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c Department of Civil Engineering, Faculty of Structural Engineering, Babol University of Technology, P.O. Box 484, Babol, Iran
d Department of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol, Iran
e Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
Received 31 May 2010; accepted 9 July 2010

Available online 15 July 2010
*

E

Ba

10

El

Pe

do
KEYWORDS

Transient stream/aquifer

interaction;

Mathematical model;

Boussinesq equation;

Approximate analytical

solution;

Homotopy Perturbation

Method (HPM)
Corresponding author. Tel.

-mail addresses: amin7840

rari).

18-3647 ª 2010 King Saud

sevier B.V. All rights reserve

er review under responsibilit

i:10.1016/j.jksus.2010.07.011

Production and h
: +45 99

4@yaho

Universit

d.

y of King

osting by E
Abstract The phenomenon of stream–aquifer interaction was investigated via mathematical mod-

eling using the Boussinesq equation. A new approximate solution of the one-dimensional Bous-

sinesq equation is presented for a semi-infinite aquifer when the hydraulic head at the source is

an arbitrary function of time. The differential equations were solved using the method of Homot-

opy Perturbation. The simplicity and accuracy of the approximation are compared with ‘‘exact’’

solution and illustrated numerically and graphically. The results reveal that the HPM is very effec-

tive and simple and provides highly accurate solutions for nonlinear differential equations.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The study of stream–aquifer hydraulics is of great interest as
several flow and contaminant problems can be modeled,
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understood and quantified. It is an important problem in
studying of alluvial aquifer. Alluvial valley aquifers are

hydraulically connected to their adjacent channels and ex-
change flow through the streambed (Perkins and Koussis,
1996). The connection causes ground water levels in these sys-

tems to fluctuate with respect to the other. Small changes in the
stream elevation can cause a large variation in the groundwa-
ter elevation in the aquifer. If the stream stage increases over a
short period of time, a flow reversal between the channel and

aquifer will occur as a result of a change in the hydraulic gra-
dient (Workman et al., 1997). A flood wave is then propagated
into the aquifer and increases bank storage. While the stream

is returning to normal flows, the bank storage is released. The
quantification of the hydraulics of the stream–aquifer in an
alluvial valley require a good knowledge of the controlling in-

put hydro-geological parameters, such as hydraulic conductiv-
ity, specific yield, recharge, as well as boundary conditions
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(Srivastava et al., 2006). Alluvial valley aquifers pose some

interesting boundary conditions. One side of the flow domain
is the river source/sink, which is fluctuating. As a result of the
alluvial valley formation, the other side of the flow domain is
the valley wall, which is a no flow boundary condition. The

spread of contaminants in stream–aquifer systems from the
river to the aquifer or from the aquifer to the river is also of
concern (Serrano et al., 2007).

The hydraulics of the stream–aquifer system could be stud-
ied via the solution of the Laplace equation subject to a non-
linear free-surface boundary condition, and time-dependent

river boundary conditions. In this way, the groundwater flow
in an unconfined aquifer may be approximately modeled by
the nonlinear Boussinesq equation, assuming Dupuit’s hypoth-

esis of zero resistance to vertical flow is valid, to be a viable
alternative to the use of Laplace’s equation. With the Bous-
sinesq equation, the vertical coordinate does not exist, and
the free-surface boundary condition is not needed (Serrano

and Workman, 1998). The result is a simplified model where
the effect of time-dependent river boundary conditions can
easily be incorporated into the analysis. Solutions of the Bous-

sinesq equation are applied in catchment hydrology and base
flow studies as well as agricultural drainage problems and con-
structed, subsurface wetlands (Lockington et al., 2000).

The governing equation for one-dimensional, lateral,
unconfined groundwater flow similar to the Fig. 1 with Dupuit
assumptions is the Boussinesq equation (Bear, 1979):
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0 6 x 6 lx

hð0; tÞ ¼ H1ðtÞ; hðlx; tÞ ¼ H2ðtÞ; hðx; 0Þ ¼ H0ðtÞ
ð1Þ

where h(x,t) is the hydraulic head (m); K is the aquifer hydrau-
lic conductivity (m/day); S is the aquifer specific yield;H1(t) and

H2(t) are the time fluctuating heads at the left and right bound-
aries, respectively; x is the spatial coordinate (m); lx is the hor-
izontal dimension of the aquifer (m); t is the time coordinate

(day); and H0(x) is the initial head across the aquifer (m).
Until recently, analytical solutions of nonlinear partial dif-

ferential equations were rare, due to the lack of systematic

solution methods. Next section is a very brief review on some
analytical methods for this class of equations. One of the most
beneficent of these methods is the Homotopy Perturbation
Method (HPM). In this paper, we solve the Boussinesq equa-

tion by means of HPM and then compare the obtained results
with exact solution.
Figure 1 Idealized cross section for the mathematical modeling

of transient stream–aquifer interaction.
2. Analysis of the Homotopy Perturbation Method

Nonlinear phenomena play a crucial role in applied mathemat-

ics and physics. Although it is very easy for us now to find the
solutions of some problems by means of computers, it is still
rather difficult to solve nonlinear problems either numerically
or theoretically or obtaining an exact solution for these prob-

lems. So, it is often more useful to have an approximate closed
form solution to describe a nonlinear problem. In recent dec-
ades, numerical analysis and the approximate methods have

been developed considerably for nonlinear partial equations.
More recently, some promising analytical techniques have
been proposed, such as Lindstedt–Poincaré (He, 2002b,c),

Parameter-Expanding (Shou and He, 2007; Ganji et al.,
2009a), Parameterized Perturbation (He, 1999), Harmonic Bal-
ance (Telli and Kopmaz, 2006; Gottlieb, 2006), Linearized Per-

turbation (He, 2003), Energy Balance (He, 2002a; Momeni
et al., 2010; Ganji et al., 2009), Variational Approach (Xu,
2008; He, 2004; Ganji et al., 2008), Max–Min (Babazadeh
et al., 2010; Ibsen et al., 2010), Exp-Function (Ganji et al.,

2009b; Mohyud-Din et al., 2010), Amplitude–Frequency For-
mulation (Ganji et al., 2010b), Adomian Decomposition (Mir-
golbabaei et al., 2010; Wazwaz, 2005), Variational Iteration

(Faraz et al., 2011; Babaelahi et al., 2009; Barari et al.,
2008a,b; Fouladi et al., 2010), and the Homotopy Perturbation
Method (He, 2000, 2005; Ghotbi et al., 2008; Omidvar et al.,

2010; Miansari et al., 2010; Ganji et al., 2009c, 2010a).
The Homotopy Perturbation Method is a combination of

the classical perturbation and Homotopy technique. To ex-
plain this, we consider the following nonlinear differential

equation:

AðuÞ � fðrÞ ¼ 0; r 2 X; ð2Þ

Subject to boundary condition:

Bðu; @u=@nÞ ¼ 0; r 2 C ð3Þ

where A is a general differential operator, B a boundary oper-

ator, f(r) is a known analytical function, C is the boundary of
domain X and @u=@n denotes differentiation along the normal
drawn outwards from X. The operator A can be divided into

two parts: a linear part L and a nonlinear part N. Therefore
Eq. (2) can be rewritten as follows:

LðuÞ þNðuÞ � fðrÞ ¼ 0; ð4Þ

In case that the nonlinear Eq. (2) has no ‘‘small parameter’’,

we can construct the following Homotopy:

Hðv; pÞ ¼ LðvÞ � Lðu0Þ þ pLðu0Þ þ pðNðmÞ � fðrÞÞ ¼ 0; ð5Þ

Where,

mðr; pÞ : X� ½0; 1� ! R; ð6Þ

In Eq. (6), p 2 ½0; 1� is an embedding parameter and u0 is the

first approximation that satisfies the boundary condition. We
can assume that the solution of Eq. (5) can be written as a
power series in p, as follows:

m ¼ m0 þ pm1 þ p2m2 þ . . . ; ð7Þ

Then the best approximation for the solution is:

u ¼ lim
p!1

m ¼ m0 þ m1 þ m2 þ . . . ; ð8Þ
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3. Analytical solution to the nonlinear transient groundwater

flow

Assume that the aquifer is in contact with a drainage canal at
x = 0 and it is bounded by a condition of zero flux at the
impervious surface at x = 3 so, the horizontal dimension of
the aquifer is lx = 3 (use a dimensionless length scale for con-

venience). Initial water table in the aquifer is express by:

H0ðxÞ ¼ x� x2

6
ð9Þ

So, the water level at x = 3 is H2 (t) = 3/2. Note that the
initial depth at x = 0 is taken as zero. The depth of the canal
located at x = 0 varies with time by

H1ðtÞ ¼
3

2ðtþ 1Þ ðtþ 1Þ2=3 � 1
h i

ð10Þ

We aim to solve the dimensionless Boussinesq equation

(Parlange et al., 2000):

dh

dt
¼ dh

dx

� �2

� h
d2h

dx2
; 0 < t; 0 < x < 3 ð11Þ

Note that we take K/S= 1. With the initial condition Eq.
(9), the boundary condition Eq. (10) at x = 0 and the condi-
tion of zero flux at the impervious surface x = 3 together (Par-
lange et al., 2000):

@hð3; tÞ
@x

¼ 0 ð12Þ

The exact solution of Eq. (9)–(12) is Parlange et al., 2000,:

hðx; tÞ ¼ x

tþ 1
� x2

6ðtþ 1Þ þ
3

2ðtþ 1Þ ðtþ 1Þ2=3 � 1
h i

ð13Þ

Using HPM for solving Eq. (11), we have:

Hðm; pÞ ¼ ð1� pÞ @mðx; tÞ
@t

� @m0ðx; tÞ
@t

� �

þ p
@mðx; tÞ
@t

� @mðx; tÞ
@x

� �2

� mðx; tÞ @
2mðx; tÞ
@x2

" #
¼ 0

ð14Þ
We consider mðx; tÞ as follows:

mðxÞ ¼ m0 þ pm1 þ p2m2 þ p3m3þ��� ð15Þ

Assuming @m0ðx;tÞ
@t
¼ 0 and some simplification and rearrang-

ing based on powers of p-terms, we have:

p0 :
@m0ðx; tÞ
@t

¼ 0;

�
ð16Þ

p1 :
@m1ðx; tÞ
@t

� @m0ðx; tÞ
@x

� �2

� m0ðx; tÞ
@2m0ðx; tÞ
@x2

� �
¼ 0;

(
ð17Þ

p2 :
@m2ðx; tÞ
@t

� m0ðx; tÞ
@2m1ðx; tÞ
@x2

� �
� m1ðx; tÞ

@2m0ðx; tÞ
@x2

� ��

� 2
@m1ðx; tÞ
@x

� �
@m0ðx; tÞ
@x

� �
¼ 0; ð18Þ

p30 ¼ 0 ð19Þ
Solving Eq. (16)–(19) (n = 30), we have:

m0ðx; tÞ ¼ x� x2

6
; ð20Þ

m1ðx; tÞ ¼ t 1� xþ x2

6

� �
; ð21Þ
m2ðx; tÞ ¼ �
t2

6
7� 6xþ x2
� �

; ð22Þ

m30ðx; tÞ ¼ t30x� t30

6
x2 � 9468382206 2787934811 3

6565139347 8907415525 4
t30 ð23Þ

The solution of Eq. (11) when p! 1 will be as follows:

hðx; tÞ ¼
X30
i¼0

hiðx; tÞ ¼ x� x2

6
þ 1� xþ x2

6

� �
t

þ � 7

6
þ x� x2

6

� �
t2 þ 67

54
� xþ x2

6

� �
t3

þ � 104

81
þ x� x2

6

� �
t4 þ 319

243
� xþ x2

6

� �
t5

þ � 5833

4374
þ x� x2

6

� �
t6 þ 17707

13122
� xþ x2

6

� �
t7

þ � 53615

39366
þ x� x2

6

� �
t8 þ 1458473

1062882
� xþ x2

6

� �
t9

þ � 4402589

3188646
þ x� x2

6

� �
t10 þ 13276927

9565938
� xþ x2

6

� �
t11

þ 120028333

86093442
þ x� x2

6

� �
t12 þ 361486819

258280326
� xþ x2

6

� �
t13

þ 1088165267

774840978
þ x� x2

6

� �
t14

þ 9823125883

6973568802
� xþ x2

6

� �
t15

þ 14774515532

10460353203
þ x� x2

6

� �
t16

þ 44431312981

31381059609
� xþ x2

6

� �
t17

þ 2404571453839

1694577218886
þ x� x2

6

� �
t18

þ 7228166400937

5083731656658
� xþ x2

6

� �
t19

þ 10862121155608

7625597484987
þ x� x2

6

� �
t20

þ 97923740421007

1694577218886
� xþ x2

6

� �
t21

þ 588455501730827

411782264189298
þ x� x2

6

� �
t22

þ 1767907191675361

1235346792567894
� xþ x2

6

� �
t23

þ 15932442974372369

11118121133111046
þ x� x2

6

� �
t24

þ 47856908021140643

33354363399333138
� xþ x2

6

� �
t25

þ 143738003838641857

100063090197999414
þ x� x2

6

� �
t26

þ 11655491573846704945

8105110306037952534
� xþ x2

6

� �
t27

þ 35002344284769416539

24315330918113857602
þ x� x2

6

� �
t28

þ 105108457136542826849

72945992754341572806
� xþ x2

6

� �
t29

þ 946838220627879348113

656513934789074155254
þ x� x2

6

� �
t30 ð24Þ

To assess the efficiency of the HPM, the results together
with the exact solution are given in Tables 1 and 2. From



Table 1 The results of HPM and exact solutions for t= 0.25.

xi t = 0.25

HPM Exact |Error|

0.00 0.19247665008383366747 0.19247665008383366772 2.5 E-19

0.20 0.34714331675050033416 0.34714331675050033439 2.3 E-19

0.40 0.49114331675050033417 0.49114331675050033439 2.2 E-19

0.60 0.62447665008383366757 0.62447665008383366772 1.5 E-19

0.80 0.74714331675050033425 0.74714331675050033439 1.4 E-19

1.00 0.85914331675050033425 0.85914331675050033439 1.4 E-19

1.20 0.96047665008383366764 0.96047665008383366772 8.0 E-20

1.40 1.05114331675050033430 1.05114331675050033440 1.0 E-19

1.60 1.13114331675050033420 1.13114331675050033440 2.0 E-19

1.80 1.20047665008383366750 1.20047665008383366770 2.0 E-19

2.00 1.25914331675050033430 1.25914331675050033440 1.0 E-19

2.20 1.30714331675050033430 1.30714331675050033440 1.0 E-19

2.40 1.34447665008383366760 1.34447665008383366770 1.0 E-19

2.60 1.37114331675050033450 1.37114331675050033440 1.0 E-19

2.80 1.38714331675050033440 1.38714331675050033440 0.00000

3.00 1.39247665008383366770 1.39247665008383366770 0.00000

Table 2 The results of HPM and Exact solutions for t= 0.50.

xi t = 0.50

HPM Exact |Error|

0.00 0.31037069665646221117 0.31037069710444830360 4.4798609243 E-10

0.20 0.43925958560536966603 0.43925958599333719249 3.8796752647 E-10

0.40 0.55925958566124902048 0.55925958599333719249 3.3208817202 E-10

0.60 0.67037069682410027460 0.67037069710444830360 2.8034802900 E-10

0.80 0.77259291909392342844 0.77259291932667052583 2.3274709740 E-10

1.00 0.86592625247071848192 0.86592625266000385916 1.8928537726 E-10

1.20 0.95037069695448543506 0.95037069710444830360 1.4996286852 E-10

1.40 1.02592625254522428790 1.02592625266000385920 1.1477957130 E-10

1.60 1.09259291924293504030 1.09259291932667052590 8.3735485600 E-11

1.80 1.15037069704761769250 1.15037069710444830360 5.6830611100 E-11

2.00 1.19925958595927224440 1.19925958599333719250 3.4064948100 E-11

2.20 1.23925958597789869590 1.23925958599333719250 1.5438496700 E-11

2.40 1.27037069710349704700 1.27037069710444830360 9.5125640000 E-13

2.60 1.29259291933606729790 1.29259291932667052580 9.3967721000 E-12

2.80 1.30592625267560944830 1.30592625266000385920 1.5605589200 E-11

3.00 1.31037069712212349850 1.31037069710444830360 1.7675194800 E-11

Figure 2 Comparison of the HPM and exact solutions for n= 30.
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Figure 3 Three-dimensional plot for the exact and HPM solutions for n= 30. (a) Exact and (b) HPM.

Consideration of transient stream/aquifer interaction with the nonlinear Boussinesq equation using HPM 215
Fig. 2, it can be seen that the two graphs are similar such that

the error is negligible. The exact and HPM solutions whose re-
sults are given in Tables 1 and 2 are also compared by the con-
sequent results of the two different methods as shown in Figs.
1 and 2.

4. Conclusions

In this article the effect of highly fluctuating stream stage on
the adjacent alluvial valley aquifer is studied with a new ana-
lytical solution to the nonlinear transient groundwater flow

equation subject to stochastic conductivity and time varying
boundary conditions (Fig. 3). The drainage system under con-
sideration is modeled by nonlinear Boussinesq equation. An

approximate closed form solution constrained by initial and
boundary conditions of the system is presented which can be
used for prediction of the transient water table via the Homot-

opy Perturbation Method (HPM). For illustration the HPM
solution compared with the exact one numerically and graph-
ically. It is apparently seen that HPM is a powerful and effi-
cient technique for solving large class of linear and

nonlinear, ordinary or partial, deterministic or stochastic
differential equations arising in various fields of science and
engineering and present a rapid convergence for the solutions.
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