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In this paper, a nanofluid version of the Stokes’ second problem is investigated. For this purpose, a homo-
geneous model is considered with nano-sized Cu particles suspended in water. The governing equations
are first transformed in dimensionless form and then solved by Laplace transform. Exact solutions corre-
sponding to the dimensionless velocity and temperature due to both cosine and sine oscillations of an
infinite flat plate are presented. It is concluded that both skin friction coefficient and density of nanofluids
increases with an increase of nanoparticles volume fraction. Also the dimensionless temperature
increases by increasing the Eckert number and solid volume fraction of nanoparticles.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Stokes’ second problem is one of the classical boundary
layer problems of the unsteady shear flow of a viscous fluid with
inertia near a flat plate (see Schilichting, 1968). The flat plate is
made to oscillate sinusoidally parallel to itself. This flow model is
also referred in the literature as ‘Stokes layer’ or oscillatory bound-
ary layer (Batchelor, 1967; Drazin and Riley, 2006). Such types of
models have a wide range of applications in the field of biotechnol-
ogy, chemical engineering, micro-fluidic devices and nanotechnol-
ogy (Yakhot and Colosqui, 2007).

Exact solutions for the motion of a viscous incompressible fluid
caused by the cosine and sine oscillations of a flat plate have been
provided by Erdogan (2000). He has presented the steady-state
solutions as well as transient solutions for the flow due to an oscil-
lating plate. Later, analytical solution for a laminar flow of a
Johson-Segalman fluid on oscillating plate was reported (Hayat
et al., 2004). The effects of Navier slip on the Stokes’ second prob-
lem due to an oscillating wall were also studied (Khaled and Vafai,
2004). Furthermore, Stokes’s second problem has been investi-
gated for eight different non-Newtonian fluids with temperature
variation near the wall for both sine and cosine oscillations (Ai
and Vafai, 2005). The fluid flow generated by an infinite plate in
oscillatory motion as reported by Yakhot and Colosqui (2007) in
a simple plane oscillator, are shown to be in good agreement with
experiments on nano resonators operating in a wide range of pres-
sure and frequency variation in both gases and water. Subse-
quently, Balmforth et al. (2009) presented a one-dimensional
theoretical and experimental study on the effect of viscoplasticity
on the Stokes layer. Khan et al. (2010) provided exact solutions
of the Stokes second problem for Burgers’ fluid. Numerical solution
of Stokes second problem has been analyzed and the correspond-
ing numerical results have been found very close to the analytical
results (Sin andWong, 2010). By extending the study of the numer-
ical solutions, the Stokes’ second problem for a power-law fluid
was revisited by Pritchard et al. (2011) obtaining both semi-
analytical periodic solutions and COMSOL based numerical solu-
tions. McArdle et al. (2012) presented asymptotical and numerical
exploration into the effect of thixotropic or antithixotropic rheol-
ogy on the oscillatory boundary layer.

In this note, Stokes second problem for nanofluids is considered.
However, the Stokes’ first problem (impulsive motion caused by
the moment of the plate) for nanofluids has been studied through
the combine effects of Brownian motion and thermophoresis on
the velocity, temperature and volume fraction of the nanoparticles
(Uddin et al., 2013). Most recently, the unsteady flow and heat
transfer of the viscous fluid driven by impulsively started infinite
flat plate in a nanofluid has been discussed by Rosali et al. (2014).

Here in, for the 1st time, we are examining the Stokes’ second
problem for nanofluids. The purpose of the present study is to
explore the nanofluid version of the Stokes’ layer and to investigate
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heat transport and nanoparticles volume fraction over an oscillat-
ing flat plate. In addition, the effects of nanoparticles volume frac-
tion, dimensionless time and Eckert number on the dimensionless
velocity, temperature distribution as well as on the skin friction
has been presented graphically. Exact solutions are also obtained
for the system of the non-linear coupled partial differential
equations.

2. Model formulation

Let us consider an incompressible, Newtonian nanofluid of con-
stant kinematic viscosity mnf occupying a semi-finite space y > 0,
with the y-axis in the vertical direction, bounded by an imperme-
able wall at y ¼ 0. This wall is subject to sinusoidal oscillation so
that the x� velocity on the wall is given by u ¼ u0 cosðxtÞ or
u0 sinðxtÞ, resulting in the induced nanofluid flow. The velocity
decays to zero as y ! 1. The half space plate is embedded in a
medium saturated with water based nanofluids. The base fluid
and the nanoparticles are assumed to be in thermal equilibrium
and no slip occurs between them. We also consider the effects of
viscous dissipation on the nanofluid temperature. The temperature
at the wall Tw is assumed to be constant and as y ! 1 the temper-
ature approaches to a constant ambient temperature T1. The
momentum equation for the proposed unsteady nanofluid flow
becomes a diffusion equation inheriting the kinematic viscosity
of the nanofluid

@u
@t

¼ mnf
@2u
@y2

ð1Þ

The energy equation under the above assumption takes the
form

@T
@t

¼ anf
@2T
@y2

þ lnf

ðqcpÞnf
@u
@y

� �2

ð2Þ

Which are subject to the following initial and boundary
conditions:

t ¼ 0 u ¼ 0; T ¼ 0
y ¼ 0 u ¼ u0 cosðxtÞ or u0 sinðxtÞ; T ¼ Tw

y ! 1 u ! 0; T ! T1

9>=
>; ð3Þ

where u is the x-component of the velocity, T is the temperature
nanofluid, u0 is the representative velocity, x is the frequency of
the oscillation at the wall, anf is the thermal diffusivity of the nano-
fluid, lnf is the dynamic viscosity of the nanofluid, ðqcpÞnf is the heat
capacitance of the nanofluid, which is given as

lnf ¼
lf

ð1�/Þ2:5 ;qnf ¼ ð1� /Þqf þ /qs;anf ¼ knf
ðqcpÞnf

mnf ¼ lnf

qnf
;
knf
kf

¼ ðksþ2kf Þ�2/ðkf�ksÞ
ðksþ2kf Þþ/ðkf�ksÞ ;

ðqcpÞnf ¼ ð1� /ÞðqcpÞf þ /ðqcpÞs

9>>>=
>>>;

ð4Þ

The thermal conductivity of the nanofluid is represented by
knf ;/ is the nanoparticle volume fraction parameter, qf is the refer-
ence density of the fluid fraction, qs is the density of the solid frac-
tion, lf is the viscosity of the fluid fraction, mf is the kinematic
viscosity of the fluid fraction, kf is the thermal conductivity of
the fluid fraction, cp is the specific heat at constant pressure and
ks is the thermal conductivity of the solid volume fraction.

For the governing equations, we introduce the non-dimensional
quantities defined by

U ¼ u
u0

; s ¼ xt; g ¼ y
x
mf

� �1=2

; h ¼ T � T1
T0 � T1

ð5Þ

The dimensionless problem is therefore given by
@U
@s

¼ mnf
mf

@2U
@g2

@h
@s

¼ 1
Pr

anf

af

@2h
@g2 þ Ec

lnf

lf

qcp
� �

f

qcp
� �

nf

@U
@g

� �2

9>>>>=
>>>>;

ð6Þ

where Pr ð¼ mf =af Þ is the Prandtl number, Ec ð¼ u2
0=ðcpÞf ðT0 � T1ÞÞ is

the Eckert number. The dimensionless initial and boundary condi-
tions can be written as

s ¼ 0 U ¼ 0; h ¼ 0
g ¼ 0 U ¼ cosðsÞ or sinðsÞ; h ¼ 1
g ! 1 U ! 0; h ! 0

9>=
>; ð7Þ

The physical quantities of interest are also the skin friction or
shear stress coefficient Cf and the local Nusselt number Nux are
defined as

Cf =2 ¼ sw=qf u
2
0; Nux ¼ xqw

kf ðTw � T1Þ ð8Þ

where sw ¼ lnf
@ u
@ y

� �
y¼0

; qw ¼ �knf @ T
@ y

� �
y¼0

Using variables (5), we get

Cf

2

ffiffiffiffiffiffi
Re

p
¼ 1

ð1� /Þ2:5
@U
@g

� �
g¼0

and Nur ¼ � knf
kf

@h
@g

� �
g¼0

; ð9Þ

where Re ¼ u2
0=v fx is the rotational Reynolds number and Nur is

the reduced Nusselt number.

3. Exact solution

The system of PDEs in Eq. (6) subject to boundary conditions (7)
can be solved using integral transforms, see (Spiegel, 1971;
Weerakoon, 1994; Khan and Khan, 2008). Here, we state the exact
solution directly without going into details.

3.1. For U ¼ cosðsÞ at g ¼ 0

The solution of the differential Eq. (6) subject to the cosine
oscillating boundary condition is

Ucosðg; sÞ ¼ 1
4
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eg
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CA
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and

hcosðg; sÞ ¼ erfc
g

ffiffiffiffiffi
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p
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s

p
� �

þ ga5
ffiffiffiffiffi
a3

p
4

ffiffiffiffi
p

p
Z s

0

ðs� sÞ cosðs� sÞ
s

ffiffi
s

p

� exp � a3g2

4s

� �
dsþ ga5

ffiffiffiffiffi
a3

p
4

ffiffiffiffi
p

p
Z s

0

sinðs� sÞ
s

ffiffi
s

p

� exp � a3g2

4s

� �
ds� ga5

ffiffiffiffiffi
a0

p
2

ffiffiffiffi
p

p
Z s

0

ðs� sÞ cosðs� sÞ
s

ffiffi
s

p

� exp � a0g2

s

� �
ds� ga5

ffiffiffiffiffi
a0

p
2

ffiffiffiffi
p

p
Z s

0

sinðs� sÞ
s

ffiffi
s

p

� exp � a0g2

s

� �
ds

where

a0 ¼ mf
mnf

; a1 ¼ anf
Praf

; a2 ¼ Eclnf ðqcpÞf
lf ðqcpÞnf

; a3 ¼ 1
a1
; a4 ¼ a2a0

a1
; a5 ¼ a4

4g2a0�a3
:

The skin friction and reduced Nusselt number are found to be
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3.2. For U ¼ sinðsÞ at g ¼ 0

The solution of the differential Eq. (6) subject to the sine oscil-
lating boundary condition is
(η,τ)
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Table 1
Thermo-physical properties of fluid and nanoparticles.

Physical properties Base Fluid (water) Cu

Cp (J/kg K) 4179 385
q (kg/m3) 997.1 8933
k (W/mK) 0.613 401
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The skin friction and reduced Nusselt number for sine oscilla-
tion are found to be
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and
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4. Results and discussion

This section discusses the effects of solid volume fraction / of
nanoparticle, dimensionless time s and Eckert number Ec on the
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Fig. 3. Effects of Eckert numbe
dimensionless velocity, temperature profiles as well as on the skin
friction for the nano particle Cu with water as a base fluid. The
thermo-physical properties of water and considered Cu are listed
in Table 1.

Fig. 1 is plotted to see the effects of volume fraction parameter
/ and different time points s on the velocity. It is observed that
there exist some oscillations near the wall in the velocity profile
and far away from the plate it again approaches to zero. Amplitude
of the flow increases as volume fraction increases and there is a
phase shift in the nanofluid against the regular fluid / ¼ 0: Fig. 2
elucidates the influence of s on the temperature field. It is noted
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that temperature field is an increasing function of s. The effect of
viscous dissipation on the dimensionless velocity and temperature
is given in Fig. 3. It is important to note that Ec ¼ 0 corresponds to
the case when viscous dissipation is absent. Positive value of Ec
corresponds to plate cooling i.e. transfer of heat from plate to fluid;
while negative values imply reserve i.e. plate heating where in heat
is received by the plate from the fluid. From this Figure it is clear
that thermal boundary layer thickness increases by increasing
the Eckert number Ec. This is because of the fact that due to large
viscous resistance there is more accumulation of heat energy in the
fluid particles near the boundary. In Fig. 4, contours are plotted for
different values of solid volume fraction /. Variations of skin fric-
tion coefficient with Cu nanoparticles volume fraction can be
observed from Fig. 5. It is observed that due to oscillatory motion
of the plate the skin friction coefficient also varies periodically.
The oscillatory amplitude of skin friction increases with the
increase of volume fraction parameter. The density of nanofluids
increases with increasing nanoparticle volume fraction. Due to this
reason, the skin friction also increases with increasing nanoparticle
volume fraction.
5. Conclusions

We have studied the effects of solid nanoparticles fraction on
the Stokes layer subject to both cosine and sine oscillations. The
governing equations along with imposed initial and boundary
conditions are first converted into dimensionless form and then
solved by using the Laplace transform technique. It is observed
that skin friction coefficient increases with solid volume fraction
of nanoparticles. The dimensionless temperature increases by
increasing the Eckert number and solid volume fraction of
nanoparticles. Moreover, the exact solutions obtained in this
study are significant not only because they are solutions of some
fundamental flows, but they also serve as accuracy checks for
numerical, asymptotic and analytical methods. Hence the con-
tents of present communication add significant advancement to
the existing knowledge.
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