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Abstract The corner stone of present study is to tune the electro-optical and charge transport

properties of donor-bridge-acceptor (D-p-A) triphenylamine (TPA) derivatives. In the present

investigation, an electron deficient moiety (pyrimidine), electron-rich moiety (thiophene) and

oligocene (benzene, naphthalene, anthracene, tetracene and pentacene) have been incorporated as

p-spacer between the donor TPA unit and cyanoacetic acid acceptor and anchoring group. The

elongation of bridge usually affects the energy levels, i.e., higher the highest occupied molecular

orbital (HOMO) while lower the lowest unoccupied molecular orbital (LUMO) thus reduces the

HOMO–LUMO energy gap. The lowered LUMO energy levels of cyano-{2-[6-(4-diphenylamino-

phenyl)-pyrimidin-4-yl]-tetraceno[2,3-b]thiophen-8-yl}-acetic acid (TPA-PTT4) and cyano-{2-[6-(4

-diphenylamino-phenyl)-pyrimidin-4-yl]-pentaceno[2,3-b]thiophen-9-yl}-acetic acid (TPA-PPT5)

dyes revealed that electron injected from dye to semiconductor surface might be auxiliary stable

resulting in impediment of quenching. The broken co-planarity between the p-spacer conceiving
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LUMO and the TPA moiety would help to impede the recombination process. Moreover, it is

expected that TPA derivatives with the tetracenothiophene and pentacenothiophene moieties as

p-bridge would show better photovoltaic performance due to lowered LUMO energy level, higher

electronic coupling constant, light harvesting efficiency and electron injection values.

ª 2015 TheAuthors. Production and hosting by Elsevier B.V. on behalf ofKing SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The compounds with the p-backbone showed prominent opto-

electronic and charge transport properties in different high-
tech fields, e.g., sensors (Niu et al., 2006), organic light emit-
ting diodes (OLEDs) (Makoto Satsuki and Sadaharu Suga,

2007), organic field effect transistors (OFET) (Marks and
Hersam, 2015) and photovoltaics (Chambon et al., 2013).
Previously, numerous inorganic materials were studied with
respect to the solar cell (Green et al., 2012) and to sense the

humidity (Traversa et al., 1996; Li et al., 2004). The traditional
technology (silicone), have environmental and economic
issues. Moreover, metal oxides are being used in the film mak-

ing of dye-sensitized solar cells, (DSCs) (O’Regan and Gratzel,
1991) and humidity sensors (Suri et al., 2002; Hsu et al., 2014).
Nowadays, organic materials are being used due to their low

cost, light weight, structural flexibility and fabrication simplic-
ity. Finally, the organic dyes are favorite contenders for power
conversion and sensing applications.

The power conversion efficiency (PCE) has been observed
as 13% when using the porphyrin dye (Mathew et al., 2014)
showing a competitive and potential renewable power genera-
tion technology. In DSCs, the dye sensitizer is a key compo-

nent which has been widely designed and investigated to
enhance the PCE that also harvests solar photons and starts
charge separation from the excited state of the sensitizer into

the conduction band of the semiconductor through photoin-
duced electron transfer (Bessho et al., 2009; Han et al., 2012).

Molecular engineering to model/design efficient dyes play a

vital role in tuning the electro-optical and charge transport
properties, i.e., light excitation should accompanyelectron
injection from the light-harvesting unit toward the anchoring
group. This can be attained by incorporating the strong conju-

gation between the donor moieties and anchoring groups as
well as decent electronic coupling between the lowest unoccu-
pied molecular orbital (LUMO) of the dye and conduction

band of the semiconductor. The PCE can be improved by
diminishing the aggregation of the sensitizer on the semicon-
ductor surface. Moreover, ‘‘bulk heterojunction’’ (BHJ) solar

cells are also gaining significant attention (Hoppe and
Sariciftci, 2006). The organic p-conjugated materials are being
used in DSCs, BHJ solar cells and humidity sensors.

Triphenylamine (TPA) has revealed promising properties as
donor (Hagberg et al., 2007; Liang and Chen, 2013) and its
propeller shape can suppress the dye aggregation (Bonhôte
et al., 1999). Cyanoacetic acid showed promising characteris-

tics as stable anchoring and strong acceptor groups (Chen
et al., 2014; Zhang et al., 2015). Usually, p-spacer can directly
influence the energies of the highest occupied molecular orbital

(HOMO), LUMO, absorption spectrum, and the charge sepa-
ration upon photoexcitation of the sensitizer (Haid et al.,
2012). Thus the choice of a suitable p-spacer is very crucial.
It has been proven that thiophene would be a good constitu-
tional unit which can increase the light harvesting efficiency

and charge transport properties (Zhang et al., 2009; Tian
et al., 2010). Similarly, oligocenes are also being used as profi-
cient p-spacers to tune the electro-optical and charge transport
properties (Liu et al., 2014).

Quantum chemical calculations are prevailing tools
(Goedecke et al., 2012) which provide guidelines for the orga-
nized and rational tuning of the dyes (Pastore et al., 2010a,b).

It is well-known that density functional theory (DFT) and
Time Dependent DFT (TD-DFT) are reasonable methods to
calculate electronic structures, electronic excitations, predict

the electro-optical and charge transport properties of organic
chromophores with adequate accurateness (Cave and
Castner, 2002; Persson et al., 2006; Pastore et al., 2010b).
We designed systematically five new TPA derivatives to tune

the electro-optical properties and dye’s photoabsorption.
In newly designed donor-bridge-acceptor derivatives TPA acts
as electron donor, oligocenothiophene–pyrimidine as p-spacer
and cyanoacetic acid as an electron acceptor and anchoring
group, i.e., cyano-{2-[6-(4-diphenylamino-phenyl)-pyrimidin-
4-yl]-benzo[b]thiophen-5-yl}-acetic acid (TPA-PBT1), cyano-

{2-[6-(4-diphenylamino-phenyl)-pyrimidin-4-yl]-naphtho[2,3-b]
thiophen-6-yl}-acetic acid (TPA-PNT2), cyano-{2-[6-(4-
diphenylamino-phenyl)-pyrimidin-4-yl]-anthra[2,3-b]thiophen-

7-yl}-acetic acid (TPA-PAT3), cyano-{2-[6-(4-diphenylamino-
phenyl)-pyrimidin-4-yl]-tetraceno[2,3-b]thiophen-8-yl}-acetic
acid (TPA-PTT4) and cyano-{2-[6-(4-diphenylamino-phenyl)-
pyrimidin-4-yl]-pentaceno[2,3-b]thiophen-9-yl}-acetic acid

(TPA-PPT5), see Fig. 1.
We have studied the energy levels and distribution patterns

of the frontier molecular orbitals (HOMO, LUMO), excitation

energies, oscillator strengths, electronic coupling constants,
electron injection, light harvesting efficiencies and structure–
properties relationship. The conclusions drawn from quantum

chemical calculations are appreciated as guidelines for the syn-
thesis of innovative proficient dyes (Casanova et al., 2010;
Zhang et al., 2012).
2. Computational details

In previous studies it has been shown that DFT is good

method to optimize the ground state geometries, particularly
B3LYP/6-31G** level of theory is reasonable and precise choices
for TPA sensitizers. Preat and co-workers optimized the ground
state geometries of TPA based sensitizers at B3LYP/6-31G**

level and found it to be a rational approach then they studied
the charge transport properties (Preat et al., 2010). Moreover,
in another study, they investigated the basis set effect on the

properties of interests and did not find a significant effect on
bond lengths (Preat et al., 2009). The structural and electronic

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1 The donor-bridge-acceptor systems investigated in the present study.
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properties of TPA based dye ‘‘2-cyano-5-(4-(phenyl(4-vinylphe

nyl)amino)phenyl)penta-2,4-dienoic acid’’ (TC4) were studied
at B3LYP/6-31G** level which reproduced the experimental
data successfully (Xu et al., 2008). Furthermore, TDDFT

(Sun et al., 2007; Zhang et al., 2008) TD-CAM-B3LYP/6-
31G** level has been adopted to shed light on the light harvesting
efficiencies (LHE), absorption spectra, oscillator strengths and
excitation energies of TPA based sensitizers. Thus in the

present study, the ground state geometries were optimized at
B3LYP/6-31G** level of theory then excitation energies
and oscillator strengths were computed by adopting the

TD-CAM-B3LYP/6-31G** level of theory. All calculations
were performed by G09 software (Frisch et al., 2009).

Generally Marcus theory (Eq. (1)) is used to shed light on

the charge transfer rate (Marcus, 1993; Matthews et al.,
1996; Hilgendorff and Sundström, 1998; Pourtois et al.,
2002; Hsu, 2009),

kinject: ¼ jVRPj2=hðp=kkBTÞ1=2 exp½�ðDGinject: þ kÞ2=4kkBT�
ð1Þ

In Eq. (1), kinject. is the electron injection rate constant (in S�1)
from dye to TiO2, kBT is the thermal energy of Boltzmann, h is
the Planck’s constant, electron injection is represented by
DGinject., k is the system reorganization energy and the cou-

pling constant between the reagent and the product potential
curves are given by ŒVRPŒ. The Generalized Milliken–Hush
formalism (GMH) allows to calculate ŒVRPŒ for a photo-

induced charge transfer (Pourtois et al., 2002; Hsu, 2009).
Moreover, by following Eq. (2) ŒVRPŒ can be estimated
(Hsu, 2009).

jVRPj ¼ DERP=2 ð2Þ

The charge injection driving force (DERP) can be calculated by
Eq. (3).

DERP ¼ Edye
HOMO � ETiO2

CB

h i
¼ � Edye

OX þ ETiO2
CB

h i
ð3Þ
The free energy change (in electron volts, eV) for the electron
injection could be given as (Katoh et al., 2004).

DGinject: ¼ Edye�

OX � ETiO2
CB ð4Þ

Here the oxidation potential of the dye at the excited state is

Edye�

OX and the reduction potential of the semiconductor’s con-

duction band is given by ETiO2
CB (�4.0 eV (Hagfeldt and

Graetzel, 1995; Asbury et al., 2001; Katoh et al., 2004)). The

Edye�

OX can be extracted from the redox potential of the ground

state Edye
OX and the vertical transition energy corresponding to

the photo-induced ICT,

Edye�

OX ¼ Edye
OX � kICT

max ð5Þ

where kICT
max is the ICT energy. It is noteworthy that this equa-

tion is only effective if the entropy variation during the light

absorption procedure could be ignored.

The DGinject. and Edye�

OX have been evaluated using Eqs. (4)

and (5).
The LHE can be evaluated as (Nalwa, 2001):

LHE ¼ 1� 10�A ¼ 1� 10�f ð6Þ

where A and f are the absorption and oscillator strengths of

the dye related to the kICT
max, respectively. Details can be found

in references (Preat, 2010; Preat et al., 2010).
The efficiency (g) of solar cells can be determined by using

the following equation

g ¼ FF
VocJsc
Pinc

ð7Þ

where Jsc is the short-circuit current density, Voc is the open-
circuit photovoltage, FF is the fill factor, and Pinc. is the inten-

sity of the incident light. The Jsc can be evaluated as

Jsc ¼
Z

k
LHEðkÞ/injectiongcollectiondk ð8Þ
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where gcollection is the charge collection efficiency which is con-

stant. From the above equation, it can be found that Jsc is
directly linked with the LHE and /injection that is electron injec-

tion efficiency which is related to DGinject.. It is revealed that

higher LHE and DGinject. would lead to result in efficient
devices (Zhang et al., 2013).
3. Result and discussion

3.1. Electro-optical properties

In Fig. 2, we have illustrated the charge density distribution
patterns of the ground state highest occupied molecular orbi-

tals and lowest unoccupied molecular orbitals which con-
tribute in the transitions, e.g., HOMOs (H), HOMOs�1
Figure 2 The charge density distribution of the frontier molecular

B3LYP/6-31G** level of theory.
(H�1), HOMOs�2 (H�2), LUMOs (L), LUMOs+1 (L+1)
and LUMOs+2 (L+2) of five TPA based sensitizers. In
TPA-PBT1, a major transition has been observed H fi L in

which HOMO is delocalized on the TPA moiety whereas
LUMO is localized on the benzothiophene and pyrimidine
units. The absorption wavelength (ka) for this transition has

been observed as 337 nm with the oscillator strength (f)
1.0374. In TPA-PNT2, two significant transitions have been
noticed H�1 fi L and H�1 fi L+1 with the f 0.6871 and

0.7902 showing at the ka 349 and 274 nm wavelengths. In this
sensitizer, the charge density in HOMO�1, HOMO, and
LUMO is distributed on naphthothiophene, TPA and naph-
thothiophene pyrimidine cores, respectively while in

LUMO+1, most of the charge is distributed on pyrimidine
and phenyl rings of the TPA while some charge is localized
on the naphthothiophene moiety. In TPA-PAT3, two
orbitals (0.035 contour value) of triphenylamine based dye at the
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significant transitions have been observed H fi L and
H�1 fi L with the f 0.1465 and 1.2423 showing the ka 413
and 341 nm. In this dye, the charge density in HOMO�1
and HOMO is distributed on the entire dye while in LUMO
on anthrathiophene units. In TPA-PTT4, two significant tran-
sitions have been observed H fi L and H�2 fi L with the f

0.0866 and 1.2674 showing at the ka 499 and 354 nm wave-
lengths. In this dye, the charge density in HOMO is distributed
on tetracenothiophene while HOMO�2 and LUMO on tetra-

cenothiophene and pyrimidine. In TPA-PPT5, two significant
transitions have been observed H fi L and H fi L + 4 with
the f 0.0698 and 1.7681 showing at the ka 599 and 297 nm
wavelengths. In this dye, the charge density in HOMO is dis-

tributed on pentacenothiophene, LUMO on pentacenothio-
phene and pyrimidine and LUMO+4 on pentacene and
acceptor moiety.

In Table 1, we have tabulated the computed HOMOs
energies (EHOMOs), LUMOs energies (ELUMOs) and energy
gap (Eg) of five TPA-based sensitizers at B3LYP/6-31G** level

of theory. The trend of the HOMO energies (EHOMO) is TPA-
PPT5 > TPA-PTT4 > TPA-PAT3 > TPA-PBT1 > TPA-
PN T2, whereas, LUMO energies (ELUMO) is TPA-PBT1 >

TPA-PNT2 > TPA-PAT3 > TPA-PTT4 > TPA-PPT5 while
HOMO–LUMO energy gaps (Eg) is TPA-PBT1 > TPA-
PNT2 > TPA-PAT3 > TPA-PTT4 > TPA-PPT5. We have
observed that by elongating the bridge Eg usually decreases.

The smaller Eg of TPA-PNT2, TPA-PAT3, TPA-PTT4 and
TPA-PPT5 than TPA-PBT1 show that DSCs performance of
these sensitizers would be greater than the later one.

Considerably lowered LUMO energy levels would not only
enhance the electron injection ability but also make such sensi-
tizers unsusceptible to oxidation. The smaller ELUMO of TPA-

PNT2, TPA-PAT3, TPA-PTT4 and TPA-PPT5 sensitizers also
showed that injected electrons might be supplementary stable,
which would result in hindering the quenching. Moreover, the

trend of the Eg is in good agreement with ka. A significant red
shift has been observed by increasing the conjugation/bridge
elongation, i.e., 12, 76, 162 and 262 nm form TPA-PNT2,
TPA-PAT3, TPA-PTT4 and TPA-PPT5 compared to the

TPA-PBT1 revealing efficient visible light sensing/absorbing
sensitizers. Moreover, it is also expected that these dyes can
be used as sensors having the sensing aptitudes of metal ions

in the UV–Visible wavelengths.
Table 1 The electron injection (DGinject), relative electron injection (

electron coupling constants (|VRP|), absorption (ka) in nm, oscillator

Systems DGinject
E
dye
OX E

dye�

OX
kICTmax

f

aTC4 �1.71 5.22 2.29 2.93 1.5800

TPA-PBT1 �2.56 5.12 1.44 3.68 1.0374

TPA-PNT2 �2.40 5.15 1.60 3.55 0.6871

�3.38 5.15 0.62 4.53 0.7902

TPA-PAT3 �1.88 5.12 2.12 3.00 0.1465

�2.29 5.12 1.71 3.41 1.2423

TPA-PTT4 �1.61 4.87 2.39 2.48 0.0866

�2.63 4.87 1.37 3.50 1.2674

TPA-PPT5 �1.46 4.61 2.54 2.07 0.0698

�3.56 4.61 0.44 4.17 1.7681

DGinject
r = relative electron injection DGinject(TPAdye)/DGinject(TC4).

a All the parameters were calculated at B3LYP/6-31G** and TD-CAM

vinylphenyl)amino)phenyl)penta-2,4-dienoic acid) (Irfan, 2013) and TPA
3.2. Electron injection

The DGinject, DGr
inject, Edye

OX, E
dye�

OX , kICT
max, LHE and |VRP| have

been tabulated in Table 1. In investigated derivatives, the
|VRP| and DGr

inject are superior as compared to the TC4. Two

important excitations have been observed in all derivatives
except TPA-PBT1. The DGinject and |VRP| for TPA-PBT1 has
been observed at �2.56 and 1.28. The DGinject (|VRP|) of
TPA-PNT2 for first and second transitions have been observed

at �2.40 and �3.38 (1.20 and 1.69), respectively. In TPA-
PAT3, the DGinject (|VRP|) for first and second transitions have
been observed at �1.88 and �2.29 (0.940 and 1.145), respec-

tively. In TPA-PTT4, the DGinject (|VRP|) for first and second
transitions have been observed at �1.61 and �2.63 (0.805
and 1.315), respectively. In TPA-PPT5, the DGinject (|VRP|)

for first and second transitions have been observed at �1.46
and �3.56 (0.730 and 1.780), respectively. All these studied
sensitizers have superior DGinject and |VRP| compared to TC4

which has the values of �1.71 and 0.86, respectively. The
azo dye based triaminopyrazolo[1,5-a]pyrimidine derivative
(4b) showed DGinject and |VRP| �1.19 and 0.53 at TD-
B3LYP/6-31G*//B3LYP/6-31G* level of theory, respectively

(Al-Sehemi et al., 2013). The DGinject and |VRP| of hydrazone
based sensitizers (system5) were found �0.61 and 0.305 at
TD-B3LYP/6-31G*//B3LYP/6-31G* level of theory, respec-

tively (Al-Sehemi et al., 2012). In the present study, the
DGinject and |VRP| of newly designed derivatives reveal that
these materials might be proficient sensitizers.

The comprehensive intra-molecular charge transfer has
been observed from the donor to the acceptor side. The bridge
elongation is favorable to enhance the DGinject and |VRP|. The
LHE of TPA-PBT1 has been observed as 0.908. By introduc-

ing the naphthalene ring as in TPA-PNT2 decreases the
LHE to 0.794 and 0.838 for two major excitations. In TPA-
PAT3, the LHE has been observed to be 0.286 and 0.943; in

TPA-PTT4, 0.180 and 0.946; in TPA-PPT5, 0.148 and 0.983
for two major excitations, respectively. Thus it has been con-
cluded that bridge elongation enhances the LHE and is nicely

comparable with the earlier study.
All the studied sensitizers have acidic moieties which are

good light harvesting sites as well as being helpful to anchor

with the TiO2 surface. These acidic units would also enhance
DGinject
r ), oxidation potentials, light harvesting efficiencies (LHE),

strengths (f) and transitions of TC4 and studied TPA dyes.

LHE DGinject
r

|VRP| ka Transition

0.974 1.00 0.860 423 H fi L

0.908 1.50 1.280 337 H fi L

0.794 1.40 1.200 349 H-1 fi L

0.838 1.98 1.690 274 H-1 fi L + 1

0.286 1.10 0.940 413 H fi L

0.943 1.34 1.145 341 H-1 fi L

0.181 0.94 0.805 499 H fi L

0.946 1.54 1.315 354 H-2 fi L

0.148 0.85 0.730 599 H fi L

0.983 2.08 1.780 297 H fi L+ 4

-B3LYP/6-31G** levels of theories for TC4 (2-cyano-5-(4-(phenyl(4-

derivatives.



Figure 3 The HOMOs and LUMOs energies of donors and

acceptors.
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the solubility in solution and reduce the aggregation

(Robertson, 2006). It is expected that these sensitizers would
be more stable after anchoring on the TiO2 surface.
Moreover, acidic ligands would be promising positions to

transfer the electrons from dyes to the TiO2 surface.
Additionally, it has been studied that the dye which shows high
affinity for H2O molecules would lead to the proficient humid-
ity sensor (Azmer et al., 2015). In our studied TPA dyes, the

carboxylic group would be the favorable site and shows high
affinity for H2O molecules. It is expected that –COOH would
be promising position for the humidity sensing.

3.3. Electronic properties

The HOMO and LUMO energies of Si are�5.43 and�3.92 eV
(Liu et al., 2008) while TiO2 are �7.40 and �4.20 eV, respec-
tively (Kuo et al., 2008). The successful operation of a photo-
voltaic device requires a staggered band alignment

heterojunction which allocate electrons to transport to the cath-
ode and holes to the anode. By considering the average values
both for Si and TiO2, the valance band energy has been found
to be�6.41 eV while the conduction band energy is �4.06 eV
(Si/TiO2). It is expected that Si/TiO2 as the acceptor would
behave as a staggered band alignment heterojunction, see Fig. 3.

In hybrid solar cells, excitons formed in the donor material

are dissociated at the D–A interface. The force essential to
overcome the exciton binding energy is provided by the energy
level offset of the LUMO of the donor and the conduction

band edge of the acceptor material (Wright and Uddin,
2012). We found energy level offset 1.50, 1.99, 1.85, 1.66,
1.46, and 1.28 eV for TC4, TPA-PBT1, TPA-PNT2, TPA-
PAT3, TPA-PTT4 and TPA-PPT5, respectively to overcome

the exciton binding energy. For dissociation of excitons
formed in the acceptor material, the energy offset of the
HOMO of the donor and the valence band edge of the accep-

tor material is required. We found energy level offset to be
1.11, 1.21, 1.20, 1.23, 1.49, 1.72 eV for TC4, TPA-PBT1,
TPA-PNT2, TPA-PAT3, TPA-PTT4 and TPA-PPT5, respec-

tively. Scharber and coworkers concluded that Voc is directly
proportional to the diagonal band gap of the heterojunction
(Scharber et al., 2006), whereas in another study by
Yamanari it has been found that there is no linear relationship

between the diagonal band gap and Voc (Yamanari et al.,
2009). In the present study, the diagonal band gaps for TC4,
TPA-PBT1, TPA-PNT2, TPA-PAT3, TPA-PTT4 and TPA-

PPT5 have been observed 1.24, 1.14, 1.15, 1.12, 0.86,
0.63 eV, respectively. Thus from these values, we are unable
to conclude that either Voc would enhance or reduce the effi-

ciency. But it is understood that Voc is not only the factor
which can improve the efficiency. In our previous study, we
found the measured Voc 0.53 and 0.60 V for 2-{4-[2-(4-hydroxy
benzylidene)hydrazino]phenyl}ethylene-1,1,2-tricarbonitrile

(dye2) and hydrazone 2-{4-[2-(2-hydroxybenzylidene)hydrazi
no]phenyl}ethylene-1,1,2-tricarbonitrile (dye1) with efficiencies
of 3.58% and 2.76%, respectively. The superior efficiency in

hydrazone dye2 was observed due to the larger Jsc and FF val-
ues (Al-Sehemi et al., 2014). On the other hand, it is expected
that higher LHE and DGinject would lead to result in efficient

devices due to the improved Jsc.
4. Conclusions

Our results exhibited that by elongating the bridge HOMO–
LUMO energy gap decreases in triphenylamine derivatives.
The smaller energy gaps of TPA-PNT2, TPA-PAT3, TPA-

PTT4 and TPA-PPT5 than TPA-PBT1 show that performance
of former dyes would be greater than the later one.
Considerably lowered LUMO energy level would not only
enhance the electron injection ability but also make such dyes

unsusceptible to oxidation. The smaller LUMO energies of
TPA-PNT2, TPA-PAT3, TPA-PTT4 and TPA-PPT5 sensitiz-
ers also showed that injected electrons might be supplementary

stable, which would impede the quenching. Bridge elongation
improves the electron injection, electron coupling constants
and light harvesting efficiencies. The Si/TiO2 as acceptor mate-

rials might be favorable for staggered band alignment that
would be best for charge transport from donor to acceptor
moieties. The co-planarity between the bridge having LUMO

and the TPA moiety is broken ensuing a positive charge that
may not directly fall to the TiO2 surface, subsequently
obstructing the recombination process. The electron injection
of 2-cyano-5-(4-(phenyl(4-vinylphenyl)amino)phenyl)penta-2,

4-dienoic acid (TC4) was observed to be �1.71. The electron
injection of TPA-PBT1, TPA-PNT2, TPA-PAT3, TPA-PTT4
and TPA-PPT5 is 1.50, 1.98, 1.34, 1.54 and 2.08 times superior

to TC4. Moreover, the superior electron injection, relative elec-
tron injection and electron coupling constants of new designed
photosensitizers revealed that these dyes might be proficient as

compared to the TC4. It is also expected that higher light har-
vesting efficiencies and electron injection would improve the
short-circuit current density which lead to proficient multi-
functional devices.
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Bonhôte, P., Moser, J.-E., et al, 1999. Long-lived photoinduced

charge separation and redox-type photochromism on mesoporous

oxide films sensitized by molecular dyads. J. Am. Chem. Soc. 121

(6), 1324–1336.

Casanova, D., Rotzinger, F.P., et al, 2010. Computational study of

promising organic dyes for high-performance sensitized solar cells.

J. Chem. Theory Comput. 6 (4), 1219–1227.

Cave, R.J., Castner, E.W., 2002. Time-dependent density functional

theory investigation of the ground and excited states of coumarins

102, 152, 153, and 343. J. Phys. Chem. A 106 (50), 12117–12123.

Chambon, S., D’Aleo, A., et al, 2013. Solution-processed bulk

heterojunction solar cells based on BF2-hydroxychalcone com-

plexes. Chem. Commun. 49 (34), 3555–3557.

Chen, X., Jia, C., et al, 2014. Theoretical investigation of phenoth-

iazine–triphenylamine-based organic dyes with different p spacers

for dye-sensitized solar cells. Spectrochim. Acta Part A Mol.

Biomol. Spectrosc. 123, 282–289.

Frisch, M.J, Schlegel, H., et al., 2009. Gaussian Inc., Wallingford, CT,

Gaussian 09, Revision A. 01.

Goedecke, C., Sitt, R., et al, 2012. Spacer separated donor–acceptor

complexes [D fi C6F4 fi BF3] (D = Xe, CO, N2) and the dication

[Xe fi C6F4 ‹ Xe]2+. A theoretical study. Inorg. Chem. 51 (21),

11259–11265.

Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.,

2012. Solar cell efficiency tables (version 39). Prog. Photovoltaics

Res. Appl. 20, 12–20.

Hagberg, D.P., Marinado, T., et al, 2007. Tuning the HOMO and

LUMO energy levels of organic chromophores for dye sensitized

solar cells. J. Org. Chem. 72 (25), 9550–9556.

Hagfeldt, A., Graetzel, M., 1995. Light-induced redox reactions in

nanocrystalline systems. Chem. Rev. 95 (1), 49–68.

Haid, S., Marszalek, M., et al, 2012. Significant improvement of dye-

sensitized solar cell performance by small structural modification in

p-conjugated donor–acceptor dyes. Adv. Funct. Mater. 22 (6),

1291–1302.

Han, L., Islam, A., et al, 2012. High-efficiency dye-sensitized solar

cell with a novel co-adsorbent. Energy Environ. Sci. 5 (3),

6057–6060.

Hilgendorff, M., Sundström, V., 1998. Dynamics of electron injection

and recombination of dye-sensitized TiO2 particles. J. Phys. Chem.

B 102 (51), 10505–10514.

Hoppe, H., Sariciftci, N.S., 2006. Morphology of polymer/fullerene

bulk heterojunction solar cells. J. Mater. Chem. 16 (1), 45–61.

Hsu, C.-P., 2009. The electronic couplings in electron transfer and

excitation energy transfer. Acc. Chem. Res. 42 (4), 509–518.
Hsu, N.-F., Chang, M., et al, 2014. Rapid synthesis of ZnO

dandelion-like nanostructures and their applications in humidity

sensing and photocatalysis. Mater. Sci. Semicond. Process. 21, 200–

205.

Irfan, A., 2013. Quantum chemical investigations of electron injection

in triphenylamine-dye sensitized TiO2 used in dye sensitized solar

cells. Mater. Chem. Phys. 142 (1), 238–247.

Katoh, R., Furube, A., et al, 2004. Efficiencies of electron injection

from excited N3 dye into nanocrystalline semiconductor (ZrO2,

TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 108 (15),

4818–4822.

Kuo, C.Y., Tang, W.C., et al, 2008. Ordered bulk heterojunction solar

cells with vertically aligned TiO2 nanorods embedded in a

conjugated polymer. Appl. Phys. Lett. 93 (3), 033307-033303.

Li, Y., Yang, M.J., et al, 2004. Humidity sensors using in situ

synthesized sodium polystyrenesulfonate/ZnO nanocomposites.

Talanta 62 (4), 707–712.

Liang, M., Chen, J., 2013. Arylamine organic dyes for dye-sensitized

solar cells. Chem. Soc. Rev. 42 (8), 3453–3488.

Liu, C.-Y., Holman, Z.C., et al, 2008. Hybrid solar cells from P3HT

and silicon nanocrystals. Nano Lett. 9 (1), 449–452.

Liu, L., Yang, G., et al, 2014. The relationship between intermolecular

interactions and charge transport properties of trifluoromethylated

polycyclic aromatic hydrocarbons. Org. Electron. 15 (9), 1896–1905.

Makoto Satsuki, N.I., Sadaharu Suga, Hisayoshi Fujikawa, Yasunori

Taga, 2007. Organic light emitters using coumarin derivative as

luminescent agents having efficiency and durability; display panels.

US7252892 B2.

Marcus, R.A., 1993. Electron transfer reactions in chemistry. Theory

and experiment. Rev. Mod. Phys. 65 (3), 599–610.

Marks, T.J., Hersam, M.C., 2015. Materials science: semiconductors

grown large and thin. Nature 520 (7549), 631–632.

Mathew, S., Yella, A., et al, 2014. Dye-sensitized solar cells with 13%

efficiency achieved through the molecular engineering of porphyrin

sensitizers. Nat. Chem. 6 (3), 242–247.

Matthews, D., Infelta, P., et al, 1996. Calculation of the photocurrent-

potential characteristic for regenerative, sensitized semiconductor

electrodes. Sol. Energy Mater. Sol. Cells 44 (2), 119–155.

Nalwa, H.S., 2001. Handbook of Advanced Electronic and Photonic

Materials and Devices. Academic, San Diego CA.

Niu, C.G., Guan, A.L., et al, 2006. Fluorescence water sensor based

on covalent immobilization of chalcone derivative. Anal. Chim.

Acta 577 (2), 264–270.

O’Regan, B., Gratzel, M., 1991. A low-cost, high-efficiency solar cell

based on dye-sensitized colloidal TiO2 films. Nature 353 (6346),

737–740.

Pastore, M., Fantacci, S., et al, 2010a. Ab initio determination of

ground and excited state oxidation potentials of organic chro-

mophores for dye-sensitized solar cells. J. Phys. Chem. C 114 (51),

22742–22750.

Pastore, M., Mosconi, E., et al, 2010b. A computational investigation

of organic dyes for dye-sensitized solar cells: benchmark, strategies,

and open issues. J. Phys. Chem. C 114 (15), 7205–7212.

Persson, P., Lundqvist, M.J., et al, 2006. Quantum chemical calcula-

tions of the influence of anchor-cum-spacer groups on femtosecond

electron transfer times in dye-sensitized semiconductor nanocrys-

tals. J. Chem. Theory Comput. 2 (2), 441–451.

Pourtois, G., Beljonne, D., et al, 2002. Photoinduced electron-transfer

processes along molecular wires based on phenylenevinylene

oligomers: a quantum-chemical insight. J. Am. Chem. Soc. 124

(16), 4436–4447.

Preat, J., 2010. Photoinduced energy-transfer and electron-transfer

processes in dye-sensitized solar cells: TDDFT insights for triph-

enylamine dyes. J. Phys. Chem. C 114 (39), 16716–16725.

Preat, J., Jacquemin, D., et al, 2010. Design of new triphenylamine-

sensitized solar cells: a theoretical approach. Environ. Sci. Technol.

44 (14), 5666–5671.

http://refhub.elsevier.com/S1018-3647(15)00063-4/h0005
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0005
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0005
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0010
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0010
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0010
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0010
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0015
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0015
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0015
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0015
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0015
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0020
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0020
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0020
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0020
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0025
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0025
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0025
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0030
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0030
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0030
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0035
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0035
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0035
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0035
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0040
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0040
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0040
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0045
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0045
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0045
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0050
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0050
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0050
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0055
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0055
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0055
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0055
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0065
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0070
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0070
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0070
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0075
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0075
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0075
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0080
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0080
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0085
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0085
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0085
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0085
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0090
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0090
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0090
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0095
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0095
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0095
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0095
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0100
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0100
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0105
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0105
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0110
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0110
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0110
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0110
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0115
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0115
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0115
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0115
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0120
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0125
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0125
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0125
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0125
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0130
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0130
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0130
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0135
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0135
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0140
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0140
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0145
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0145
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0145
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0155
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0155
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0160
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0160
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0165
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0165
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0165
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0170
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0170
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0170
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0180
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0180
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0180
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0185
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0185
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0185
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0185
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0190
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0190
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0190
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0190
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0195
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0195
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0195
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0200
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0200
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0200
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0200
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0205
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0205
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0205
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0205
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0210
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0210
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0210
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0215
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0215
http://refhub.elsevier.com/S1018-3647(15)00063-4/h0215


368 A. Irfan et al.
Preat, J., Michaux, C., et al, 2009. Enhanced efficiency of organic dye-

sensitized solar cells: triphenylamine derivatives. J. Phys. Chem. C

113 (38), 16821–16833.

Robertson, N., 2006. Optimizing dyes for dye-sensitized solar cells.

Angew. Chem. Int. Ed. 45 (15), 2338–2345.
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