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A B S T R A C T   

Rising industrial pollution, exacerbated by climate change, underscores the need for effective environmental 
monitoring. Leveraging sensor advancements and Birnbaum-Saunders distribution, this study introduces a novel 
surveillance method for environmental data, crucial for shaping impactful industrial policies. Simulation studies 
demonstrate the method’s performance, and a case study on nitrogen oxide levels in Italy validates its efficacy in 
the early detection of severe air pollution events.   

1. Introduction 

Nowadays, pollutants like sulphur dioxide, nitrogen oxides, carbon 
monoxide, and tropospheric ozone from fossil fuel combustion worsen 
air quality, affecting human health. Establishing a surveillance mecha
nism is essential to detect sudden changes in nitrogen oxides (NOx) 
content, emitted mainly by coal plants and vehicles, causing respiratory 
issues and lungs damage. Real-time control charts aid in swiftly 
detecting abrupt changes in air quality, emphasizing the growing 
importance of environmental monitoring. Several control charts have 
been proposed in the literature to observe environmental characteristics. 
Anderson and Thompson (2004) studied distance-based multivariate 
control charts for environmental surveillance. Barratt et al. (2007) 
adapted the cumulative sum (CUSUM) control chart to monitor the 
changes in carbon monoxide concentrations, where data was collected 
from Central London. Morrison (2008) explained how control charts 
could be employed to inspect environmental data. Gove et al. (2013) 
examined water supply in Southwestern Australia using X-bar and 
CUSUM charts. Sancho et al. (2014) used a functional data-based She
whart control chart with run rules to monitor the air quality of urban 
areas. Based on an attribute control chart for the number of harmful 
contamination levels, Leiva et al. (2015) developed a threshold for 
environmental monitoring. 

Paroissin et al. (2016) designed novel control charts to monitor a 
French river’s dissolved oxygen concentration (DOC). The use of uni
variate and multivariate control charts to assess the water quality of the 
South Morava River was described by Đorđević et al. (2016). Marchant 

et al. (2018) presented a robust strategy employing multivariate control 
charts to examine the air quality of Chile. Rodríguez-Álvarez et al. 
(2021) proposed control charts for paper moisture content variability. 
Marchant et al. (2019) proposed bivariate control charts to monitor PM 
pollution in Santiago, and Qiao et al. (2021) designed a data quality 
control method for air quality monitoring in Chinese cities. 

In literature, many positive asymmetry or skewness probability 
models are often fitted to describe air contaminant concentrations. For 
example, log-normal, gamma, beta, inverse Gaussian, exponential, 
extreme values, log-logistic, Johnson bounded system, Weibull, and 
Pearson distributions. However, many environmentalists preferred the 
log-normal model instead of others for fitting the air contaminant con
centrations due to its close relation to Gaussian distribution and its 
physical explanation in terms of the law of proportionate effect (LPE) 
(Ott, 1990). Nevertheless, to rationalize the log-normal as a life distri
bution, Desmond (1985) proved the inaccuracy of using Cramér’s bio
logical model linked to the LPE. Recently, the Birnbaum-Saunders (BS) 
distribution has been getting more attention due to its close relation to 
the normal distribution. Moreover, Leiva et al. (2015) proved that rather 
than log-normal distribution, the BS distribution is an appropriate model 
for modelling concentrations of pollutants due to its accuracy in using 
Cramér’s biological model. For the mathematical derivation of Cramér’s 
biological model with respect to BS distribution, we may refer to Leiva 
et al. (2015). Hence, BS distribution is considered for developing the 
surveillance methods in this study. 

The BS distribution has two parameters and is used to fit the data 
having positively skewed behavior (Chang & Tang, 1994). For example, 
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the BS distribution is used to fit material fatigue data. Leiva et al. (2015) 
provided the environmental application of BS distribution with mathe
matical reasoning. It provides a theoretical rationale for the case study 
reported in this work and is an excellent fit for the data. Santos-Neto 
et al. (2012) suggested a Reparametrized Birnbaum-Saunders (RBS) 
distribution, which is closely related to the normal and asymmetrical 
distributions such as Gamma and Log-normal distributions. Many 
monitoring studies are designed based on the BS distribution. For 
example, a bootstrap control chart for BS distribution was proposed by 
Lio and Park (2008). Leiva et al. (2011) proposed control charts based on 
BS distribution to examine lifetimes. Saulo et al. (2015) developed an X- 
bar chart based on BS distribution. Aslam et al. (2016) presented the 
attribute control charts under repetitive sampling when a product’s 
lifetime follows a BS distribution. Marchant et al. (2018) proposed 
robust multivariate control charts where subgroups follow a generalized 
Birnbaum-Saunders distribution. Khan et al. (2018) proposed a chart 
based on BS distribution under accelerated hybrid censoring. Marchant 
et al. (2019) presented bivariate control charts designed for BS- 
distributed data. Bourguignon et al. (2020) presented control charts to 
monitor the median parameter of BS distribution. 

All the above studies are designed to monitor the BS-distributed 
response variable. However, linearly related covariates are recorded in 
many practical situations with the BS-distributed response variable. For 
example, the temperature is also measured with the average NOx con
centration, and they mostly possess a linear relationship (Jayamurugan 
et al., 2013). Hence, it is more practical to design control charts based on 
the BS regression model, which can provide the platform to monitor the 
BS distributed response variable by keeping the linear relation of the 
covariate(s). 

For BS distribution, regression models are based on the requirement 
that the original dependent variable be changed to a logarithmic scale, 
which may reduce the power of the study and make interpretations more 
challenging. To overcome these issues, Santos-Neto et al. (2012) sug
gested a Reparametrized Birnbaum-Saunders (RBS) distribution, which 
is closely related to the normal and asymmetrical distributions such as 
Gamma and Log-normal distributions. The regression models frequently 
focus on mean response and its initial scale; therefore, employing RBS 
distribution, the mean can be modelled with no changes like generalized 
linear models, but the distribution does not belong to the exponential 
family. Thus, a link function connects the mean response to the linear 
predictor, which includes the regressors and unknown parameters. 
Furthermore, the RBS model may also describe data with non-constant 
variance. With this motivation, this study proposes Shewhart control 
charts based on standardized and deviance residuals of the Reparame
trized Birnbaum-Saunders (RBS) regression model to monitor the posi
tive asymmetric data. Further, a simulation study is designed to assess 
the proposed charts’ performance in terms of run length characteristics. 
Finally, the proposed charts are implemented on the air quality data to 
highlight the importance of proposed methods in environmental 
monitoring. 

The rest of the article is presented as follows: the background of the 
RBS regression model is described in Section 2. Then, the Shewhart 
control charts are derived in Section 3. In Section 4, the results and 
design of the simulation study are presented. Further, Section 5 consists 
of implementing the proposed charts on air quality data. Finally, Section 
6 is designed to conclude the findings of this research. 

2. The Reparametrized Birnbaum-Saunders (RBS) regression 
model 

Let Y be a positive random variable that follows the RBS distribution 
proposed by Santos-Neto et al. (2012) with parameters scale/mean (μ;
μ > 0) and shape/precision (δ; δ > 0). Using this parameterization, the 
probability density function of Y is given as: 

f (y; μ, δ) =
exp(δ/2)

̅̅̅̅̅̅̅̅̅̅̅
δ + 1
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(1)  

The expected value and variance of Y are formulated as E(Y) = μ and 
Var(Y) = μ2(2δ+5)/(δ + 1)2, respectively. It is interesting to note that 
the variance of Y is a function of the mean. Thus, the RBS distribution, 
like the Gamma distribution, allows us to model heteroscedasticity. 
Leiva et al. (2014) developed a new approach for BS modelling by using 
this reparameterization. They treated Y1,Y2,⋯,Yn as independently 
RBS distributed random variables during the estimation process and 
designed a GLM-type statistical model as E(Yi) = μi = g− 1( xi

Tβ
)
, where 

xi
Tβ is a linear predictor; g− 1() indicates the inverse of the link function, 

which must be positive, completely monotone, and at least twice 
differentiable; β = β0, β1,⋯, βk denotes the vector of unknown parame
ters; and xi = 1, xi1, xi2,⋯, xik are the values of the k independent vari
ables X1,X2,⋯,Xk. It is to be noted that xi

Tβ belongs to the i-th row vector 
of the design matrix X. The parameters of the established model E(Yi) =

μi = g− 1( xi
Tβ
)

are estimated by the maximum likelihood (ML) method. 

For a vector of parameters θ =
(
βT, δ

)T, the log-likelihood function is 
given as: 

l(θ; y) = l(θ) =
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Assuming δ as known, the deviance residuals (DRs) for the RBS regres
sion model are defined as: 

DRi =sign(yi − μ̂i)
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, (3)  

where, μ̂i represents the ML estimate of μi and sign
(
yi − μ̂i

)
gives the 

signal of the difference yi − μ̂i. Further, the standardized residuals (SRs) 
are derived from the difference yi − μ̂i and expressed as: 

SRi =
yi − μ̂i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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where δ is fixed and ̂μi denotes the ML estimate of μi. Further, the DR and 
SR of the RBS regression model are used to develop proposed control 
charts. 

3. The Shewhart control charts for asymmetric data 

In this section, we first introduce the RBS data-based control chart 
and then provide the structure of control charts based on deviance and 
standardized residuals of the RBS regression model (given in Equations 
3–4). Moreover, the implementation of the proposed (DR-RBS and SR- 
RBS) charts, along with the existing (Y-RBS) chart is presented in Fig. 1. 

3.1. RBS data-based control chart (Y-RBS) 

The Y-RBS control chart monitors RBS distributed response variable 
samples, incorporating covariates, unlike the RBS data-based control 
chart that ignores them. The chart plots RBS samples against control 
limits determined by the following expression: 

LCL = E(Y) − LY1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Y)

√
,
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UCL = E(Y)+ LY2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Y)

√
, (5)  

where, LY1 and LY2 are constants that specify the width of the control 
limits and are set according to a fixed in-control average run length 
(ARL0). The Y-RBS chart indicates an out-of-control (OOC) state when 
any sample falls outside the limits; alternatively, the process reveals in- 
control (IC). 

3.2. RBS deviance residuals based control chart (DR-RBS) 

The deviance residuals of the RBS regression model are expressed in 
Equation (3) and plotted against the control limits in the DR-RBS control 
chart. The control limits of the DR-RBS chart are calculated as follows: 

LCL = E(DR) − LDR1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(DR)

√
,

UCL = E(DR)+LDR2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(DR)

√
, (6)  

Fig. 1. Flow chart on implementation of existing Y-RBS chart and proposed DR-RBS and SR-RBS charts.  
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where, LDR1 and LDR2 represents control limit constants and determined 
in relation to specified ARL0. The E(DR) and Var(DR) are the mean and 
variance of the deviance residuals, respectively. The DR-RBS control 
chart signals an OOC condition when any value of DR lies beyond the 
limits; otherwise, the system is considered in an IC condition. 

3.3. RBS standardized residuals-based control chart (SR-RBS) 

In the SR-RBS control chart, the standardized residuals stated in 
Equation (4) are plotted against the control limits, which are derived 
using the following formulas: 

LCL = E(SR) − LSR1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(SR)

√
,

UCL = E(SR)+LSR2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(SR)

√
, (7)  

where, LSR1 and LSR2 are control limit constants, and their values are 
selected in accordance with the defined ARL0. When any value of SR 
exceeds the limits, the system is declared OOC; else, the system is 
considered IC. 

Fig. 1 shows the implementation of DR-RBS, SR-RBS, and Y-RBS 
charts. Y-RBS is used when the dataset only contains the RBS distributed 
main variable. For DR-RBS and SR-RBS, fit the RBS regression model, 
estimate DRs and SRs using Equations (3) and (4), and calculate mean, 
standard deviation, and standardized residuals. Compute control limits 
using charting constants from Table 1 at a fixed ARL0. Plot residuals 
against control limits for DR-RBS and SR-RBS, and response (Y) values 
against Y-RBS control limits. If plotting statistics exceed boundaries, 
investigate for signals; otherwise, repeat for each time point data. 

4. Simulation structure and results 

For the performance evaluation of the proposed control charts, a 
Monte Carlo simulation study is designed. We generate the RBS response 
variable as Yi ∼ RBS(μi, δ), where, μi = exp(β0 +β1xi); i = 1,2,⋯, n rep
resents the mean function, and δ is the shape parameter. By following 
Leiva et al. (2014), the parameters’ values are considered as β0 = 0.2, 
β1 = 0.5 and δ = 2. Also, the sample size is set at 1000. We assume that 
the values of the covariate (X) come from a uniform distribution with an 
interval (0,1). The simulations are carried out on a large scale with 104 

repetitions. In the RBS regression model, μi and δ are the basic param
eters, and the primary objective is to spot an increasing shift in μi at a 
fixed δ. Thus, we assess the performance of control charts by applying 
different direct and indirect shifts in μi. The shifts are as follows:  

a. Indirect shift in μi with respect to β0 as β0 + δ.  
b. Indirect shift in μi with respect to β1 as β1X + δ.  
c. Direct shift in μi as μi + δ. 

Furthermore, the capacity to detect shifts in control charts is assessed 
using average run length (ARL), as recommended by several prior works, 
e.g. (Iqbal et al., 2022a; Iqbal et al., 2022b; Mahmood, 2020; Mahmood 
& Erem, 2023; Mahmood et al., 2022). ARL represents the average 
number of points before an alarm. ARL0 represents an in-control ARL, 
while ARL1 indicates an out-of-control ARL. A chart is deemed superior 

if for a fixed ARL0, the ARL1 values are minimum. The standard devia
tion of run length (SDRL) specifies the dispersion of a run length, 
whereas the MDRL reveals the median run length. 

4.1. Algorithm for determining the charting constants 

The following strategy is used to determine the control limit co
efficients LY1, LY2, LDR1, LDR2, LSR1, and LSR2 at fixed ARL0.  

a. Begin by creating a sample of size n using the simulated RBS model, 
as mentioned above.  

b. Fit the RBS regression model to the generated data and estimate the 
DRs and SRs shown in Equations (3) and (4).  

c. Calculate the mean, standard deviation, and standardized residuals 
for the DR-RBS and SR-RBS control charts. The mean and standard 
error of the response variable (Y) in the Y-RBS control chart.  

d. Calculate the control limit(s) of the control chart using the estimates 
from step (c) and a random value as the charting constant.  

e. Plot the residuals of DR-RBS and SR-RBS control charts against their 
respective control limits. Plot the Y-RBS control chart’s response (Y)
values against the control limit.  

f. To reach the specified ARL0, repeat steps (a-e) many times.  
g. If the needed ARL0 is not reached, return to the starting location, 

adjust the previous random value, and repeat steps (a-f) until it is 
obtained. 

Using this approach, charting constants are determined for each 
chart against multiple ARL0 options (e.g., 200, 370, and 500). Table 1 
shows the obtained control charting constants. 

4.2. Simulation findings 

This part examined the proposed RBS model-based control chart 

Table 1 
Control charting constants of each chart with respect to ARL’s.  

Charts Limits ARL0 

200 370 500 

SR-RBS LSR1  0.918  0.942  0.960 
LSR2  6.100  6.550  6.800 

DR-RBS LDR1  2.850  3.080  3.235 
LDR2  2.980  3.240  3.380 

Y-RBS LY1  0.1060  0.0910  0.0843 
LY2  11.2000  12.4000  13.3200  

Table 2 
ARL profile of the charts under an indirect shift in μ with respect to β0 as β0 + δ  

ARL0 δ DR-RBS SR-RBS Y-RBS 

ARL SDRL ARL SDRL ARL SDRL 

200 0  201.75  199.69  200.61  281.54  200.78  192.59 
0.1  178.54  178.54  178.63  235.61  197.04  189.76 
0.2  136.99  142.60  148.97  181.63  159.32  155.95 
0.3  96.81  100.47  111.83  129.41  117.05  114.85 
0.4  67.61  69.24  82.66  89.25  81.78  80.44 
0.5  47.82  48.56  59.70  62.39  56.90  56.09 
0.6  34.34  34.72  43.55  43.81  41.73  40.63 
0.7  25.66  25.77  31.90  31.61  30.35  29.66 
0.8  19.61  19.31  23.66  23.77  22.91  22.62 
0.9  15.07  14.76  18.55  18.52  17.55  17.19 
1  12.03  11.54  14.07  13.75  13.89  13.42 

370 0  369.30  365.44  370.23  312.87  373.95  308.92 
0.1  317.81  319.49  340.63  293.76  344.57  293.22 
0.2  234.73  251.07  255.98  243.38  270.35  249.92 
0.3  167.70  180.59  176.09  177.65  187.22  183.80 
0.4  114.25  116.35  115.07  122.29  123.86  121.07 
0.5  77.76  79.51  78.46  81.36  83.83  83.20 
0.6  54.02  54.89  54.55  56.04  58.33  57.98 
0.7  38.51  39.00  39.24  40.07  42.25  41.90 
0.8  27.95  27.65  28.67  29.76  30.63  29.99 
0.9  20.95  21.03  21.78  21.77  22.81  22.14 
1  16.28  16.06  16.44  16.20  17.99  17.43 

500 0  500.48  388.31  499.32  352.65  500.24  349.92 
0.1  407.95  348.96  456.61  342.12  471.45  342.46 
0.2  298.47  284.50  349.73  299.25  365.27  305.18 
0.3  202.69  207.55  241.88  233.47  257.39  240.64 
0.4  137.09  143.48  155.94  158.64  166.39  164.04 
0.5  89.37  93.64  101.61  102.90  110.83  111.02 
0.6  62.10  63.96  69.68  71.22  76.20  77.02 
0.7  43.32  44.40  48.40  49.40  52.82  52.54 
0.8  31.61  31.77  34.11  34.20  38.11  37.49 
0.9  24.12  23.63  25.67  25.39  28.60  28.25 
1  17.79  17.55  19.42  19.16  21.47  20.84  
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outcomes. Tables 2-4 show the ARL, SDRL, and MDRL for various ARL0 
selections. 

Table 2 shows the results of the first indirect shift in μ relative to β0 as 
β0 +δ across all charts. Model-based charts outperform data-based charts 
in detecting indirect mean shifts caused by β0 changes. For example, 
when δ = 0.7, the ARL1 for Y-RBS chart is reported as 30.35. This is 
greater than the ARL1

′s of 25.66 and 31.90 for DR-RBS and SR-RBS 
charts, respectively, at fixed ARL0 = 200. The shift leads ARL1

′s about 
38.51, 39.24, and 42.25 for DR-RBS, SR-RBS, and Y-RBS control charts, 
respectively, at ARL0 = 370. At ARL0 = 500. , DR-RBS, SR-RBS, and Y- 
RBS charts show reductions of 456.68, 451.6, and 447.18 units, 
respectively. The results also reveal that in model-based charts, the 
deviance residuals-based scheme performs better than the standardized 
residuals-based scheme. 

For example, at δ = 0.2, the DR-RBS chart’s ARL1 is 136.99, whereas 
the SR-RBS chart’s ARL1 is 148.97 at ARL0 = 200. For DR-RBS and SR- 
RBS control charts, the depreciated ARL1

′s are reported at roughly 
234.73 and 255.98, respectively, at the given ARL0 = 370. Similarly, 
with ARL0 = 500, the shift may result in a decrease of 201.53 and 
150.27 units in ARL1

′s of DR-RBS and SR-RBS control charts. 
Table 3 summarizes the indirect change in μ with respect to β1 as 

β1X+δ across all charts. The results indicate that residuals-based pro
cedures outperform data-based methods in detecting indirect changes in 
the mean induced by varying β1. At δ = 0.6, the DR-RBS, SR-RBS, and Y- 
RBS charts show ARL1

′s around 34.15, 43.45, and 41.56, respectively, 
with stated ARL0 = 200. While the ARL1

′s of DR-RBS, SR-RBS, and Y- 
RBS charts are seen as 53.33, 53.64, and 57.89, respectively, for ARL0 =

370. The shift may reduce the values of ARL1
′s for DR-RBS, SR-RBS, and 

Y-RBS charts by 438.55, 432.46, and 423.23 units, respectively, at 
ARL0 = 500. 

Furthermore, the results show that the deviance residuals-based 

process performs more effectively than the standardized residuals- 
based method. For example, when δ = 0.1, the ARL1

′s are reported 
around 179.99 and 180.37 for DR-RBS and SR-RBS control charts, 
respectively, at ARL0 = 200. For DR-RBS and SR-RBS control charts, 
ARL1

′s are reported around 314.32 and 339.65, respectively, with 
ARL0 = 370. At ARL0 = 500, DR-RBS and SR-RBS control charts show a 
drop of 94.41 and 37.24, respectively, for the same shift. 

Table 4 shows the findings for direct shifts in μ as μ + δ. Again, 
techniques relying on RBS model residuals outperform the RBS data- 
based approach in detecting direct alterations in the mean. For 
example, when δ = 0.5, the DR-RBS, SR-RBS, and Y-RBS control charts 
constitute ARL1

′s around 103.46, 116.70, and 134.07, respectively, at 
ARL0 = 200. For ARL0 = 370, the ARL1

′s of the DR-RBS, SR-RBS, and Y- 
RBS control charts are 178.13, 185.80, and 220.74, respectively. The 
shift may have caused a drop of approximately 276.25, 241.45, and 
193.55 units in the ARL1

′s of DR-RBS, SR-RBS, and Y-RBS control charts, 
respectively, at ARL0 = 500. Furthermore, it can be seen that the DR- 
RBS control chart performs better than the SR-RBS chart. For shift δ 
= 0.3, the ARL1

′s of DR-RBS and SR-RBS control charts are found at 
approximately 149.19 and 155.39, respectively, at ARL0 = 200. For the 
same shift, the DR-RBS and SR-RBS control charts exhibit ARL1

′s around 
256.84 and 273.94, respectively, at ARL0 = 370. Similarly, at ARL0 =

500, the DR-RBS and SR-RBS control charts fall by 175.98 and 117.56 
units, respectively. To summarize, the DR-RBS control chart out
performs the SR-RBS and Y-RBS control charts for all three types of 
shifts. 

5. Illustrative Example: Air quality data 

The simulation revealed higher detection ability in the proposed 
model-based (DR-RBS and SR-RBS) charts compared to the existing data- 

Table 3 
ARL profile of the charts under an indirect shift in μ with respect to β1 as β1X + δ  

ARL0 δ DR-RBS SR-RBS Y-RBS 

ARL SDRL ARL SDRL ARL SDRL 

200 0  201.75  199.69  200.61  281.54  202.43  195.69 
0.1  179.99  237.03  180.37  178.89  196.70  194.05 
0.2  138.40  141.77  147.00  181.04  159.15  157.87 
0.3  97.30  98.68  114.33  132.57  115.50  115.32 
0.4  67.15  68.38  83.00  89.41  81.68  79.99 
0.5  47.97  48.21  61.12  63.14  57.64  56.76 
0.6  34.15  34.42  43.45  44.43  41.56  41.30 
0.7  25.22  20.11  31.93  32.58  30.51  30.23 
0.8  19.34  19.23  23.70  23.71  22.98  22.46 
0.9  14.97  14.55  18.52  18.20  17.66  17.31 
1  11.90  11.60  14.11  13.75  14.00  13.53 

370 0  369.30  365.44  370.23  312.87  376.76  309.24 
0.1  314.32  319.01  339.65  293.47  347.22  295.21 
0.2  238.98  251.99  255.12  242.62  270.98  247.94 
0.3  168.18  183.03  176.95  178.92  182.39  180.03 
0.4  113.63  119.47  115.64  120.10  121.71  120.77 
0.5  76.45  78.15  76.97  79.37  82.92  82.30 
0.6  53.33  54.31  53.64  55.40  57.89  58.49 
0.7  37.99  37.79  39.07  40.01  42.02  41.37 
0.8  27.77  27.60  28.63  28.58  30.96  30.25 
0.9  21.18  20.89  21.87  22.05  22.82  21.97 
1  16.48  16.25  16.79  16.62  18.05  17.53 

500 0  500.48  388.31  499.32  352.65  505.54  350.77 
0.1  405.59  348.81  462.76  341.70  471.53  342.95 
0.2  300.50  285.10  355.15  305.08  369.35  307.13 
0.3  203.73  206.48  240.46  234.16  259.43  241.30 
0.4  139.32  145.44  155.58  156.36  168.19  168.15 
0.5  88.97  91.62  100.23  100.85  111.31  112.12 
0.6  61.45  63.39  67.54  69.07  76.77  76.36 
0.7  43.56  44.36  48.42  49.19  53.09  52.36 
0.8  31.31  31.88  34.54  34.36  39.00  38.00 
0.9  23.50  23.70  25.86  26.12  28.28  27.79 
1  18.04  17.80  19.58  19.34  21.66  21.21  

Table 4 
ARL profile of the charts under a direct shift in μ as μ + δ  

ARL0 δ DR-RBS SR-RBS Y-RBS 

ARL SDRL ARL SDRL ARL SDRL 

200 0  201.75  199.69  200.61  281.54  200.95  194.41 
0.1  193.95  191.56  192.06  256.15  198.44  199.77 
0.2  169.70  171.75  176.28  227.36  187.35  194.55 
0.3  149.19  150.92  155.39  194.07  179.97  178.76 
0.4  125.50  127.88  137.12  169.03  155.37  152.41 
0.5  103.46  106.14  116.70  133.05  134.07  132.30 
0.6  87.95  90.10  104.08  117.79  114.59  113.99 
0.7  74.05  75.39  87.46  96.93  97.23  96.42 
0.8  63.62  64.75  77.11  85.28  82.28  81.99 
0.9  54.86  55.82  67.58  72.12  72.03  71.85 
1  47.03  48.44  59.62  62.94  62.56  61.72 

370 0  369.30  365.44  370.23  312.87  370.64  309.66 
0.1  340.58  340.69  357.25  303.85  365.03  308.48 
0.2  299.80  306.57  321.67  284.30  347.52  294.31 
0.3  256.84  270.31  273.94  254.39  311.16  274.94 
0.4  212.53  227.93  232.48  224.58  258.98  240.72 
0.5  178.13  194.30  185.80  184.71  220.74  211.06 
0.6  148.36  158.89  153.76  157.36  182.57  177.04 
0.7  126.38  134.53  127.05  131.97  152.16  150.41 
0.8  106.29  112.33  107.98  112.83  127.39  125.25 
0.9  89.47  93.42  90.26  92.08  107.52  106.56 
1  76.23  77.79  79.13  83.23  91.43  91.17 

500 0  500.48  388.31  499.32  352.65  503.04  348.33 
0.1  449.19  365.70  487.33  347.91  495.20  350.32 
0.2  398.04  342.59  439.62  339.06  471.40  344.31 
0.3  324.02  301.57  382.44  315.35  416.92  325.93 
0.4  269.12  265.10  314.51  282.33  362.24  302.94 
0.5  223.75  225.08  258.55  246.45  306.45  272.57 
0.6  178.93  184.59  208.54  206.73  246.93  233.61 
0.7  147.33  154.54  172.67  174.04  207.13  199.05 
0.8  122.88  129.79  142.74  145.14  171.62  167.02 
0.9  107.03  112.30  119.10  121.38  145.48  143.81 
1  90.08  92.61  102.06  105.14  123.19  121.21  
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based (Y-RBS) charts, with the DR-RBS outperforming SR-RBS and Y- 
RBS across various shift types. To assess real-world performance, we 
conducted a case study using air quality data from De Vito et al. (2009), 
who utilized a multisensor system weighing less than 2.5 kg. This system 
included a relative humidity sensor, a solid-state temperature sensor, 
and five unique metal oxide chemo-resistive sensors, collecting data 
with an 8-second sampling time and a memory capacity of up to 72 h. 
Genuine NOx concentrations were measured on-site using a conven
tional analyzer as used in this study. 

As previously discussed in Section 1, in order to monitor air pollu
tion, a surveillance system must be designed to identify a sudden shift in 
NOx concentration while also taking temperature into account. The 
website (https://archive.ics.uci.edu/ml/datasets/air+quality) provides 
actual hourly averaged nitrogen oxides (NOx) concentration (Y, in ppb) 
and temperature (X, in ◦C). The collection contains 9358 instances of 
hourly averaged answers from a metal oxide chemical sensor embedded 
in an air quality chemical device. The device was located on a field at 
street level in a very polluted area of an Italian city. 

For the implementation of the proposed charts, two datasets were 

first retrieved, each of 950 values. The dataset with an RBS distribution 
is considered in-control (IC), whilst the other is considered out-of- 
control (OOC). The descriptive statistics for nitrogen oxides (NOx) 
concentration in the IC dataset show that: (i) the minimum and 
maximum values are 2.0 and 396.0, respectively; (ii) the mean and 
standard deviation are 119.2095 and 79.7717, respectively; and (iii) the 
coefficient of variation with skewness and kurtosis are 0.6692, 1.2529, 
and 4.2629. These descriptive statistics show that the NOx data have a 
positive skew empirical distribution with a somewhat higher kurtosis 
than a normal (or Gaussian) distribution. The histogram in Fig. 2 illus
trates these data aspects by approximating the probability density 
function of nitrogen oxide concentration. The QQ Plot is a popular 
approach for determining sample data’s goodness-of-fit to a theoretical 
distribution. It enables the user to compare an empirical quantile func
tion (represented by all sample points) to a theoretical model (repre
sented by a 45◦ slope line). All of the data points are then compared to a 
straight line. If the line closely fits the point, the distribution is said to be 
best suited. Fig. 3 shows a QQ plot with an envelope to evaluate the 
model’s distributional assumption. 

Because this plot does not show odd features, the assumption that the 
response variable follows an RBS distribution is validated. Further, to 
analyze the model fitting, we have used Anderson-Darling and Cramer- 
von Mises goodness-of-fit tests (Barros et al., 2014). The RBS distribu
tion is the best-fitted distribution, according to statistic A = 0.4948 with 
p − value = 0.2145 and statistic W = 0.0571 with p − value = 0.4132. 

For both IC and OOC datasets, we ran RBS regression models be
tween NOx and temperature. These models are obtained as: 

ICModel : NOx = e5.0511− 0.0124(temperature) (8)  

OOCModel : NOx = e5.8164+0.0127(temperature) (9)  

The intercept and slope in Equation (8) are statistically significant (p- 
values < 0.001). Equation (9) shows a significant intercept (p-value <
0.001) and slope (p-value < 0.05). Further deviance and standardized 
residuals for both models are computed using Equations (3) and (4), 
respectively. Control charting constants for ARL0 = 200 are obtained by 
following section 4.1 and using the IC dataset. The bootstrapping 

Fig. 2. Histogram of Nitrogen Oxides (NOx) concentration.  

Fig. 3. QQ plot for IC RBS regression model with Envelope.  
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approach was applied, resulting in the following values: LY1 = 1.29, 
LY2 = 12.7, LSR1 = 1.329,LSR2 = 3.69, LDR1 = 3.0 and LDR2 = 2.20. 

Figs. 3-4 illustrate the implementation and presentation of the Y- 
RBS, SR-RBS, and DR-RBS charts. The points beneath the pink window 
correspond to the IC state, whilst the points under the white window 
indicate the OOC state. Plotting data are indicated in blue for accuracy, 
whereas OOC points are emphasized in red. It is noted that the Y-RBS 
chart (Fig. 4) discovered 104 OOC signals, whereas the SR-RBS (Fig. 5) 
and DR-RBS (Fig. 6) charts detected 107 and 110 OOC signals. As a 

consequence, this provides unambiguous proof that the simulated and 
illustrated example findings are identical: the DR-RBS chart has more 
detection power than the Y-RBS and SR-RBS charts. 

6. Conclusion and future recommendations 

There are many real-world datasets that demonstrate positive skew 
behavior. For such data, symmetric distributions with support 
throughout the complete set of real numbers are unsuitable. To monitor 

Fig. 4. Y-RBS control chart for the illustrative example.  

Fig. 5. SR-RBS control chart for the illustrative example.  

Fig. 6. DR-RBS control chart for the illustrative example.  
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positive skew data, we offer new Shewhart control charts based on the 
RBS regression model’s residuals (SR and DR). Furthermore, a simula
tion study was carried out to evaluate the performance of RBS model- 
based control charts to the RBS data-based scheme. The findings 
demonstrated that RBS model-based schemes outperformed RBS data- 
based schemes. Furthermore, in RBS model-based schemes, the control 
chart, which is based on the RBS regression model’s deviance residuals, 
is more sensitive to growing mean shifts. In conclusion, our results and 
application to nitrogen oxides (NOx) data offer an effective real-time 
monitoring tool for analyzing environmental systems. This example 
demonstrates the significance of the new technique in recognizing in
stances of severe urban environmental pollution, allowing us to avoid 
harmful implications for the population’s health in Italy. The proposed 
approach is recommended for environmentalists and other administra
tors who wish to monitor the alarming incidence of air pollution in real- 
time, which is critical for human safety. 

The current study lacks consideration of time series components, a 
key aspect that should be explored in future research. It focuses solely on 
nitrogen oxide (NOx) for air quality assessment, overlooking other vital 
contaminants like particulate matter, ozone, carbon monoxide, and 
sulfur oxides. Potential areas for further investigation include the impact 
of parameter estimation in the RBS regression model, assumptions 
regarding covariates in mean calculation, and the use of RBS regression 
modeling for skewed data detection. 
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