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In silico
Mosquito-borne infections are a global health threat. Different species of mosquitoes transmit viruses
and cause several human diseases. In this study, in silico molecular docking of 23 phytochemicals of
Phoenix dactyliferawas performed to look for potential hits that bind effectively at the active site of dif-
ferent protein targets of the dengue virus (2FOM, 3U1I, and 2BMF) and Aedes aegypti mosquito (1YIY,
1PZ4 and 3UQI). The docking results of coumestrol to 2FOM resulted in four hydrogen bonds and ten
hydrophobic interactions with binding energy of �9.5 kcal/mol. Similarly, the docking simulation of
2FOM to pinoresinol formed seven covalent bonds resulting in � 9.5 kcal/ mol energy. There were also
two hydrophobic (THR289 and THR450) and one p-cation (LYS515) interactions with amino acid resi-
dues. Similarly, isofucosterol exhibited the best binding conformations with the lowest binding energy
values with the two target proteins 1YIY and 1PZ4 of Ae.egyptia. The docking simulation of 1YIY to iso-
fucosterol resulted in one hydrogen bond with binding energies of – 10.3 kcal/mol and 16 hydrophobic
interactions with different amino acid residues. A similar observation of target protein 1PZ4 was noted in
isofucosterol resulting in �9.7 kcal/mol energy. From the docking studies reported in this paper, promis-
ing candidates can be further optimized and studied in vitro.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dengue fever is a severe disease with a diagnostic rate of 2 mil-
lion infections per year worldwide. One-third of the world’s popu-
lation is at risk of dengue virus infection. This disease is caused by
the dengue virus, which spreads to people through the bites of
infected Aedes species mosquitoes. DENV-1, DENV-2, DENV-3
and DENV-4 and DENV-5 are different dengue virus serotypes
(Mustafa et al., 2015). They cause the same disease despite their
genomic variation. A long single-stranded RNA encodes the
polypeptide of the dengue virus. It is further cleaved into three
structural proteins, including membrane, envelope, capsid, and
seven non-structural (NS) proteins, including NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5(Endy et al., 2011; Normile, 2013;
Qaddir et al., 2017).

Targeting DENV multifunctional enzymes are targeted to design
antiviral therapies. NS2B/NS3 protease and NS3 helicase were tar-
geted in this study. S2B-NS3 protease is the second-largest protein
of the DENV genome (Chandramouli et al., 2010) and responsible
for cytoplasmic cleavages, including at junctions between NS4B/
NS5, NS3/NS4A, NS2B/NS3, and NS2A/NS2B protein and within
the capsid, NS4A and NS2A proteins (Phoo et al., 2016). Similarly,
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NS3 helicase unwinds dsRNA to release ssRNA used as a template
for NS5 protein in replication (Bartelma and Padmanabhan,
2002). NS2B/NS3 protease and NS3 helicase are conserved within
the four serotypes (Chandramouli et al., 2010; Li et al., 2005),
which permit the design of the drugs that are promising against
the different serotypes (Keller et al., 2006; Xu et al., 2005).

Sterol carrier protein-2 (SCP-2) and kynurenine aminotrans-
ferase (KAT) are expressed throughout the animal kingdom,
including insects. Aedes aegypti kynurenine aminotransferase
(AeKAT) is a multifunctional enzyme that catalyzes the transami-
nation of several amino acids and uses a-keto acids as amino group
acceptors (Han et al., 2008). AeKAT has 45–50 % sequence identity
with mammalian KAT-Is (Fang et al., 2002). AeKAT is mainly
expressed in adult heads, demonstrating its significant role in the
central nervous system (Fang et al., 2002). Aedes aegypti sterol car-
rier protein-2 protein (AeSCP-2) is an intracellular lipid carrier
found in the midgut (Krebs and Lan, 2003). AeSCP-2 was reported
to be involved in the cholesterol delivery and uptake across the cel-
lular barrier between the hemocoel and the midgut (Blitzer et al.,
2005; Dyer et al., 2003; Krebs and Lan, 2003).

Cholesterol is crucial for insects to grow, develop and reproduce
(Perera and Wijerathna, 2019). AeSCP2 plays a vital role in choles-
terol and fatty acid uptake in both larval and adult mosquitoes
(Kumar et al., 2010). Knockdown of AeSCP-2 expression in larvae
resulted in a reduction in cholesterol uptake, higher mortality,
and decreased fecundity (Blitzer et al., 2005). In female adults,
knockdown of AeSCP-2 expression leads to reduction of cholesterol
uptake from the blood meal (Dyer et al., 2008). Few studies have
focused on developing new mosquitocidal targeting AeSCP2 and
AeKAT. Therefore, targeting AeSCP2 and AeKAT could be a substi-
tute target for the discovery of promising mosquitocidal agents.

Medicinal plants have been used to treat various diseases since
ancient times. Date palm, P. dactylifera L., a member of the Are-
caceae family, is widely spread in the Arabian Peninsula. There
are several potential health benefits of P. dactylifera (Al-Yahya,
1986; Allahyari et al., 2021; Demirci et al., 2013; Echegaray et al.,
2020; Jassim and Naji, 2010). The crude extracts from this species
have demonstrated antiviral (Allahyari et al., 2021) and insecticidal
activities against Ae.aegypti (Demirci et al., 2011). A previous
review on P. dactylifera reported more than 25 compounds, includ-
ing phytoestrols, phytoestrogens, phenolic acid, and flavonoids (Al-
Alawi et al., 2017). In the present study, these compounds will be
used for docking against different target proteins of dengue virus
and Ae. aegypti, and their interactions are observed to discover
effective drugs.

Computational tools significantly impact drug discovery
because of their fast and promising results. Docking studies predict
the binding affinities of phytochemicals to the target enzymes.
With our interest in searching for biological drug targets, we car-
ried out this study to look for effective antiviral and mosquitocidal
inhibitors in silico. The phytochemicals which show promising
potential will be selected for further in vitro and in vivo testing
in the future.
Table 1
List of potential target proteins and PDB ID used in this study.

No. Protein PDB ID

1 DEN2 NS2B/NS3 serine protease 2FOM
2 DENV3 NS2B-NS3 protease 3U1I
3 DENV-2 NS-3 helicase 2BMF
4 Ae. aegypti kynurenine aminotransferase 1YIY
5 Ae. aegypti sterol carrier protein-2 1PZ4
6 Ae. aegypti FKBP12 Isomerase 3UQI
2. Materials and methods

2.1. Ligand preparation

The 23 phytochemical compounds of P. dactylifera comprised of
10 phytoestrols and phytoestrogens, 10 phenolic acid compounds
and 3 flavonoids were downloaded from PubChem (https://pub-
chem.ncbi.nih.gov/). The files in ‘.sdf’ were converted to ‘.pdb’ for-
mat using the PyMol 1.1.0 tool. Torsion adjustment was carried out
for the ligands. The Autodock 4.2 (Scripps Research Institute, La
Jolla, CA, USA) tool was used to create the ‘pdbqt’ file.
2

2.2. Receptor preparation

The present study targets the protein from different dengue
virus serotypes. The crystal structure of proteases (PDB ID:
2FOM, and 3U1I for dengue virus 2, and 3 respectively) and
DENV-2 NS-3 helicase [PDB ID: 2BMF] were downloaded from
RCSB databank (https://www.rcsb.org). Similarly, kynurenine
aminotransferase [PDB ID: 1YIY], sterol carrier protein-2 [PDB ID:
1PZ4], and FKBP12 isomerase [PDB ID: 3UQI] of Aedes aegypti mos-
quito were also retrieved from the RCSB databank. The crystal
structures for each protein were processed by deleting water mole-
cules, adding missing atoms, and adding charges. The Autodock 4.2
tool was used to create the ‘pdbqt’ file.

2.3. Molecular docking and binding energy calculation

The protein and ligand preparation was carried out in AutoDock
Tools. Once the grid box had been prepared, the docking was per-
formed using AutoDock Vina 1.1.2 scoring function (Morris et al.,
2009; Trott and Olson, 2010) to estimate binding energies. The
complex formed with the least energy was selected and analyzed
using PyMol (https://pymol.org), and Protein-Ligand Interaction
Profiler (https://plip-tool.biotec.tu-dresden.de/plip-web/plip/in-
dex) software tools from the several docking poses.

3. Result

This evaluation of the bioactive compounds was based upon
their binding parameters with the target proteins. The result of
phytoestrols and phytoestrogens, phenolic acid, and flavonoid
compounds against three different DENV enzymes (2FOM,3U1I,
2BMF) from Dengue Virus and three target proteins (1YIY, 1PZ4,
3UQI) from Ae. Aegypti (Table 1). The docked pose of 2FOM with
the phytoesterol demonstrated the ligand’s binding affinity with
various targets of Dengue Virus (Table 2). The best potential bind-
ing sites of phytoestrols and phytoestrogens were �9.5 kcal/mol,
�9.3 kcal/mol, and �8.9 kcal/mol for coumestrol, formononetin,
and matairesinol, respectively. The best potential binding sites of
phenolic acid and flavonoid compounds were 5-O-
Caffeoylshikimic acid (-9.1 kcal/mol) and apigenin (-9.2 kcal/
mol). In 2BMF, the potential binding sites among the different
compounds docked were the best for pinoresinol (-9.5 kcal/mol)
followed by luteolin (-9.0 kcal/mol) and chorogenic acid
(-8.9 kcal/mol).

The target proteins of Ae. aegypti, namely 1YIY, 1PZ4, and 3UQI
were docked with phytoestrols and phytoestrogens, phenolic acid,
and flavonoid compounds by Autodock Vina. The energy values
and the binding affinities are presented in Table 3. The energy val-
ues obtained of the drug targets of the most promising compound
were recorded for 1YIY and 1PZ4 target proteins. The best potential
binding sites of all compounds tested were recorded for isofucos-
terol (-10.3, kcal/mol) with 1YIY target proteins. This is followed
by coumestrol (-9.3 kcal/mol) and campesterol (-8.9 kcal/mol) for
the same target protein (1YIY). In 1PZ4, the best potential binding
sites among the different compounds docked was isofucosterol
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Table 2
Docked score of different secondary metabolites of Phoenix dactylifera against DENV protease (2FOM, 3U1I) and helicase (2BMF) enzymes.

Sr. No. Compound ID Name 2FOM 3U1I 2BMF

Phytoestrols and phytoestrogens
1 Compound CID: 173183 Campesterol �8.7 �6.6 �7.5
2 Compound CID: 5281326 Isofucosterol �6.2 �8.0 �6.7
3 Compound CID: 5280961 Genistein �8.8 �4.7 �9.0
4 Compound CID: 187808 Glycitin �7.7 �7.4 �8.7
5 Compound CID: 5281812 Pformonetin �9.3 �4.5 �7.3
6 Compound CID: 119205 Matairesinol �8.9 �7.5 �8.3
7 Compound CID: 332427 Lariciresinol �8.8 �7.1 �8.7
8 Compound CID: 73399 Pinoresinol �8.7 �7.9 �9.5
9 Compound CID: 65373 Secoisolariciresinol �6.6 �6.4 �7.0
10 Compound CID: 5281707 Coumestrol �9.5 �8.1 �9.2

Phenolic acid compounds
11 Compound CID: 135 p-hydroxybenzoic acid
12 Compound CID: 72 Protocatechuic Acid �7.2 �6.6 �8.4
13 Compound CID: 8468 Vanillic Acid �6.4 �5.6 �6.0
14 Compound CID: 5372020 Cinamic Acid �7.2 �5.6 �6.2
15 Compound CID: 689043 Caffeic Acid �7.0 �6.0 �6.5
16 Compound CID: 445858 Ferulic Acid �7.0 �5.9 �6.4
17 Compound CID: 637775 Sinapic Acid �5.7 �6.1 �7.7
18 Compound CID: 5281762 5-O-Caffeoylshikimic Acid �9.1 �7.7 �8.7
19 Compound CID: 1794427 Chlorogenic Acid �8.8 �7.5 �8.9
20 Compound CID: 441772 Pelargonin �6.2 �8.1 �8.7

Flavonoids
21 Compound CID: 5280443 Apigenin �9.2 �7.9 �8.6
22 Compound CID: 5280445 Luteolin �8.8 �8.2 �9.0
23 Compound CID: 5280804 Isoquercitrin �6.6 7.0 �7.8

Table 3
Docked score of different secondary metabolites of Phoenix dactylifera against different target proteins (1YIY, 1PZ4, and 3UQI) of Aedes aegypti.

Sr. No. Compound ID Name 1YIY 1PZ4 3UQI

Phytoestrols and phytoestrogens
1 Compound CID: 173183 campesterol 10 �9.3 �9.5 �6.3
2 Compound CID: 5281326 Isofucosterol 4 �10.3 �9.7 �6.9
3 Compound CID: 5280961 Genistein 2 �8.5 �8.9 �6.0
4 Compound CID: 187808 Glycitin 3 �8.6 �6.2 �7.0
5 Compound CID: 5281812 Pformonetin 1 �8.3 �9.2 �5.8
6 Compound CID: 119205 Matairesinol 6 �8.1 �8.8 �6.1
7 Compound CID: 332427 Lariciresinol 5 �8.0 �8.8 �6.1
8 Compound CID: 73399 Pinoresinol 7 �8.2 �6.4 �6.9
9 Compound CID: 65373 Secoisolariciresinol 8 �8.1 �8.2 �5.7
10 Compound CID: 5281707 Coumestrol 9 �9.4 �6.7 �7.2

Phenolic acid compounds
11 Compound CID: 135 p-hydroxybenzoic acid
12 Compound CID: 72 protocatechuic acid �7.3 �7.6 �5.5
13 Compound CID: 8468 Vanillic Acid �6.5 �5.8 �5.1
14 Compound CID: 5372020 Cinamic acid �7.2 �7.1 �5.4
15 Compound CID: 689043 Caffeic Acid �7.3 �6.5 �5.4
16 Compound CID: 445858 Ferulic Acid �7.1 �7.0 �5.4
17 Compound CID: 637775 Sinapic Acid �7.5 �5.1 �5.7
18 Compound CID: 5281762 5-O-Caffeoylshikimic Acid �7.9 �8.5 �6.3
19 Compound CID: 1794427 Chlorogenic Acid �8.2 �8.6 �6.4
20 Compound CID: 441772 Pelargonin �8.1 �6.4 �6.4

Flavonoids
21 Compound CID: 5280443 Apigenin �8.9 �8.5 �5.9
22 Compound CID: 5280445 Luteolin �8.6 �8.4 �6.1
23 Compound CID: 5280804 Isoquercitrin �8.1 �5.7 �6.9
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(-9.7 kcal/mol) followed by coumestrol (-9.3 kcal/mol), p-
fotmonrtin (-9.2 kcal/mol), and genistein (-8.9 kcal/mol). The best
potential binding sites of phenolic acid and flavonoid compounds
were apigenin (-9.2 kcal/mol) for 1YIY target proteins and chloro-
genic acid (-8.6 kcal/mol) for 1PZ4 target proteins, respectively.

The docking poses and the 2D docking images of the best com-
pounds with various Dengue virus and Ae. aegypti targets were
analyzed with Protein-Ligand Interaction Profiler and PyMol soft-
ware tools (Figs. 1-4). The docking poses were explored, and the
amino acid residues involved in the various interactions were
evaluated.
3

The docking results of coumestrol to 2FOM resulted in four
hydrogen bonds (ARG24, GLN25, VAL26) and ten hydrophobic
interactions (ILE12, LEU16, ILE19, VAL26, LEU48, LEU102,
PHE105, ILE106, LEU109) with binding energies of �9.5 kcal/mol.
Similarly, the docking simulation of 2BMF to pinoresinol resulted
in seven hydrogen bonds to THR289, ASP290, ARG322, ASP409,
and GLU514, resulting in the energy of � 9.5 kcal/ mol. There were
also two hydrophobic (THR289 and THR450) and one p-cation
(LYS515) interaction with amino acid residues.

Among the 23 phytocompounds, isofucosterol exhibited the
best binding conformations with the lowest binding energy values



Fig. 1. In silico molecular docking of the binding interaction of coumestrol compound with virus target protein (2FOM) based on the binding energy generated by AutoDock
program. (A) A close-up view of the surface structure of 2FOM with coumestrol binding at the active site. (B) 2D structure of coumestrol interacting with 2FOM active site
residues. . . .. Hydrophobic interaction Hydrogen bond.

Fig. 2. In silico molecular docking of the binding interaction of pinoresinol compound with virus target protein (2BMF) based on the binding energy generated by AutoDock
program. (A) A close-up view of the surface structure of 2BMF with pinoresinol binding at the active site. (B) 2D structure of pinoresinol interacting with 2BMF active site
residues. . . .. Hydrophobic interaction Hydrogen bond.
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with the two target proteins 1YIY and 1PZ4 of Ae.egyptia. The dock-
ing simulation of 1PZ4 to isofucosterol resulted in one hydrogen
bond (GLY17) with � 9.7 kcal/mol binding energies. Also, forma-
tion of 16 hydrophobic interactions with ILE12, ARG15, LEU16,
ILE19, ASN23, ARG24,GLN25, VAL26, LEU102, PHE105, ILE106,
and LEU109. A similar observation of target protein 1YIY was noted
with isofucosterol, with –10.3 kcal/mol energy. No hydrogen bond
interaction was observed with isofucosterol, but there were 13
hydrophobic interactions with TRP27, ILE31, GLN44, PHE46,
PHE135, VAL223, TYR224, LYS255, and THR260.
4. Discussion

Computational advances have a significant influence on the pro-
cess of drug development. Virtual screening is widely used to
reduce the time and cost of drug discovery. Molecular docking is
4

an approach used to discover novel ligands for a target protein
and plays an essential role in structure-based drug design (Meng
et al., 2011). The relationship between the receptor and ligand
plays a vital role in drug formulations. Several drugs were isolated
from the natural products based on bioactivity–guided fractiona-
tion. Natural products can help cure many human diseases.

Natural products-derived antiviral compounds such as alkaloids
(Acridone, Aporphine, b-Carboltne), carbohydrates (Glucosamine,
Sulphated polysaccharides, c-carragenan), chromones (Khellin,
Visnagin, Psoralen), furanocoumarins and flavonoids (Cyanidin,
Pelargodin), phenolics (Benzoic acid and Caffeic acid derivatives),
terpene (Scopadulcic acid b, Scopadulin), triterpene steroids
(Nigranoic acid, Buxamine E, Cyclobuxamine H) and many more
have been published in several review articles (Che, 1991; El
Sayed, 2000; Meng et al., 2011; Rinehart et al, 1993). Similarly,
Several compounds have been published dealing with natural
products-derived larvicidal compounds such as octacosane



Fig. 3. In silico molecular docking of the binding interaction of isofucosterol compound with the mosquito target protein (1YIY) based on the binding energy generated by the
AutoDock program. (A) A close-up view of the surface structure of 1YIY with isofucosterol binding at the active site. (B) 2D structure of isofucosterol interacting with 1YIY
active site residues. - - - - - Hydrophobic interaction.

Fig. 4. In silico molecular docking of the binding interaction of isofucosterol compound with mosquito target protein (1PZ4) based on the binding energy generated by
AutoDock program. (A) A close-up view of the surface structure of 1PZ4with isofucosterol binding at the active site. (B) 2D structure of isofucosterol interacting with 1PZ4
active site residues. . . .. Hydrophobic interaction Hydrogen bond.
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isolated from Moschosma polystachyum, falcarinol and falcarindiol
(Cryptotaenia Canadensis), trans-asarone (Daucus carota), 3-n-
butyl-4,5- dihydrophthalide (Apium graveolens), geranial, and neral
(Magnolia salicifolia), b-selinene (Apium graveolens), b-selinene
(graveolens, neoduline), 4-methoxyneoduline, and nepseudin
((Neorautanenia mitis) and many more (Kishore et al., 2014).

This study investigated the binding capability of bioactive com-
pounds from P. dactylifera with key antiviral and larvicidal protein
targets since various biological activities had been reported from
this plant. Our study shows that the selected compounds can effi-
ciently bind to the target protein and that molecular docking can
be successfully used to find inhibitors from P. dactylifera.

Dengue protease plays an important role in dengue virus repli-
cation (Geiss et al., 2009). Therefore, blocking the interaction
between its subunits or the active site disturb viral replication in
the host. Reports revealed that disulphide cyclic peptides have
inhibition potential against dengue protease(Tambunan et al.,
2011; Trott and Olson, 2010). Therefore, pinoresinol and coume-
5

strol reported in this study may obstruct the activity of the tar-
geted protein via affecting the interactions with the active site or
blocking the binding of subunits necessary for complex formation.

Mosquito control is carried out either on adults or immature
larvae. The use of synthetic insecticides in controlling mosquito’s
adults and the larval population is harmful to the environment.
Therefore, this necessitates the search for eco-friendly mosquito-
cides for controlling the mosquitoes’ larvae.

AeKATis a multifunctional aminotransferase that catalyzes the
transamination of several amino acids and uses a-keto acids as
amino group acceptors (Han et al., 2008). It has a vital role in neu-
roactive activity (Han and Li, 2004). AeKAT is mainly expressed in
adult heads of mosquitoes, demonstrating its significant role in the
CNS (Fang et al., 2002). Cholesterol uptake is essential for the larval
population and is carried out through the AeSCP-2. Several com-
pounds were screened to block the target protein. Currently, isofu-
costerol was a promising analog to dock with cholesterol carrier
protein AeSCP-2.
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Many studies have attempted to look for different sources of
compounds that inhibit the action of SCP-2 via competitive bind-
ing. Some are natural compounds (Anstrom et al., 2012; Ee et al.,
2006; Larson et al., 2014), and some are synthetic compounds
(Kim et al., 2005),. Kim et al. reported several sterol carrier protein
inhibitors. They found that these inhibitors showed physiological
effects on cholesterol metabolism in cell culture, similar to the
impact of AeSCP-2 knockdown (Kim et al., 2005). Several studies
revealed that sterol carrier protein inhibitors have toxicity on Cx.
pipiens, Cx. quinquefasciatus, and Anopheles gambiae (Larson et al.,
2014; Li et al., 2009). Furthermore, it is reported that there is a syn-
ergistic activity of AeSCP-2 inhibitors when used with permethrin
(Li et al., 2009). Furthermore, the AeSCP-2-mediated cholesterol
uptake pathway is required for dengue virus production in Aedes -
mosquitoes, and the inhibition of AeSCP-2 activity resulted in
repressed production of the virus within mosquito cells in vitro
(Fu et al., 2015). However, further studies are required to elucidate
the interaction mechanism between the promising compounds,
the targeted proteins, and the feasibility of using these inhibitors
in the fields.
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