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Abstract The propagation of the ion-acoustic waves (IAWs) in a collisionless, unmagnetized inho-

mogeneous plasma composed of warm positive and negative ions with different masses and isother-

mal electrons is investigated. The reductive-perturbation method is employed to reduce the basic set

of fluid equations to the variable coefficients Korteweg–de Varies (KdV) equation. It is found that

both compressive and rarefactive solitons can propagate in the system. Below (above) certain values

of positive ions densities the system supports rarefactive (compressive) solitons. The dependence of

solitons amplitude and width on the system parameters is investigated.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Negative ion plasma can be defined as plasma that contains

both negative and positive ion species, as well as electrons.
Negative ion plasma can appear as a result of elementary pro-
cesses, such as dissociative or non-dissociative electron attach-

ment to neutrals when an electronegative gas, such as halogens
92024955.
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and hexafluorides, is introduced into an electrical gas discharge
or injected from the external sources (Vladimirov et al., 2003;

Mamun and Shukla, 2003; Djebli, 2003). Furthermore,
negative ion plasma can be created in the plasma processing
reactors (Gottscho and Gaebe, 1986), low-temperature labora-
tory experiments (Jacquinot et al., 1977; Nakamura et al.,

1997; Weingarten et al., 2001; Ichiki et al., 2002), and neutral
beam sources (Bacal and Hamilton, 1979). Also, negative ion
plasma can be found in many space observations such as the

D-region of the ionosphere (Massey, 1976; Portnyagin et al.,
1991), cometary comae (Chaizy et al., 1991), etc.

The presence of the negative ion in a plasma modifies the

charge neutrality condition i.e., ne = np�nn, where ne, np,
and nn are the electron, positive ion, and negative ion number
densities, respectively. It is clear that as the number density of

the negative ions increases, the electrons’ number density de-
creases. The result is a decrease of the shielding effect produced
by the electrons, which is one of the main effects governing the
behavior of plasmas. From this perspective, it seems to follow
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that the negative ions only influence plasmas secondarily.
Although this is a fact, most of the phenomena are actually af-
fected by the negative ions themselves, as well as by the lack of

electrons (Ichiki et al., 2002).
In the absence of dissipation or if the dissipation is weak,

the balance between the nonlinear and the dispersion effects

can result in the formation of symmetrical solitary waves – sol-
iton. The IAWs and their attributes have been the subject of
many researches in plasma physics and complex (dusty) plas-

ma as well. There has been considerable interest (see, for exam-
ple, Das and Tagare, 1975; Nakamura, 1982; Watanabe, 1984;
Tajiri and Tuda, 1985; Ludwig et al., 1984; Moslem, 1999; El-
Labany et al., 2000, 2011a,b) in the investigation of nonlinear

IAWs in plasmas with positive–negative ions and Boltzmann
distributed electrons. Extensive work has been devoted to the
study of IAWs in plasmas with positive–negative ions. For

example, The propagation of IAWs in a multi-species plasma
consisting of positive ions, electrons and negative ions have
been investigated theoretically by Das and Tagare (1975),

Watanabe (1984), Tagare (1986), and experimentally by Coo-
ney et al. (1991), etc. and their studies showed the rarefactive
solitary waves owing to the presence of negative ions. Chakr-

aborty et al. (1992), Chakraborty et al. (1993), Chakraborty
et al. (1994), Chattopadhyay et al. (2002), considered the effect
of negative ions on the formation of ion acoustic solitons in
relativistic plasmas. They have numerically estimated the

width, amplitude and phase velocity of IAWs for a model plas-
ma having the negative ions which have short lifetimes (or
small probability of existence). Chattopadhyay et al. (2002),

found that drift motion of ions has a significant contribution
on the excitation of IAWs in the presence of negative ions in
plasma. Chattopadhyay et al. (2009), studied warm positive

and negative ions with two-temperature isothermal electrons
using the pseudopotential method. They found that the con-
centration of negative ions, drift velocities, mass ratios, equal

temperatures of ions (particular case) and presence of two
groups of electrons and their ratios modify the profiles of the
Sagdeev pseudopotential curves of the solitary waves in the
plasma. Das and Nag (2010), used reductive-perturbation

technique to study the propagation of IAWs in the vicinity
Figure 1 The variation of solitons amplitude (Wm) against ion d
of KdV equation in magnetized plasma with negative ions.
They found that the presence of negative ions changes the non-
linearity as a result of which the formation of soliton exhibits

different nature on soliton propagation. Furthermore, several
authors (Das and Singh, 1992; Malik and Dahiya, 1994; Das
and Devi, 2006; Malik and Stroth, 2008; Singh and Malik,

2008) have focused their attention on the investigation of
IAWs in inhomogeneous plasmas with positive–negative ions.
Since the propagation characteristics of IAWs may be modi-

fied by the effects of the presence of negative ion, the main con-
cern of this paper is to study the IAWs in multicomponent
inhomogeneous plasma consisting of warm positive- and neg-
ative ion species along with isothermal electrons. The salient

feature is to demonstrate the existence of compressive and
rarefactive IAWs in inhomogeneous plasma with two-ion spe-
cies having different masses, concentrations, and temperatures.

The two types of ions are assumed to have the same charge
number = 1. Using the reductive-perturbation method, we
have derived a KdV equation that admits a soliton solution.

We have investigated the effect of mass, concentration, and
temperature of different ion species on the characteristics of
IAWs in detail. Furthermore, for numerical illustrations, we

take a realistic example of plasma containing the ions
ðArþ; SF�6 Þ. The ðArþ; SF�6 Þ plasma composition has been used
in the experimental investigation of strong double layers by
Merlino and Loomis (1990).

The present paper is organized as follows. In Section 2, the
basic set of fluid equations for the IAWs in positive–negative
ion plasma with isothermal electrons is presented. The well

known KdV equation is derived. In Section 3, the KdV equa-
tion is solved and analyzed to study the profiles of the nonlin-
ear IAW. Section 4 is devoted to a concluding discussion.

2. Basic equations and derivation of the KdV equation

Let us consider a medium of an unmagnetized, collisionless,

warm, adiabatic inhomogeneous plasma containing mixture
of positive and negative ions and isothermal electrons. The
fluid equations of motion governing the system can be ex-

pressed as follows (Kalita et al., 1996; Moslem et al. 2009):
ensity ðnð0Þp Þ for nð0Þe ¼ 1:8; q ¼ 1:7;rp ¼ 0:01, and rn = 0.001.



Figure 2 Graph of soliton velocity (k) soliton against nð0Þp for nð0Þe ¼ 1:8 q= 1.7, rp = 0.01 and rn = 0.001.
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Here, up and un are the velocities of the positive and negative

ions, respectively, / the electrostatic potential, x the space
coordinate, and t the time variable. Furthermore, rP = TP/
Te and rn = Tn/Te are the ratios of the temperatures of posi-

tive ions (Tp) and negative ions (Tn) to the electron tempera-
ture (Te), and q = mn/mp is the ratio of the negative ion
mass (mn) to the positive ion mass (mp).

Wenormalizedall the physical quantities as follows.Theback-
ground electron density nð0Þe normalizes the densities, up,n by the
ion sound speed (KTe/mp)

1/2, / by KTe/e, t by the inverse of the
:21ð3:13Þ against x for q= 1.7, rp = 0.01 and rn = 0.001.



Figure 4 The compressive amplitude (Wm) is plotted against q for ðnð0Þp Þ for nð0Þe ¼ 3:35; nð0Þn ¼ 1:8; rp ¼ 0:01 and rn = 0.001.
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plasma frequencyx�1pi ¼ ðmp=4pe2neÞ1=2, x by the electronDebye

length kD = KTe/4pe
2ne)

1/2, where K is Boltzmann’s constant.
The independent variables can be stretched as (Asano, 1974)

n ¼ e1=2 �
Z

dx

kðxÞ � t

� �
; s ¼ e3=2x; ð7Þ

where e is a small parameter less than one and k is the wave
propagation speed to be determined later. The dependent vari-
ables are expanded as

nn;p
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where nð0Þn;p are the unperturbed densities, which satisfy the neu-

trality condition

nð0Þp ¼ nð0Þn þ 1þ /ð0Þ; ð9Þ

for simplicity we shall consider the ionic charge number of po-

sitive and negative ions equal unity.
Using the stretching (7) and the expansion (8) into Eqs. (1)–

(6), and assuming the gradients is in the spatial only, it follows
that
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The zero order of e gives
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2
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The first order in e yields the following relations:
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In deriving Eqs. (17)–(21), it has been assumed that the equilib-

rium flow velocity of positive and negative ions are neglected
by assuming them to be much smaller than DIAW phase speed
ðk� uð0Þp;nÞ. From Eq. (21), we obtain the linear phase velocity,

which is equivalent to the linear wave dispersion relation

k ¼
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where

R1 ¼ nð0Þn þ nð0Þp qþ ð3nð0Þ2n rn þ 3nð0Þ
2

p qrpÞð1þ /ð0ÞÞ;

R2 ¼ 3nð0Þn nð0Þp ðnð0Þn rn þ nð0Þp rp þ 3nð0Þn nð0Þp rnrpð1þ /ð0ÞÞÞ;



Figure 5 The variation of compressive amplitude (Wm) against the ratio of the negative ions temperature to the free electron temperature

(rn) for nð0Þp ¼ 3:2; nð0Þn ¼ 1:8; p ¼ 1:7 and rp- = 0.01.
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Eliminating the second-order perturbed quantities and making
use of the first-order results, we finally get the following non-
linear partial differential equation with variable coefficients:
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Figure 6 The compressive soliton amplitude (Wm) is depicted against rp for n
ð0Þ
p ¼ 1:7; nð0Þn ¼ 1:8; p ¼ 1:7 and rn = 0.001 .
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3. The stationary solutions

In order to obtain the solitary wave solutions, one can use the

following transformation:

/ð1Þ ¼ W exp � a3
a2

/ð0Þ
� �

: ð29Þ

In order to recast Eq. (28) to the standard form of Korteweg–
de Vries (KdV) equation with variable coefficients,
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@n3
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where

A ¼ 1

a2
; B ¼ a1

a2
exp � a3

a2
/ð0Þ

� �
:

However, the nonlinear coefficients functionally depend on

the space of the plasma, for the sake of simplicity for math-
ematical development, the variations are assumed negligibly
as compared to the scale length or it is assumed that all
parameters are locally constant. This equation, as is well

known, has the following solution given by Kodama and
Taniuti (1978).

W ¼ Wm Sech
2 X

W

� �
; ð31Þ

where the amplitude Wm = 3U/B, the width W = (4A/U)1/2,
and X is the transformed coordinate with respect to a frame

moving with velocity U (i.e. X ¼ n�Us).

4. Results and discussion

We have presented a study of the weakly nonlinear IAWs in
plasma with two distinct ion species (i.e., positive and negative
ions) and isothermal electrons. By employing the two-fluid

equations for the ions and isothermal electron distribution,
we have derived the KdV equation. The latter is used to exam-
ine the width and the amplitude of IAWs.
The dependence of the soliton amplitude Wm on the ion
density nð0Þp is depicted in Fig. 1. It is found that the soliton

amplitude Wm can be positive (a1/a2 > 0) or negative (a1/
a2 < 0), indicating thereby that both rarefactive and compres-
sive solitons can exist in the present system. It is seen that, the

rarefactive amplitude increases as nð0Þp increases for its lower
range (i.e. nð0Þp < 3:16Þ, on the other hand the compressive
amplitude decreases with nð0Þp (i.e. nð0Þp > 3:16Þ. From Fig. 2,

it is obvious that the soliton phase velocity gradually decreases
with the increase of nð0Þp . Fig. 3 shows that both the amplitude
and width of the compressive (rarefactive) solitons increase
(decrease) with the negative ion densitynð0Þn . The effect of the

ratio of the negative ion mass to the positive ion mass (q) on
the compressive soliton amplitude is depicted in Fig. 4. It is
clear that the amplitude of the compressive soliton increases

rapidly with q. Fig. 5 reveals how the compressive soliton
amplitude decreases with the increase of the ratio of the nega-
tive ions temperature to the electron temperature rn. It is obvi-
ous from Fig. 6 that the amplitude of compressive soliton
decreases sharply by increasing rp for rp < 0.02, but for
rp > 0.02 the amplitude decreases gradually.

The present study is applied to examine the nonlinear IAWs
excitations for the ðArþ; SF�6 Þ plasma, which has been used in
the experimental investigation of strong double layers by
Merlino and Loomis (1990). Finally, this investigation should

be helpful in understanding the salient features of the nonlin-
ear IAWs both in space and in laboratory experiments where
two distinct groups of ions and isothermal electrons are

present.
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