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In this paper, Exp-function and its modification methods have been applied to obtain an
exact solution of the nonlinear Drinfeld—Sokolov system (DS). Modification of the method was first
introduced by the same authors. The prominent merit of this method is to facilitate the process of
solving systems of partial differential equations. These methods are straightforward and concise by
themselves; moreover, their applications are promising to obtain exact solutions of various partial
differential equations. It is shown that the methods, with the help of symbolic computation, provide
very effective and powerful mathematical tools for solving such systems.

© 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Mathematical modelings of many real phenomena lead to a
non-linear ordinary or partial differential equations in various
fields of physics and engineering. There are some methods to
obtain approximate or exact solutions of these kinds of equa-
tions, such as the tanh method (Wazwaz, 2005; Malfliet and
Hereman, 1996), sine—cosine method (Wazwaz, 2006), homot-
opy perturbation method (Biazar and Ghazvini, 2007; He,
2005), variational iteration method (He, 1999; He, 2000),
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Adomian decomposition method (Biazar et al., 2003), and
many others (Wang, 1996; Abdou, 2007; Wang and Zhang,
2005; Wang et al., 2008). Most recently, a novel approach
called the Exp-function method (He and Wu, 2006; Zhang,
2007; Biazar and Ayati, 2008) has been developed to obtain
solutions of various nonlinear equations. The solution proce-
dure of this method, by the help of any mathematical pack-
ages, say Matlab or Maple, is of utter simplicity. The
modified version of this method was first presented in Biazar
and Ayati (2009) by current authors. There, it was used to
solve the system of partial differential equation directly and
without change to ordinary differential equation.

In this paper, the nonlinear Drinfeld—Sokolov system is
considered, in the following form, and is solved by the Exp
function method

{ u + (), =0,

. — (1)
v, — aVyy + 3buv + 3cuv, = 0.

where a, b, and ¢ are constants. This system was introduced by
Drinfeld and Sokolov as an example of a system of nonlinear
equations possessing Lax pairs of a special form (Goktas and
Hereman, 1997; Wazwaz, 2006).
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Let us introduce a complex variable £, as follows
& =kx+ wt. (2)

So, Eq. (1) turns to the following system of ordinary different
equation,

{ wi' +k(v?) =0,

3
wv — akv" + 3bku'v + 3ckuy' = 0. ®)

where k and w are constant to be determined. A simplified
form of the first equation will be derived by taking integral
from both sides of that. Let us consider the integral constant
zero.

vZ

Substituting Eq. (4) into the second equation of the system and
integrating lead to

w2 — awk®" — (2b + ¢)k*v* = 0. (5)
where ¢, d, p, and ¢ are positive integers which could be freely
chosen, a,, form = —d,...,c and b, forn = —gq,...,p are un-

known constants to be determined. To find the values of ¢ and
p, we balance the linear terms of the highest order in Eq. (8)
with the highest order nonlinear terms.

Similarly to find out the values of d and q, we balance the
linear terms of the lowest order in Eq. (8) with the lowest order
nonlinear terms.

3. Exp function method for the DS system

The Exp function method as well addressed in He and Wu
(2006), Zhang (2007), Biazar and Ayati (2008), and in this part
it will be applied to obtain the solution of the Drienfeld—Soko-
lov system.

We assume that the solution of Eq. (5) can be expressed in
the form shown in the following form

u(®) = ac.exp(cé) + - -+ + a_sexp(—dé)
 bpexp(pé) + -+ byexp(—¢¢)’

In order to determine the constants ¢ and p, we balance the lin-
ear term of the highest order in Eq. (5) with the highest order
nonlinear term. By simple calculation, we have

" €1 exp[(3p + C)ﬂ +o

= , 7
! crexpldpe] + - - @

(6)

and

3 aexpBel]+--- cexpl(p+3e)E+ -
T cuexp[3pé - caexpldpé] +

(8)
By balancing the highest order terms of Exp-functions in Egs.
(7) and (8), we have

c+3p=3c+p, )
which leads to the result:

p=c. (10)

Similarly, we balance the lowest order terms in Eq. (5) to deter-
mine values of d and ¢, we obtain:

d=gq. (11)

It is possible to choose the values of ¢ and d, too.

3.1. The choice of p = c=1,and q = d =1

We choose p = ¢ = 1, and ¢ = d = 1, the trial function, Eq.
(6) converts to the following form

_arexp(&) +ap + a_ exp(—<&)
~ brexp(&) + by +b_yexp(—¢)”

In the case b; #0 Eq. (12) can be simplified as

W) = ar exp(&) + ay + a_, exp(—¢&)
T exp(&) 4+ by +b_jexp(—¢)

Substituting Eq. (13) into Eq. (5), and taking the coefficients of

exp(né) in each term zero yield to a set of algebraic equations

for ay, ag, a_y, bo, b_1, k, and w. Solving this system of alge-

braic equations by the aid of Maple, or via any others, leads to
1 a;(2b + ¢

a1 =0, ag=ay, a, =0, b_ 1—§%7 bo

=0, k=k, w=dk’. (14)

(12)

(13)

where ag and k are free parameters. Substituting Eq. (14) into
Eq. (13), we obtain the following exact solution

[£4)

v(x, 1) = - . (15)
exp(kx + ak’r) + 1 aéﬁbf) exp(—kx — ak’t)
If we set ay = 2\}%‘5‘, and r = —ak?, Eq. (15) reduces to
B =
v(x, 1) :r,/ﬁsech( %(x—rt)). (16)
For ay = 2\/‘/2%’1 and r = —ak®, we get

v(x, 1) = —ir\/% ese h( %’ (x — n)). (17)

These solutions are the same as the Wazwaz’s solution Waz-
waz’s (2006) solution.

3.2. The choice of p =c =2, andq = d =1

If we choose p = ¢ =
lowing form:

2,and ¢ = d = 1, Eq. (6) takes the fol-

(&) = ar exp(2&) + a; exp(&) + ap + a_, exp(— )é) (18)

- exp(28) + by exp(&) + by + b exp(—

Proceeding in a similar way as illustrated in Section 3.1, we can
identify parameters, ay, a;, ag, a_1, b1, bo, b_1, w, and k in Eq.
(39) as the following

=0, ag=a;, ag=0, a_; =0, b =0,

1 a2(2b+¢)

bozg o by =0, w=dak’, k=k. (19)
a = ié\/g};% a; = +(1+V2) ;li(k ap = ay,

a_| = 0, bl = 0, bo :tZaq V 2b+C (20)
boy=0, w=—1a, k=k

Substituting Egs. (19) and (20) into Eq. (18), we obtain the fol-
lowing exact solutions;
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a, exp(kx + ak’t)

v(x, 1) = exp 2(kx + akt) + 414 E:,hft ’ (21)
Which is the same as (15).
v(x,1)

ié&exp(zkx—dk%)i(l-&-ﬂ) S fexp (kx —3ak’1) +ao

exp(2kx — ak’t) + % V2b+c

3.3. The choice of p =c =2, andq = d = 2

In this case, the trial function (6) can be expressed as follows

ayexp(28) +ajexp(é) +ag + a_exp(—&) + a_rexp(—2¢)
exp(2¢) + by exp(¢) + b + by exp(—&) +b_sexp(—2¢)
(23)

V(&) =

There are some free parameters in Eq. (23), for the sake of sim-
plicity we take »; = 0 and b_; = 0, the trial function, Eq. (24)
can be simplified as follows:
W) =2 exp(2¢) +ay exp(&) +ap + a_y exp(—&) +a_, exp(—2¢)
exp(2¢) + by +b_rexp(—2¢&) '

(24)
Proceeding in a the same way as illustrated in 3.1, we can iden-
tify parameters, a,, a;, ag, a_i, a_», by, by, b_1, b_», w, s , and
kin Eq. (24) as the following

a=0, a1 =0, ap=ap, a1 =0, ay=0, by =0,
1 a@(2b+c) 3

= &\ add k=K. 2
b s TR w = 4ak’, (25)
=0, ay=a, ap=0, a_;, =0, a_, =0,

1 a}(2b+c) 3
bozglkTv by=0, w=ak’, k=k. (26)
P ak’® v jE151—\/2517:
Hh = 3 2b+c7 1 — a1, 4 kZa )

a(2b+ ¢

a, =0, a,=0, bo:_l(sz)’ b =0,

1
14):—551/(37 k=k. (27)

Substituting Egs. (25)—(27) into Eq. (24), the following exact
solutions will be obtained;

x.0) = S =
exp(2kx + 8ak’ 1) + 135~ exp(—2kx — 8ak’1)
(28)
Which is the same as Eq. (15).
o) = +1 \/’2"1‘)_+ exp(2kx — ak’t) + ay exp(kx — Lak’t) £1 4 \/ifﬂ
exp(2kx —ak’r) — ljhf‘)
(29)

4. Application of the modified Exp function method to the DS
system

In order to use the modified Exp function method, the solution
of Eq. (3), is assumed to be expressed in the following forms

u(&) = a.exp(cé) + -+ -+ a_gexp(—dé&)
byexp(pé) + - +b_gexp(—q<)’ (30)
W) = a, exp(mé) +---+d ,exp(—né)

brexp(l&) + -+ b exp(—ré) ’

where ¢, d, p, g, m, n, [, and r are positive integers and ay, by,
d,, and b,’s are unknown constants to be determined. To find
the values of parameters ¢, p, m, and /, the linear terms of the
highest order will be balanced with the highest order nonlinear
terms, in Eq. (3). Similarly, to determine the values of param-
eters d, g, n, and r, the linear terms of the lowest order will be
balanced with the lowest order nonlinear terms in Eq. (3). By
simple manipulations in the first equation in (3), it is acquired
,_aexpl(p+o)d+---  aexpl(ptc+ 3¢+

= oo+ aeplap g+ Y

, caexpl2m+DE+---
w =
cyexp[3/€] +
_czexp|(2m 41+ 2p)¢] +
~ caexp[(2p + 3D +
By balancing the highest order of Exp-function in Egs. (31)
and (32), we derive:

2m+1+2p=c+p+3L (33)

(32)

By the same way from the second equation in (3) we get

g6 expl(m + T)é] +---  cyexpl(m+ 71+ 2p)&] +

c4exp[8I¢] + coexp[(8/+2p)E] + -+
(34)
v/_daexp[(cherl)é] +---  dyexp[(c+mA+Tl4p)E+---
T dyexp[QI4p)E 4 daexp[(81+2p)E] + -
(35)

and

ol :a'5exp[(c+m+p)cf] +oeee
dsexp[(2p+ )¢+

_dsexp[(c+m+p+T1E +
dgexp[(2p +81)¢] +

(36)
So
prc+m+T=m+ 7+ 2p, (37)
Egs. (33) and (37) lead to the following result:
m=I[ p=c
The values of d, ¢, n, and r can be determined in a similar way.

By balancing the linear term of the lowest order in Eq. (3) , the
result will be as following

d=gq, n=r

Values of ¢, d, m, and n can be chosen arbitrary. Considering
the simplest case, letustakep =c=1,d=¢q=1,m=1[=
1, and n = r = 1. Thus (30) becomes as

u(®) = ar exp(&) + ap + a_y exp(=¢)

byexp(&) + b + by exp(—¢)’ (38)
ey _ Ghexp(E) + dh + yexp(=0)

by exp(&) + by + b’ exp(—¢)

In the case by # 0 and b} # 0 the system (38) can be simplified
to
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u(e) = 4 exp(¢) + a0 + a1 exp(=¢)
exp(&) + by + b_; exp(—&)

WE) = dy exp(§) +ay + a’; exp(—¢)
exp(&) + by + b’ exp(—£)

Substituting Eq. (39) into Eq. (3), and taking zero to be the
coefficients of exp(n¢) in each term, a set of algebraic equations
will be derived. These equations can be used to determine un-
knowns ay, ay, a_y, by, b_y, @), d, d_,, by, b’ |, w, and k Solving
the system of algebraic equations with the aid of a mathemat-
ical package, say Maple 12, the following results will be
obtained

(39)

e 72ka'|2 (c+2b) s (—dPc+bd® —2d?c? — 8d2h* — 8 ch)b;

- a TR ac(c+2b) "
o | (2P +ba* — 2a2 — 8d2h* — 8akch)by

0773 ac(c+2b) ’
1 (=dPc+ ba* —2a?c* — 8a2b* — 8alch) 1,

S =B, 4
‘=73 ac(c+2b) P bor=gh (40)
=~ (20, —bo)bodi, dy = (By—bo)a, B, = (26, —bo)bo.

Substituting these results into (39), the following exact solution
will be derived
1 (b — 2a2c* — 8ab® — 8altch
u(é):——(a afe ] afeb)
3 ac(c + 2b)
+1 a*c B 3by |
3 ac(c + 2b) exp(&) + by + Lbgexp(—¢)”

_ @y exp(&) + (B — bo)d; — 5 (2B — bo)bod) exp(—E)

v - / / o
© exp(&) + B+ (28 — bo)by exp(—0)
where
‘- fx 2kal} (¢ + 2b) .
a

5. Conclusion

In this article, we have been looking for the exact solution of
the nonlinear Drinfeld—Sokolov system. We achieved the solu-
tion by applying the exp function method and its modification.
The free parameters can be determined using any related to ini-
tial or boundary conditions. The result shows that these meth-
ods are powerful tools for obtaining exact solution. The
advantage of the modified Exp function over the Exp function
method is that the solution of the system can be obtained di-
rectly and without changing system to ordinary differential
equation. Applications of the Exp function method for other
kinds of nonlinear equations are under study in our research

group. The computations associated in this work were per-
formed by using Maple 12.
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