existence and uniqueness
of solutions of Eq. (5) hold for each [#, #11]-

For a fixed r, we replace each interval [z, #;,1] by a set of
Ni+1 discrete equally spaced grid points, # =t <
tgy < -+ <ty =ty (including the endpoints) at which the
exact solution x(¢) is approximated by some y, ().

Fix k € Z*. The fuzzy initial value problem

{x}{(t) = ft, x¢ (1), Ac(Xk)),
(tc) = X,

te <t <ty

(6)

can be solved by Nystrém method.

Let fuzzy initial values be i, Viifs- s Vpig 1€
Striis Vi 1)), J=0,1,..., ¢, which are triangular fuzzy
numbers are shown by

{/(tkifivyk,i—_ﬂ;”k(yk))vfc(tkwf*i’yk,i—_ﬂ;”k(yk))7fr(tkl oy Viji—jr 2 i)}

j:0717“'7q7
also
i1
V(triv1) = y(teio1) + S,y (2), A (yy))dt. ()

Iki-1

where
f(lvyk(l)7;~k(yl())
= (f](tvyk(t)v)“k(yk))vf‘(tvyk(t)»)~k(yk))7fr(t7yk(t)7;“k(yk)))'

By fuzzy interpolation, we have:

JASAGYACN) Z GO (1 3 (trig)s 2 (00))
I,(r)>0
+ Z LS (tizis Y(tii)s (7)), (®)
[,t:) 0
q
Sty (0), 2 () z;l/ “(tki=gs Y (tki=s); 26 (Vi) )
=

Loty (0), ) = D B iy ¥ (trig)s 24 030))

+ 3 GO (i (i), 4 0))- (10)

where .f‘f(l7yk(l)7/1k(y{c)) = (f,’\t(t’y/((t)7;Lk(.},k))’.fi‘(l7ylc(.l)7
M) S (8 3 (1), 2i(vy))), interpolates f{z, (1), A (y,)) with
the interpolation data given by the values f{tx; Vi,

)k(y/()) ]_0713"-7qandl,() HLO(,:/[ZA[,,
I#]

Regarding to the sign of /;(¢) in the integrating interval
[ti-1,t11], we have from Eq. (7)

ki

f\'(tvyk(t)v )“k(yk))dt

i1

Yteirr) = y(teio) +

kit

+ Se(t, 3, (0), () et (11)

Ui
The sign of /;(¢) depends on ¢ that is even or odd. We sup-
pose ¢ is even. Also for the ¢ is odd, we can proceed similarly.
For ;-1 < t < 1y, by definition of /;(¢), we can write:
L(t) 20 forre M={0,1,3,...,q— 1}
IL(1)<0 forre N={2,4,...,q}

and for f; <t <t
L(t) 20 forre M ={0,2,4,...,q}
L(t)<0 forre N={1,3,...,q—1}.

Thus, for #,; 1 < ¢ < #;, we have:

L3 (0,2(30) = DB Wi Vi 26 (00))
JjeM
+ 3 GO Wi Vi 4 0)), (12)
jEN
L6y, 200)) = Y BOS iy Vi A (33)), (13)
JEMNN
St 3(0), 2 () Zl " (thi=is Vici—s 2 (Vi)
JjeM
+ 3 O iy Vi A (30)), (14)
jEN
and for #; <t < i
f(z yk Z[ tkl]7yk[/7 (yk))
jem’
+ 3 HOf (g Vi ), (15)
jEN'
Sty (0), 2 (ve) Z GO (s Yiigs 2 (0)), (16)
jeM'NN'
St 3 (0), () Zl (Treiis iy (Vi)
jem’
+Zl/([) tk'—hykz —j (yk)) (]7)
JjeN'
From (4) to (7) it follows that:
V(tkin1) = (i), P (i)
where
i1
Vi(tein1) = y*(tei1) +/ {of (2, yi (), 26 ()
i1
+ (1= a)f (6, (1), 2 () et (18)
it
P (tiet) =7 (tie) + [ (o 0, 200)
-1
+ (1= a)f (2, (1), 2k (v)) Y. (19)

According to Eq. (11), if (12), (13), (15), (16) are situated in
(18) and (13), (14), (16) and (17) in (19), we obtain
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tk Z (O ) Therefore, Nystrom method is obtained as follows:
Vi1 = Vi “'/ o LGOS (trivgs Viejmj 2 (Ve ” )
e Y P JEMNN ! ' ! Vi1 = Yii1 _EZMJ—Q(Z’CJ*}VJ}M—/? M)
J
f Tkizj m-,;»» V;
+(1-4) [Z B ki Vs 22 00) & (i i WO
jeM ,
+ 20 P iy Vi (V1)) 0
jeMm’
+ 2 5O (ki Vi (Vi) | pelt r S
jGZN J J J +/_§,f (lk‘i*jvyk‘,i—jv)“k(yk))oiv
Uit o 1 7
'+ , Vi =V + 2 Whigy Vi )y,
+/ {a Z lj(l),fr(lk,f—j,yk,,;_,-,/Lk(yk)) ki+1 ki1 jg;[ (1 jr Vk,i—j () J (22)
i ; q d
: Jem + 3L i Vi )y
Jjel
+ (1 - O() |;Z l_/([)f,(tk,ifﬁyk,i—_ﬁ /lk(yk)) + Z ji(lk,i,j,yk_,;/, /Lk(yk))(sj
jeM’ jem’ o
+ ‘Z,.)_(a([k~ifivyk,iﬁf’ ;“k(yk))é_/?
+ DGO (Wi i ) | gt N
JeN Viig = %05 Viigr1 = %50y Vg = g
=Y t+ E (o (tici s Viiss 24 (7)) Veicg = %ty Viimgrr = %2 o Vg = O2ge1-

JjeM

+(1- a)fi(fk,ifﬁyk‘i—/’ Zk(J’k))] </[_k.[ l,(t)d;)
> 0 (this Vi 26 (0))

+ (1= a)f Ty Vijgs 44 (Vi) (/th lj(l)df>
+ Z[‘xf'(tki*j?yk,i—ﬁ ;“k(yk))

jem’

b (1= 0 (i vy 2] ( / l,,-(t)dt>
+ Z[af‘(tk>if,i7yk,l-*j7 ;“k(yk))

jEN'

Ik,i+1
+ (1= ) (thimgy Viimsp (V0] </ l,/(f)dl>~
ki
If we define y; = f;:,l li(t)dt and &; = [ I;(¢)dt, thus from
(4) we have ' )

Yeirt = Yiia T Z4f(tk-f—j7yk,i—j7;“k(yk))Y/

JjeM

+ Z]’(rk.,-,j, Vricis 2 i)y

JEN

)L (Wi Vi 2 (00))9;

jem’
3 P Wiy Vi 2 (008, (20)
JjEN'
and we can deduce similarly
Veis1 = Vrio T Z]%(tk.i—jvyk‘ifp;“k(yk))yj
jem
+ Zzu(tk-,iihyk‘i—ﬂ 2 (V)
JEN

+ ZJ_(“ (thijs Vo (V)95

jem'

+ Z‘}_&(Zk,i—j?yk,i—j?;“k(yk))éj. (21)

JeN'

Worthy of note is the especial case ¢ = 0. Here y, = h, 9y =
h and (22) becomes

Vi = Vi + 20 (s Vi 24 ()
Vi1 = Vi + 2/"}1(1/(,:'7)’1{,,'7 (), (23)

v J— oL J— % — % p—
Yijic1 = %05 Vi, = %5 Vi = %, Vi = %3,

This is the so-called Midpoint rule.
5. Convergence

By Theorem 5.2 in Kaleva (1987), we may replace (5) by an
equivalent system:
X(t) = flt, x, u(xi)) = Fe(,%,X),  x(tx) = Xz, (24)
yl(l‘) :](t7 X, ;vk(Xk)) = Gk(t7£7 f), Y(l‘k) = f/ﬁ

which possesses a unique solution (x,X) which is a fuzzy func-
tion. That is for each 7, the pair [x(¢,r),%(¢,r)] is a fuzzy num-
ber, where x(¢,r),%(¢,r) are respectively the solutions of the
parametric form given by:

{5’(1‘, r) = Fe(t,x(¢,r),%(t,r)),  x(tx,1) = x(r),
¥(t,r) = Gi(t, x(t, 1), %(t, 1)), X(tx,r) =X (r),

for r € [0, 1].

For a fixed r, to integrate the system in (25) in
[to, 1], [t15 2], - - - [ty T ], - - -, We replace each interval by a
set of N, + 1 discrete equally spaced grid points (including
the end points) at which the exact solution (x(¢,r),X(¢,r)) is
approximated by some (yx(t,7),¥Vk(t,r)). For the chosen grid
points on [ty, fry1] at fr; = t + iy, by = "‘+;"', 0<n< N,
let (Yi(t,r), Yi(t,r)) = (x(¢,r),%(t,7r)). (XYi(t,r), Yi(t,r)) and
(ve(t,r),¥x(t,r)) may be denoted respectively by
(Xii(r), Yiei(r)) and (yi:(r), Fei(r)). For example, the Midpoint
rule approximations Yy (z,r) and Y,(z,r), Eq. (23), can be writ-
ten as:

Z/c,H»l (V) - }_)k,ifl + 2th([ti.k7Xk,i(r)7y/(.i(r)]7
Frir1 (1) = Fricr + 20Grltig, yri(r), Pa(r)],

(25)

(26)

However, (26) we will use

Yoy =%, Yo =0, j=0,1
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and

ki = VN (@), Py = Froive (), 7=0,1

if £ > 1. Then (26) represents an approximation of Y (¢,r),
Y, (t,r) for each of the intervals #, <t <, <t<t,...,
e < teagye e o

For a prefixed k and r € [0, 1], the proof of convergence of
the approximations in (22), i.e.

lim  yen, (r) = x(tx41,7) and hm o Tk N (1) = X(tir1, 1),

hy,eshg—0=— ho ..y
is a application of Theorem 4.2. in Khastan and Ivaz (2009)
and Lemma 5.1 below. The convergence is pointwise in r for
a fixed k.

In the following, we show the convergence of the Midpoint
rule, i.e., the Nystrom method with ¢ = 0. For the other values
of ¢, the proof can be done similarly.

Lemma 5.1. Suppose i € Z", ¢, >0, r €[0,1], and h; < 1 are

fixed. Let {zirn(r)},ﬁo be the Midpoint approximation with

N = N; to the fuzzy IVP:
X (1) = flt, x(1), Ai(x:)),
x(t;) = x;,

tE [t ti] (27)

If {3,,(r)}2, denotes the result of (26) from some Vio(r), then
there exists a 6; > 0 such that

zio(r) = yio(r)] < i, [Zi0(r) = Fio(r)] < &
implies
|zin,(r) = yini (V)| < €, [Ziw () = Piw ()] < &

Proof. Fixic Z", ¢ >0,r € [0,1],and ; < 1. Let {z,,(r)},
be the Nystrom approximation with N = N; to the fuzzy IVP
(27). Suppose {y,,"(r)}iv;o denotes the result of (26) from some
Vio(r). By (26), for each /=0,...,N; — 1,

|Zis1 (r) = yirsr (N)| = |zis(r) + 20F[tig, 2is(r), Zia(r)]
= Yis(r) = 2hFiltig, yia(r), $ia(r)]|
< zua(r) = yia(r)| + 2kl Filtig, 2ia(r), Zia(r)]
= Eiltig; yia(r), yus(0)ll, (28)
and
|Zir1 (r) = Viawr ()| = |Z0(r) + 20:Giltig, 24(r) Z3a(r)] = Via(r)

- 2hG [[117)}11( ) yrl( )”
< |Zig(r) = Fu(0)| + 20| Giltig, zis(r), 200 ()]
= Giltig, yis(r), yia(r)]l. (29)

Let o, = €. Since F; and G; are continuous, there exists a
Ny, > 0 such that |z;y,1(r) = yin-1(r)] < ny, and [Zx,i(r)—
Vin—1(r)| < ny, imply

|Filtini-1, Zin— l(i’) ZiN— l(r)]7Fi[ti,N,-—hXi‘N,-—l(r)a

Tt (] < 5 =7 (30)
|Gi[tf,N, 15 Zi,Ni— 1(’) ZiN;— |(")] - Gi[ti,N,—I,Xi,Ni—l(r)y
P ()l < § =5 (31)

4

Let ON,—1 = mll’l{z, 5 } If'ZL Ni— ( ) 72[‘}\]’.,1(}’” < 0N, —1 and
[Zin—1(r) = Vin—1(r)] < oy, then by (28) and (29) with
/= N; — 1 and (2) and (31) we have

|zin, (r) = )_’;N,(l‘)| < zin1 (r) — JiNi-1 ("]
+ 20| Filti y—15 Zin—1 (1), Ziv—1 ()]
- F‘[fiN,-—hyiNﬁ (r), ﬁ'Ni—l(r)H
< oty +2h, <L +h, < e (32)
Zin, (1) = Pin, (1) < [Ziwi-1 (1) = Piwi—1 (1)

+ 2h|Giltin—15 Ziv—1 (1), Ziv—1 (F)]
(r), y,- Ni-1(1)]]

<aN,1+2h <2+h <€ (33)

Continue inductively for each j = 2,..., N; as follows. Since
F; and G; are continuous, there exists a n7y,__;, > 0 such that
|g,~.N1_,~(r).— Zi.N,-—j(r)l <Nn—(-1) and  [Zin,i(r) = Yin—(1r)] <
NN —(i-1) imply

— G'[tiN,»—layiN,»—

[Eilti wigs i (1) Ziwis ()] =

Filtinjs Yiny—i (1) Pin— ()] < —

N (j-1)

|Gilti n—js Zini—j (1): Zin— (V)] = Giltin—s Yini—i (1), i (]| <

(35)
where 7( was define in the previous step.

Let OCN —j = mm{w_ol s } If |ZIN71( ) — Xi,Nﬁj("N <
on,—; and |Z; n,—i(r) — Vin—i(r )\ < ay,—; then by (28) and (29)
with / = N; — j and (34) and (35) we have
|zi N~ -1 (7) |zi 5 (r) — Xi,N,-—,/(r)|
+ 2hi|E’[Zi.M—j7 Zi.Ni—j» Ei,N;—_/}

= Yin-g-1(r)| <

= Filtin—, yini—, Vivil
INi—(j-1) INi=(j-1)
2h;
2 + 4
< 0(N,'f(jfl)> (36)

<

|Zin— -1y (r) |Zi 5 (r) = Pini—i (1)

+ 20| Gilti n,—js ZiNi—j> ZiNi—j]

= Vin—g-n(r)| <

= Giltin,—js Vinijs Vinisil|

XN—(j-1) XN;—(j=1)
+2h;
2 "4

<
< 0N (j-1)-
(37)

Then, for j = N; we see |z;(r)
Vio(r)| < ap imply

|zia (1) |71 (r)
For j=N;—1 we see |z;,(r)

¥i1(r)] < oy imply

|zia(r) |Zi2(r)

Continue decreasing to j = 2 to see |z;y,—2(r) — ViNi-
a2 and [Z;y,2(r) = Pin-2(r)| < oy,—2 imply

—Zm(l‘)' < o and ‘E,’_()(l’)—

—yui(r)] <oy and —Ju(r)] < oy.

—yu(r)] <oy and |z, (r)—

—X,-)z(i’” < 0Oy and —7i,2(")| < 0.

2(r)] <
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and

1(r) = yiwe— 1(r) 1(r)]

< ON—1-

[ 1(N)] < oy |Zini-1 (1) = Fini-

But it was already shown in (32) and (33) that z; v,
X,"N,,|(l‘)| < Oy, and |E,->N,,1(r) — ?[‘N,,l(r)| < Oly;—1 1mply

|zini (r) = 1Zi:(r)

This proves the lemma with J; = o.

1(r)—

and 7yi‘Ni(r)| < €.

|

Yin ()] < e

Theorem 5.2. Consider the systems (24) and (26). For a fixed
keZ" andr€|0,1],

lim ZI\ Nk( ) E(tk+l7r)7 (38)
B smoeshp—0
hm y,& N () = X(tigr, 7). (39)

ho e hie—

Proof. Fix k€ Z" and r€[0,1]. Choose ¢ > 0. For each
i=0,...,k we will find a 6; > 0 such that &; < J; implies

[X(tk1,7) = Tan ()] <€,

where the /; values are allowable by regular partition of the
[t;,t:+1]’s. By Theorem 4.2. in Khastan and Ivaz (2009), there
exists a d; > 0 such that if /i < J; then

[x(ti1,7) = yew (M) < € and

€ _ €
|zew, (r) = x(tee, )l <5 and 2w, (r) = X0, r)] < 5

We may assume 6, < 1. Then /; < 1. By Lemma 5.1 there
exists a d; > 0 such that

Zk0(r) = yio(r)] < 0k [Zko(r) — Fro(r)| < 0k (40)
implies
€ €
|2k, (1) = Y (1) <3 and  |Z n, (r) = Fin ()] < X
Therefore if ; < J; and (40) holds then
X (tks1,7) = Y, (0] < |X(ti1,7) — Zk‘zvk(r)| + |zew, (7)
€
—pn ) <5+5=e (41)
X(tks1, 1) = Vi, ()] < [X(tks,7) — Zk‘zvk(r)l + 2k, (r)
— E
- yk-NA( )| < 2 2 =€ (42)

By Theorem 4.2. in Khastan and Ivaz (2009), there exists a
0;_, > 0 such that if /_; < §;_, then

0 _ [
|§k*1~N/\71 (r) - E(t/w r)‘ < ?k and |E/<*1~Nk7| (V) - x(t/H V)| < Ek .

We may assume 0; ; < 1. Then A_; < 1. By Lemma 5.1
there exists a d,_; > 0 such that

|zx-10(r) = yr-10(N)] < Okt 1Zk-10(r) = Fr—10(r)| < dpi
(43)
implies
Ok I
lze-1x, (1) = Y, ()] < Eka and  |Zan, (1) = Vw0 < ?/‘

Therefore if /i, < J;_, and (43) holds then

[x(2k, 1) = Yi1ve, (D] < 28, 7) = 218, (7)]
+ 2z v, (1) = Yien (7))
5/( 5/{
—4 == 44
< 2 2 51{7 ( )
X2, ) = Vimrve oy (0] < X, 1) = Zema v, (7))
+ Zkcin, (1) = Proi v, (1)
o Ok
Tk Tk _ 4
< 7 + 7 O (45)
Continue inductively for each i=k —2,...,2,1 to find a
0; > 0 such that if s; < J; then
Ois1 _ - iy
|zin, (r) = X(tiv1,7)| < == and  [Zjx,(r) — X(ti1,7)| < 5

We may assume each J; < 1. Then each #; < 1. By Lemma
5.1 there exists a §; > 0 such that

|zio(r) = yio(r)| < &y [Zio(r) = Fio(r)] < & (46)
implies
()~ 2] < 2, and [z (7) — T )] < 2L
(47)
Therefore if ; < J; and (46) holds then
X(tiv1,7) = yiw, ()] < X1, 7) = 2iw (7)] + |2iw, (1) = i, ()]
6,2+1 +512+1 .
(X(tiv1,7) = Vi, ()] < [X(tie1,7) = Ziw, (0)| + [Ziw, (1) = Vi, (1)
< 6’;1 % =31

In particular, there exists a d; > 0 such that if 4; < ] and
(46) holds with i =1 then

[x(12,7) = 1w ()] < 62 [x(12,7)

By Theorem 4.2. in Khastan and Ivaz (2009), we may
choose ¢, such that /1y < 6, implies

|x(y,7) [%(t1,7) = Fon, (r)] < 6r.

Suppose for each i =0,. ..,k that &; < d;. Since (48) is the
same as (46) with i = 1, we obtain (47) with i = 1. Since (47)
with i = 1 implies (46) with i =2, we obtain (47) with i = 2.
Continue inductively to obtain (40) and (41), proving (38)
and (39). O

and *?]7}\/1 (l’)‘ < 62.

- ZO'N“ (l’)' < 51 and (48)

6. Numerical illustration

To give a clear overview of our study and to illustrate the above
discussed technique, we consider the following examples.

Example 6.1. Consider the following hybrid fuzzy IVP,

X(1) = x(1) + m(t) 2 (x (1)),
=k k=0,1,2,...
) 0.75,1,1.125],

= [0.75¢"1, &1, 1.125¢6%1],

te [t i+ 1],

x
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where 25 —Exactsolufion |
) {2(t(m0d 1)), if #(modl1) < 0.5 (50) 12- * Approximate solution
m(t) = st
2(1 — t(mod 1)), if z(mod1) > 0.5, 1 ‘
and 0.5 M —
o -
0, ifk=0, 05}
AR : (51) -l
u, ifke{l,2,...}. s
~ For the which 0 € E define as ()(x) =1 if x=0 and 2o oa os o8 4 12
0(x) =0 if x # 0. The hybrid fuzzy initial value problem (49)
is equivalent to the following system of fuzzy initial value Figure 2  The results of Example 6.2.
problems:
x:)(t) xO(l)a te [07 1]7 where
x(0) =[0.75 4 0.25¢, 1.125 — 0.1250],
x(0.1) = [(0.75 + 0.25a)e"", (1.125 — 0.125x)e""], m(1) = |sin(nr)|,  k=0,1,2,..., (54)
xi(1) = xi(t) + m(0)xi(6:), 1 € [ty tina], and
Xt Xi—1(ti), X; l‘,‘,". = Xi— l‘,’,".7 l.:172737... ~ .
(1) = %1 (1) 5(10) = 1 (1) o fo ke
In (49), x(7) + m(#) 4 (xx (7)) is a continuous function of ¢, x k() = u ifkef{1,2,..}. (55)

and J(x(#)). Therefore by Example 6.1 of Kaleva (1987), for
each k =0,1,2,..., the fuzzy IVP

=x(0) + m() A (x(2)), t€ [te,trn1], & =Kk,

{;%;m, | (52)

has a unique solution on [#, #x+1]. To numerically solve the hy-
brid fuzzy IVP (49) we will apply the Midpoint rule method for
this hybrid fuzzy differential equations with N = 10. For [0, 1],
the exact solution of (49) satisfies
x(1) = [0.75¢", €', 1.125¢"].

For [1, 1.5], the exact solution of (49) satisfies
x(6) = x(1)(3e"™" — 21).

For [1.5,2], the exact solution of (49) satisfies
x(6) = x(1)(2t — 24 €73 (3v/e — 4)).

The comparison between the exact and numerical solutions
on [0,2] is shown in Fig. 1.

Example 6.2. Consider the following hybrid fuzzy IVP,

X(t) = —=x(t) +m(t) A (xk)), ¢ € [t i,

=k k=0,1,2,. ..,
x(0) = [0.75, 1, 1.125], (53)
x(0.1) = [-0.1875¢%! +0.9375¢7%! 0! 0.1875¢"!

+0.9375¢"1],

12,

— Exact solution
¢ Approximate solution

Figure 1

The results of Example 6.1.

The hybrid fuzzy initial value problem (53) is equivalent to
the following system:

xg (1) = —x(0),
xg (1) = —x;(1),
xp (1) = —xg(1), €01,
x(0) =1[0.75,1,1.125],
x(0.1) = [-0.1875¢*! +0.9375¢ 70!, 70! 0.1875¢"!
+0.9375¢7%1],
] (1) = =x{(t) + m(t)x(t:),
x{' (1) = =x{(t) + m(0)x{ (1),
X} (1) = =xi(t) + m()x{(t:), 1 € [ti, 1],
xi(t)) = xio (6), xi(ticin) = xi (s w,), i=1,2,3,...

(56)
For [0, 1], the exact solution of Eq. (53) satisfies

x(1) = [—0.1875¢" + 0.9375¢ ™", e*,0.1875¢' 4+ 0.9375¢™"].
For [1,2], the exact solution of Eq. (53) satisfies,

x(1)7 = (=0.2417¢' + 1.2085¢ " — 0.0152 cos(nt)m — 0.0786
x sin(nz)1.2890e™" + 0.0338 cos(nt)w — 0.0338
x sin(n7)0.2417¢' + 1.2085¢~" + 0.0786 cos(nt)m
+0.0152sin(nt))

The comparison between the exact and numerical solutions
on [0,2] is shown in Fig. 2.
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