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In this paper, a non-polynomial quadratic spline method is described for solving fourth-order boundary
value problems whose highest-order derivative is multiplied by a small perturbation parameter. This
method is applied directly to the solution of the problem without reducing the order of the problem.
Convergence analysis of the fourth order method is discussed. To illustrate the efficiency of the method,
a boundary value problem is considered with different type of boundary conditions and obtained numer-
ical results are compared with the existing methods.
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1. Introduction

Fourth order singularly perturbed boundary value problems
occur frequently in many areas of applied sciences such as solid
mechanics, Newtonian fluid mechanics, chemical reactor theory,
aerodynamics, hydrodynamics, optimal control, convection diffu-
sion processes, quantum mechanics, etc. These problems have var-
ious important applications in fluid dynamics. Ghasemi et al.
(2014) gave the analysis of electrohydrodynamic flow in a circular
cylindrical conduit using least square method and Hatami and
Domairry (2014) investigated the transient vertically motion of a
soluble particle in a Newtonian fluid media. Hatami and Ganji
(2014) studied the motion of a spherical particle in a fluid forced
vortex by DQM and DTM. Hatami et al. (2016) gave the optimiza-
tion of a circular-wavy cavity filled by nanofluid under the natural
convection heat transfer condition. Nadeem and Haq (2014) stud-
ied the effect of thermal radiation for megnetohydrodynamic
boundary layer flow of a nanofluid past a stretching sheet with
convective boundary conditions. Sheikholeslami and Ganji investi-
gated the nanofluid flow and heat transfer between parallel plates
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considering Brownian motion using DTM in Sheikholeslami and
Ganji (2015). Sheikholeslami et al. (2013) gave investigation of
squeezing unsteady nanofluid flow using ADM. Sheikholeslami
et al. (2012) discussed analytical investigation of Jeffery-Hamel
flow with high magnetic field and nanoparticle by Adomian
Decomposition Method. Sheikholeslami et al. (2012) investigated
the laminar viscous flow in a semi-porous channel in the presence
of uniform magnetic field using Optimal Homotopy Asymptotic
Method. Zhou et al. (2016) designed the microchannel heat sink
with wavy channel and its time-efficient optimization with com-
bined RSM and FVM methods.

Singularly perturbed problems are classified on the fact that
how the order of the differential equation is affected if € — 0, here
€ is a small positive parameter multiplying the highest order
derivative of the differential equation. The solution of singularly
perturbed boundary value problem has a multiscale character; that
is, there are thin transition layers where the solution varies rapidly,
while away from the layers the solution varies very slowly.

In this paper, we develop a computational method to solve
fourth order singularly perturbed boundary value problems of
the form:

~eyX) +pX)y(x) = q(x),

subject to the boundary conditions

a<x<b (1)

Case (i) y(a)=ou, y(b) = py, y*(a) = 02, y*'(b) = f @)
OR
Case (i) y(a) =ou, y(b) = 1, y"(a) = oz, yV(b) = 3)
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where p and q are sufficiently continuously differentiable functions
in the interval [a,b] , «s and g;s are real constants and ¢ is a small
positive parameter.

In literature, we found many numerical methods which
were developed for solving second order singularly perturbed
BVPs. These methods are exponentially fitted finite difference
scheme (Kadalbajoo and Kumar, 2009), non-polynomial spline
method (Tirmizi, 2008), cubic spline method (Kumar et al,
2007) and quintic spline method (Rashidinia et al., 2010)
etc. There are few methods available for solving higher order
singularly perturbed BVPs such as asymptotic finite element
method (Babu and Ramanujam, 2007), reproducing kernel
method (Akram and Rehman, 2012). Shanthi and Ramanujam
(Shanthi and Ramanujam, 2002) solved singularly perturbed
fourth-order ordinary differential equations of convection-dif-
fusion type using asymptotic numerical methods. The authors
in Akram and Amin (2012, 2013) used quintic spline and sep-
tic spline respectively for solving fourth order singularly per-
turbed BVPs.

However, most of these methods were used to solve fourth-
order singularly perturbed boundary value problem by using a
higher degree spline. Here, we use a non-polynomial quadratic
spline method for solving the problem (1). In this paper, we
discuss two types of boundary value problems with boundary
conditions (2) and (3). Firstly a numerical system is obtained
by using non-polynomial quadratic spline. Then finite difference

formula of O(h?) is used for making the system consistent with
the given boundary value problem. Finally the obtained scheme
is used to solve fourth order singularly perturbed boundary
value problems. After implementation of the problem over the
method we get a system of pentadiagonal matrix which is
solved by using LU decomposition method. The paper describing
a non-polynomial quadratic spline method is organized into five
sections. Section 2 gives a brief derivation of the method, along
with boundary conditions. In Section 3 truncation error has
been obtained for fourth order method. Application of the
method for solving fourth order singularly perturbed BVPs is
discussed in Section 4. Convergence analysis of the method is
discussed in Section 5. In Section 6, numerical examples and
their comparison with the existing methods are presented
which demonstrate the efficiency of our method. Conclusion
and the figures are presented in Section 7 also proves the
accuracy.

2. Derivation of the scheme

Leta =Xxg <Xy <X < --- < Xny1 = b, we first divide the interval
[a,b] into n + 1 equal parts by introducing

xi=a+ih, i=0,1,....n+1 and h=(b-a)/(n+1)
Let
Q;(X) = a;sinT(x — x;) + bie®™* ™) 4 ¢; (4)

be a non-polynomial quadratic spline Q; is defined on [a, b] which
interpolates the uniform mesh points x; depends on a parameter
7, reduces to an ordinary quadratic spline in [a,b] as T—0 and
7> 0.

To determine the coefficients a;, b; and c;, we define the follow-
ing interpolatory conditions as

(Di+Dyyq), i=0,1,...,n

N\—t

Qi) =Y;, Qxi1) =Yi1, QP (x)=

By using above conditions we calculated the coefficients as

Y-y (A ‘)
% ="ino +27:251n0(D i+ Di1)

1

bi 27 2(D +D1+1)

1
Ci =Y _2 2 (D +D1+1)

where, 0 = th
Using the continuity of first derivative, Q" (x;)) = Q["(x;), m =1
the following consistency relation is derived

i=1,2,...,n

1
o Di_1 + BD; + 0xDiq = 2 (Vi1 + 0Yi +Yic),

where,
(1—e")cos 0+ e’sin6
o = >
20
§— (-=1+¢€%)(1-cos0)+ (-1 +e)sind
B 20°
—1+e’—sin0
2T
Y =cos0
0=-1-cos0
Remark:. Our method reduces to Al-Said (2008) based on quad-
ratic spline when
111
b = (335) )

For making the system consistent with the given boundary con-
ditions, we use finite difference formula of O(h?)

Di 1 —2D; +Diy = K’y +0(h*), i=1,2,....n (8)
Using (6) and (8), we obtained the following relation

Wiat (6=29)yiq+ (A =25+7Yi+ (=24 06)Yi1 + Vi
= h* oy + By + oyl

i=23,...,n-1 9)

Eq. (9) form a system of n — 2 linear equations in n unknowns
¥;, i=1,2,...,n. Thus, we need two more equations, one at each
end of the range of integration.

For case (i), the equations are obtained as

5y1 =4y, +VY3 =2y — hzyéz)
49 7 1
4l !l 4 (4)
+h <90 o Tyl +45u2 +350% >+t1
(10)
Yn2 _4yn—1 + Syn = 2yn+1 - h2y512+)1
] 7 49 4 7
+h (mun 2+45 n 1+ﬁu +90 n+1 +tn
(11)

For case (ii), the equations are obtained as

9 1
9, *jJ’z tY3= 7}’0 - 3hyf)1)
8 151 o, 52 1
+h (280 o T80 T2g0'2 "2 ) Th
(12)
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9 11
Yoz = 5Vn 1+ =5 Vur = 300,
. h4< 1 52 151 8

280" * 2801 + 250 +m”"“>“" (13)

where, t; and t, are of O(h*).

3. Truncation error

Expanding (9) by using Taylor series, we obtained the following
truncation error

14+ 14y + 26
=1 +y+6y? +*(1—py® +hn (471, — (o + 0y + ﬁ))yﬁ‘”

1-y 5 6(62+62)+20 o4 +02)\ 5
+h5<—7(—oc1+oc2)>y?>+h( ! - (
4 i 6! 2! i
71—y oa—o\ 7 8(254+254+74+20 o1 +02\
+h<40 “Ta e th 8 T )

hg(?z_o;;y*azs )yl +O(h"), i=23...,n-1 (14)

For different values of parameters, we get the method of second
order as well as fourth order. Here we discuss only fourth order
method. The local truncation error for (10) and (11) is

20162/3 h8 i O(hg) =1
te {590@{133 hsyi n O(hg), i—n
and the local truncation error for (12) and (13) is
[ -snty® o), i=1
ti= 211 1,8,,8) 9 ;
LHhy” +0(h), i=n

For (o, B, 02,7,0) = (£,4,1,1,-2) the truncation error is

_ 8 9y i _
t,7< 720>hyl +0(h%), i=2.3,....,n—-1

4. Application to the fourth order singularly perturbed
boundary value problems

We consider a fourth order singularly perturbed boundary value
problem of the form
—ey?(x) +px)y(x) =q(x), a<x<b
subject to the boundary conditions
y(a) =0, y(b) =
y?(a) = az, y?(b) = B,
OR
y(a) =oa, y(b) = b
yW(a) = oz, yV(b) = B,
where p, q are sufficiently continuously differentiable functions in
the interval [a, b], o; and p; are real constants.

After applying the scheme (9) to the problem (1) with boundary
conditions (2) and (3), we get the following relation

Ayio + By + Y + Dy + Eyipn
= —h*(ou Gy + G+ 02Giy), i=2,3,...,n—1 (15)
where,
A =ye
=(6 —2y)e - h40‘1pi—1
(1-25+7)e—h'pp,
=(=2+6)e — h*op;.
€

Egs. (10) and (11) takes the form

Aryq + A2y, +Asys =

Aoy, — h ey

T 49 7 L
OQo + 72‘11 45 T2+ 360‘13

Co Yoz + Co1¥n1 + CoV = €Coi1 Vi — ey,

af 7 49 7 1
_h %qrwl +ﬁqn +Eqn—1 +ﬁqn—2

where,

7 49
Ao =2¢ — h'po. A =5€ — - hi'py,

A, = —4e

7
fﬁh“pz, As =€

1 4
*%h%

49 7
Coy = SEfﬁh"pn,b Coq = —4€— h Poo1s

1
Ch=€- @h“l’m Cop1

7

=2€—- %h4pn+l

Eqgs. (12) and (13) takes the form

Aryy + Ay, +Asys =

Cn—Zyn—Z + Cn—lyn—l + Cﬂyn
= 6Cn+1yn+1 - 3€hy1<11+)1 - h4 (

€AoY, — 3€hyl))

7h4< 8 151 52

1
280% 2807 T280% " 280 q3)

8 151 52 1

where,
11 8 151 4
Ao =5 €~ 555 Por A = 96’280” P,
9 52 1
Azz—je 280h Dy, A3 = 280h p3
151 9 52
Cn,z =9€¢ - 280h pn 23 Cn,1 = _Ee 280h pn 1y

Co= €+ h'p, o =

280

5. Convergence analysis

1,8
2 €7 280" P

The developed method leads to the following matrix form

PY=C

where,

A A
B C
A B

Y= [.y17y2:--~
7Cn—1}T-

=[c1,C, ...

7yn—1}T

481

280ql‘l+1 +280qn mqn—l _mqn—2>

(16)

E

D E

C D
Cn—l Cn i

and the right hand side vector

is
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For Case (i), we have

C

N

7 49 7 1
_ R (LA
=Aoeyy —heyg” —h (90q0 tph g5t +360q3>
¢, = — Aeyy — h* (o1 qy + B, + 9205)
Ci=— h4(OCIQi71 +ﬁq1 + (xqu,]),i = 3’47 R 1

2 2 4 7 49 7 1
C :ECH+1YH+1 —h eyipzl —h <%qn+1 +ﬁqn +Eqn—l +mqn—2

=

For Case (ii),we have

&1 =Aocyy = 3heyy — b’ (280% * ;Z(]) h+ 25820 %= 2%130 q3>

¢ = — Aeyy — h*(onqy + B, + 023)

Ci :*h‘l(aqu' 1+ BGi +02Gi4), i=3.,4,....n-1

n =€Cri1Ynig — 3heyl), — h* <280qn+1 + ;g(l) Gn + 25820%4 _ﬁqn—2>
Also we have,

PY =C+T (17)

where Y = [j(x1),7(X2),...,7(Xn-1)]" be the exact solution and
T=1[T,Ts,,... ,T,H]T be the local truncation error.
From (16) and (17) we have

P(Y-Y)=T
PE=T
E=Y-Y=lees,....e01]

Definition:. A pentadiagonal matrix P =
|i —j| > 2, is irreducible iff

(pij), where p;; =0 for

pii1#0, i=23,....n

pi-ifz #07 i:3747"'7npi.i+1 #07
i=1,2,...,n—1and

Piia 70, i=1,2,....,n-1

Now we have to calculate sum of each row of matrix P:

For case (i),

49 7 4 1
S1=2€ — 25 'y = 45h'Pa — 5P
S, = — pe — h'oaap, — h*pp, — hop,
Si=—h*ayp, , —h*pp; — h'oupy,, i=3,...,n—1
49 7 1
Sn :2677}1 pn 2 5h4pn—1 360h pn
For case (ii),
11 151, 52 1
S1=5 €~ 255" P1 ~ 255" P2 + 255" Ps
S, =—y€e—h'oup, — h*pp, — h'azp,
Si*—h‘la]pl1—h4ﬁpi—h4{x2p,~+1, i=3,...,n-1
1,151, 52 1
S =€~ 256" P2 ~ 26/ Prt + g5 P

Let 0 <M € Z* is the minimum of |p; |, |p;|,|p;,,|- For suffi-
ciently small h we can say that:
For case (i),

fahm i1

S > (o4 +[3+O€2)h4 M, i=2
(p +B+o)h*M, i=3,....n-1
151 pip i=n

180

For case (ii),

4 .
SLh'M, i1
(o + B+ o)h*™M,  i=2
Si >
(061+ﬁ+a2)h4M i=3,....n-1
4 .
SLh*M, i—n
Further,we get for case (i)
1 < {1511?721\/17 i=1,n
Sy 1 . B
S (o +ftop)h* M’ i=23,...,.n-1

For sufficiently small h, we can easily show that the matrix P is
irreducible and monotone. Therefore, P~!exist and P! > 0.

Hence,
EI = I~ T (18)
and let P! = (p;;), then by theory of matrices Varga (1962), we get
n-1
Spisi=1 j=1..n (19
i1
Therefore,

L1

pij < 5

360 2 ) i=1,...,nand

n n ‘l 1
= F P W (et S S
Pl @i’rf;'pul\;si h4M<151+o<1+ﬁ+a2’
n
Tl = {2%;\“

and error is given by:
For case (i),
1 /360 2
E|=|P'T € 54— (== +—0—]|IT
1B = 1P INT1 < 2 (57 + g 1T

Similarly for Case (ii), the error is given by

1 (140 2

1
I < 4—|——+——"7-—7—]T
Il h4M 51 0‘1+ﬂ+0€2>H |

Ell = (1P~

By using (14), we have truncation error ||T|| = 0(h®), then we get

1 <36O 2 )O(hg) _ O(h4)

IEIl <

h*M 151 "o + B+ o
Hence, the scheme is fourth order convergent.
IE| = O(h*)

Theorem.. The method given by Eq. (9) for solving the given
singularly perturbed boundary value problem for sufficiently small h
has a fourth order convergence.

6. Numerical illustrations

In the present paper, we consider two linear fourth order singu-
larly perturbed boundary value problems whose exact solutions
are known. The maximum absolute errors for h=1/16, 1/32, 1/64
and 1/128 are tabulated in Tables 1 and 2 and comparison are also
shown in graphs 1-2. The obtained results are compared with the
results of quintic spline method (Akram and Amin, 2012) and sep-
tic spline method (Akram and Naheed, 2013).
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Table 1
Maximum absolute error for Example 1.
€ h=1/16 h=1/32 h=1/64 h=1/128

Our method 1/16 2.6309 x 107° 15786 x 1071° 1.8007 x 107" 1.2579 x 10710
Akram and Amin (2012) 2.3722 x 107 5.9529 x 107/ 1.4896 x 1077 3.7214 x 1078
Our method 1/32 5.0874 x 1071° 3.0216 x 107" 3.8255 x 107" 24353 x 107"
Akram and Amin (2012) 45647 x 1077 1.1462 x 1077 2.8684 x 1078 7.1730 x 107°
Our method 1/64 1.1660 x 1071° 6.926 x 10712 7.7907 x 10713 6.1730 x 10712
Akram and Amin (2012) 1.0356 x 1077 2.6027 x 1078 6.514 x 107° 1.6304 x 107°

Table 2

Maximum absolute error for Example 2.

€ h=1/16 h=1/32 h=1/64 h=1/128

Our method 1/16 1.0499 x 1077 9.8529 x 107° 7.0265 x 107 1° 4.6045 x 107!
Akram and Amin (2012) - 1.315x 10°° 1617 x 1077 2853 x10°8 6.682 x 10(-9)
Akram and Naheed (2013) 1.666 x 10°° 1310 x 1077 2614 x107° 6.716 x 107!
Our method 1/32 5.3745 x 10°% 5.0610 x 107° 3.6108 x 1071° 2.3663 x 1071
Akram and Amin (2012) 6.703 x 1077 8.170 x 1078 1.434x 1078 3.355x 107°
Akram and Naheed (2013) 8.537 x 1077 6.736 x 1078 1.344 x 107° 3.452 x 107!
Our method 1/64 2.8376 x 1078 2.6766 x 107° 1.9132x 10710 1.2538 x 10711
Akram and Amin (2012) 3.489 x 1077 4177 x 1078 7.249 x 107° 1.692 x 107°
Akram and Naheed (2013) 4520 x 1077 3.569 x 1078 7.128 x 1071° 1.829 x 107"
Our method 1/128 1.6215 x 10°% 1.5345 x 107° 1.0968 x 1071° 7.1910 x 1012
Akram and Amin (2012) 1.195 x 1077 2.201 x 1078 3.717 x 107° 8619 x 107 1°
Akram and Naheed (2013) 2.60 x 1077 2.049 x 1078 4.092 x 10710 1.05x 107!
0.04 x10°

0.035

0.03

0.025

0.02

0.015
-1

Fig. 1. Graph of the exact solution versus the approximate solution for N = 64 for
Example 1.

Example 1. For -1 <x < 1, consider the following differential
equation:

—eyW (x) + y(x) = €(2x* 4 cos x — €(48 + cosx)), (20)

y(-1)=€(2+cos 1),
yP(=1) = €2 +cos 1),

y(1) =€(24 —cos1)

y@(1) = €24 - cos 1)
The analytical solution of the problem (20) is
y(x) = €(2x* + cos x).

Maximum absolute errors for Example 1 are given in Table 1. For
the sake of comparison we are reported results of Akram and
Amin (2012) in Table 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. Graph of the exact solution versus the approximate solution for N = 64 for
Example 2.

Example 2. For x € [0,1], consider the following differential
equation:

—eyX) +y(x) =f(x) (21)

where

Fx) =(x — 1)*x® sin(ex) — ex*(—=16€> (x — 1)*x*(3x — 2) cos(ex)
+96€x(14 — 84x + 180x* — 165x> 4 55x*) cos(€x)
+ €*(x — 1)*x* sin(ex) — 24€2(x — 1)*x*(14 — 44x + 33x?) sin(ex)
+24(70 — 504x + 1260x% — 1320x* + 495x*) sin(ex))
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and

¥(0) =0,y(1) = 0,y"(0) = 0,y (1) = 0,
The analytical solution of (21) is

y(x) = x3(1 — x)* sin(ex).

Maximum absolute errors for Example 2 are given in Table 2.
For the sake of comparison we are also reported results of
Akram and Amin (2012) and Akram and Naheed (2013) in the
Table 2.

7. Conclusion

Non-polynomial quadratic spline method is developed for the
approximate solution of fourth order singularly perturbed bound-
ary value problems with two types of boundary conditions. Con-
vergence analysis of the method proved that our scheme (9) is
fourth order convergent. A lower degree non-polynomial quadra-
tic spline is used in this paper. However, in previous papers
higher degree quintic and septic splines were used. This method
is also applicable to solve linear boundary value problems as
€ — 1. Maximum absolute errors in Tables 1 and 2 shows that
our method is better than existing methods. Graphs between
exact and approximate solutions for the Examples 1 and 2 are
shown in Fig. 1 and 2 respectively which also shows the superi-
ority of our method.
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