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Background: Fish diseases are the primary cause of decreased productivity and financial losses in fish
farms. Detecting and monitoring fish disease using human eye is a time-consuming manual process.
Technological advancements have made possible that data may now be collected at unprecedented
speeds, quantities, and complexity, with far less effort and expense. Species must be provided optimum
environmental conditions for healthy production. However, sub-optimal conditions and managerial
issues could lead to disease outbreaks in fish farms. Machine learning (ML) classifiers can provide solu-
tions to fish farm difficulties by collecting data with less efforts.
Methods: This study investigated water physico-chemical parameters potentially responsible for bacte-
rial disease outbreak in fish farms. Four most popular ML algorithms, i.e., support vector machine
(SVM), naïve bayes (NB), random ferns (RFerns), and K-nearest neighbor (kNN) were used to detect the
physico-chemical parameters of water causing the disease. Data were collected from 3 different farms
in two-month periods for 1 year. Models were developed by using 10-fold cross validation procedure
to the training dataset data for each model. The models were examined using seven distinct metrics
throughout the training and testing phases.
Results: The SVM and RFerns classifiers produced accurate results (100% for both) during the testing
phase, while kNN and NB classifiers achieved lower accuracy (91.3% accuracy for both).
Conclusion: The SVM and RFerns algorithms performed better than kNN and NB algorithms in both the
training and testing phases of the study. Although earlier research confirms the efficacy of the SVM algo-
rithm in aquaculture, comparable efficacy of RFerns with SVM has been reported in this sector for the first
time, which is a significant addition to the literature.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction sity, insufficient water flow rate, feeding problems), lead to disease
There has been a rise in the global market for pan-sized fish
(Pridgeon & Klesius, 2012). The culture conditions must be of a
quality that completely satisfies the requirements of the species
being produced for healthy production. The sub-optimal culture
conditions and managing problems (such as excessive stock den-
outbreak in fish cultures (Hansen & Olafsen 1999; Verschuere
et al., 2000; Winton, 2001). Serious issues arise throughout the
production season, particularly when the water temperature rises
(Pridgeon & Klesius, 2012). Nevertheless, water temperature is
not the only factor to consider. All factors (such as bacterial pres-
ence in the environment, physico-chemical characteristics of the
water, feed quality and feeding, stock density) should be consid-
ered when determining the reasons for the presence of diseases
in the breeding environment.

Machine learning (ML) can address several challenges encoun-
tered by different sectors. The ML algorithms may accurately antic-
ipate outcomes or categorize data by gathering and analyzing
massive volumes of information (Samuel, 2000; Liakos et al.,
2018). Water quality, fish behavior, and physical symptoms are
used by ML to diagnose diseases and forecast disease outbreaks.
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This may aid farmers in taking preventative or curative actions to
improve fish health and decrease financial losses. Efficiency in
aquaculture output has been made possible by recent advance-
ments in computer-based intelligent technology. Therefore, the
goals of creating a sustainable aquaculture system are achieved
(Avnimelech, 2009). Diseases have been diagnosed using an
image-based machine learning classifier in the aquaculture
(Ahmed et al., 2022). Furthermore, ML classifiers have been used
successfully in studies such as disease resistance estimation
(Bargelloni et al., 2021), shrimp disease prediction (Quach et al.,
2020), disease outbreak prediction in trout farms (Yilmaz et al.,
2022), shrimp growth prediction, intelligent feeding technique
(Chen et al., 2022), classification of shrimp diseases (Duong-
Trung et al., 2020), sex identification (Barulin, 2019) and weight
estimation (Fernandes et al., 2020).

We have predicted disease outbreak with multinomial logistic
regression (MLR) in trout farms in an earlier study (Yilmaz et al.,
2022). Afterwards, we realized the necessity of employing untested
ML techniques in aquaculture to predict disease outbreak. In this
study, the effects of physico-chemical factors that have the poten-
tial to affect the pathogenic bacteria, i.e., Acinetobacter sp., Aeromo-
nas hydrophila, Aeromonas sobria, Lactococcus garvieae, Vibrio
anguillarum and Yersinia ruckeri on the disease-causing status were
investigated. For this purpose, models were created by using the
most popular 4 ML classifiers of the last period. Models made using
the R programming environment, which has open-source software
and libraries, were evaluated with various metrics. The physico-
chemical measurement data of the waters at the entrance, fish-
pond and outlet of the fish farms were examined in the classifica-
tion of the trout infected with the bacteria group and non-infected.
The models of the obtained data were created with four ML classi-
fiers, i.e., support vector machine (SVM), naïve bayes (NB), random
ferns (RFerns), and K-nearest neighbor (kNN). Seven different met-
rics were used to evaluate the models used for multiclass classifi-
cation. The accuracy of these algorithms was tested in detecting
disease outbreak. It was hypothesized that the algorithms will dif-
fer in their efficacy during training and testing phases. It was fur-
ther hypothesized that the untested algorithms would have
comparable efficacies with the earlier tested ones.

2. Material and methods

2.1. Data collection

Samples were taken from 3 different farms bimonthly for 1 year
during 2018–2019. Ten fish were sampled during each sampling
from every farm. Moribund individuals with typical signs of dis-
ease (such as swimming slowly and separate from the herd, dark-
ened in color, lesions on the body, problems in the eyes) were
taken. Disease-causing bacteria from these fish were isolated and
diagnosed. During the samplings, the physico-chemical parameters
of the water [water temperature (T), pH, total dissolved solids
(TDS), dissolved oxygen (DO) and saturation (Sat)] were measured
Table 1
Visits to trout farms and groups of bacteria detected during the study.

Sampling
time

Detected Bacteria Group
No

October Acinetobacter sp, Aeromonas hydrophila, Lactococcus
garvieae

5

December Aeromonas sobria, Lactococcus garvieae, Yersinia
ruckeri

4

February Lactococcus garvieae, Vibrio anguillarum 3
April Not Detected 1
June Acinetobacter sp, Lactococcus garvieae 2
August Acinetobacter sp, Aeromonas sobria, Lactococcus

garvieae
6

2

from the farm entrance, fishpond, and outlet of the farm with the
help of YSI brand multi parameter sensor. The pathogenic bacteria
were isolated and identified during laboratory examinations of the
sampled fish and their group numbers are listed in Table 1.

No bacteria were detected in the specimens collected during
April (Table 1). This undetected disease situation was designated
as group number 1 since it was a reference for classifiers.

2.2. Machine learning classifiers

There are two categories of ML classifiers. There are two types
of learning, supervised and unsupervised. Instead of utilizing unla-
beled data, as in unsupervised learning, supervised learning uses
labeled data to produce predictions or classifications for new data
(Kumar et al., 2020). Supervised learning may be used for tasks like
as regression, classification, and grouping. If there are exactly two
classes, the procedure is termed binary classification; if there are
more than two, it is called multiple classifications (Prabhakaran,
2016). Support vector machine (SVM), naive bayes (NB), and K-
nearest neighbor (kNN) are the three most used supervised learn-
ing classification methods (Binkhonain and Zhao, 2019). As fish are
afflicted with bacterial groups and suggest six distinct classes
depending to their health, several classification approaches have
been developed to tackle this issue. The kNN, NB, RFerns, and
SVM classification models were used in this investigation.

The kNN (Altman, 1992) is a controlled ML algorithm that can
be used for both classification and regression purposes. It is an
algorithm that attempts to classify new samples along with similar
ones. The working principle of this method is the assignment of
data that is new in a previously created sample set to the cluster
that has the closest (k) distance to it. The distance between these
two data can be determined using distance functions such as the
Euclidean distance, Euclidean, Manhattan, and Minkowski dis-
tance. The kNN formula can be seen in Eq. (1).

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðxi � yiÞ2

vuut ð1Þ

A statistical classification technique employing the similarity
attribute is the NB classifier (Rish, 2001). It is favored in many dis-
ciplines for categorization difficulties despite being straightfor-
ward. Bayes’ theorem is used to express the NB classifier (Berrar,
2018). The NB classification is based on Bayes’ theorem where
yi; j� 1; � � � ; jf g is a discrete variable that represents one of the j
classes. The X property is expressed by the X ¼ x1; x2; � � � ; xmð Þ fea-
ture vector, which consists of m properties. The probability of the
probability pðyjIXÞ according to the Bayes theorem for the possible
value yj is specified in Eq. (2).

pðyjIXÞ ¼
pðXjyjÞ pðyjÞ

pðXÞ ð2Þ

When the prediction of the target class Y’ is calculated by mul-
tiplying the conditional probabilities for all properties, the basic
equation in equation (3) for NB classifier is formed (Deng et al.,
2015; Arpacı & Kalıpsız, 2018).

Y 0  argmaxyj
PðyjÞ

Qm
i¼1PðX ¼ XijyjÞPj

j¼1PðyjÞ
Qm

i¼1PðX ¼ XijyjÞ
ð3Þ

In the NB classifier used for the estimation of the target class Y 0,
the equation (3) can be simplified as in equation (4), since the
denominator is not dependent on a single class and the denomina-
tor is jointly involved in the process in all calculations (Deng et al.,
2015; Arpacı & Kalıpsız, 2018).

Y 0  argmaxyjPðY ¼ yjÞ
Ym

i¼1PðX ¼ XijY ¼ yjÞ ð4Þ
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PðyjÞ ¼
Nj

�� ��
Nj j ð5Þ

According to Equality 5, the total number of educational quali-
fications on the class label is |N|,the number of educational quali-
fications in class yi is Nj

�� ��. After applying Equality 4 for each class
and calculating the probabilities, the class with the greatest prob-
ability in the resulting values is selected as the target class (Deng
et al., 2015; Arpacı & Kalıpsız, 2018). The RFerns is a machine
learning technique was proposed by Özuysal et al. (2007) for
matching similar parts between two photos of the same scene,
enabling one to identify specific items or trace them on movies.
Although it was originally used for image processing, a number
of modifications have been made that allow the use of the RFerns
algorithm in general ML problems and an R package has been
developed by De Leeuw (2009). The efficacy of RFerns is based
on the idea that, when the tests are chosen at random, the
approach’s power stems more from the fact that mixing groups
of binary tests allows for greater classification rates than the tree
structure itself. So, in the proposed d-RFs, each layer’s neuron is
replaced by a fern, and each layer is composed of several fern spe-
cies. Let us assume that the value of features f n is the outcome (0 or
1) of a simple binary test, I (dn;1Þ < I (dn;2Þ, depending only on the
intensities of two pixel locations (dn;1Þ and (dn;2Þ (Eq. (6) of the
input image I (Kim & Ko, 2020).

f n ¼
1if jðdn;1Þ < Iðdn;2Þ

0otherwise

�
ð6Þ

Given the class label Ck, NB makes the simplifying assumption
that features are conditionally independent. The class of condi-
tional densities (fi|Ck) is typically simple to learn, but this indepen-
dence assumption is typically untrue, and the resultant
approximation frequently substantially underestimates the real
posterior probability. Therefore, Özuysal et al. (2007) organized
the features into groups made up of L small sets of size S to to make
the problem manageable while taking these dependencies into
account. These collections are known as ferns
Fl ¼ f 1;1; f 1;2; � � � ; f 1; sf g. By assuming that the groups are condi-
tionally independent, a technique known as semi-NB may be used
to calculate the joint probability for the characteristics in each fern
(Eq. (7)).

P f 1; f 2; . . . ; f N jCkð Þ ¼
Yl¼1
L

P F1jCkð Þ ð7Þ

We acquire the class-conditional distributions for each of the
ferns from Eq. (7), and we use the Bayes rule to combine their out-
puts using semi-naive Bayes to generate the posterior distribution.

Each fern in testing is made up of a few binary tests and returns
a probability for the input vector, which is a member of one of the
classes that was discovered during learning. The semi-naive Bayes
model is used to integrate these fern replies, and the class with the
highest probability value is then selected (Eq. (8)) (Kim and Ko,
2020).

Class fð Þ � argmax
k

P Ckð Þ
Yl¼1
L

PðF1jCkÞ ð8Þ

A well-liked and flexible supervised machine learning tech-
nique, i.e., SVM may be used to both regression and classification.
The foundations of SVM were laid by Vapnik (1995). The SVM has
been employed in a variety of applications since it has numerous
trustworthy learning qualities and predicts positive trial outcomes
(Kulkarni et al., 2004; Chen & Wang, 2007). The SVM is generally
preferred for small and medium-sized classification problems. In
N-dimensional space, the SVM essentially discovers a hyperplane
3

that clearly divides data points from different classes. A hyperplane
is a plane that separates two parts of n-dimensional data linearly. A
line in two dimensions and a plane in three dimensions are called
hyperplanes. Theoretical support for the SVM algorithm is pro-
vided below (Equation (9).

T ¼ xi; yið Þj i ¼ 1;2; � � � ;nf g ð9Þ
the n-dimensional characteristic vectors in the real number

field xi and yi, xi 2 X and , yi 2 �1;þ1f g. When the analyzed data
set is expressed with a linear relationship, can be used the linear
Eqs. (10) and (11).

wTxþ b ¼ 0 ð10Þ

w ¼ w1;w2; � � � ;wdð Þ ð11Þ
where w is the hyperplane, b is the distance between the origin and
the hyperplane. For this reason, the distance from the hyperplane to
any point X can be expressed according to Equation (12) (Hasılcı &
Mumcu, 2022).

c ¼ xTxþ b
�� ��
kxk ð12Þ
3. Results and discussion

The data obtained from the measurements according to the
physico-chemical parameters of the water consists of 90 separate
observations. While 75% of this data is reserved for the training
dataset, the remaining 25% is reserved for the testing dataset. Mod-
els were created by applying the 10-fold cross validation technique
for each model to the data allocated for the training dataset. During
the Training and Testing stages, the models were evaluated in
detail with a total of seven different metrics.

3.1. Training success of models

Two different metrics, i.e., accuracy and Kappa were used for
the training success of the models. The minimum, first quartile,
median, mean, third quartile and maximum values of the results
obtained for both accuracy and Kappa metrics of the models eval-
uated with the cross-validation technique are given in Table 2.
When evaluating the Mean value of Accuracy and Kappa metrics,
the most successful models are RFerns and SVM classifiers. It is
seen that the worst classifier model is NB. The graph showing
the training achievements of the models comparatively is shown
in Fig. 1.

3.2. Testing success of models

The models were tested with the testing dataset, which was
never seen in the training phase. Confusion matrix tables obtained
from the tests of the models with the testing dataset and the eval-
uation results obtained with various metrics are included. The
same confusionmatrix was obtained for SVM and RFerns classifiers
and is shown in Table 3.

As seen in the confusion matrix (Table 3), all 5 observations
belonging to class 1 were correctly classified. Similarly, 2 observa-
tions belonging to class 2, 6 observations belonging to class 3, 5
observations belonging to class 4 and 5 observations belonging
to class 6 were successfully predicted in the accurate classes. Accu-
racy value of SVM and RFerns classifiers was 100%, Kappa value of
100% and p-value was 3.78E-14, which is very close to zero. In
addition to these metrics, evaluations of other metrics are given
in Table 4.



Table 2
Evaluation of training models based on accuracy and Kappa metrics.

Algorithms Accuracy

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVM 0.76 0.92 0.92 0.93 1 1
NB 0.69 0.84 0.88 0.88 0.92 1
RFerns 0.76 0.92 0.92 0.93 1 1
kNN 0.71 0.85 0.92 0.91 1 1
Kappa

Min. 1st Qu. Median Mean 3rd Qu. Max.
SVM 0.71 0.90 0.91 0.92 1 1
NB 0.61 0.81 0.86 0.85 0.91 1
RFerns 0.71 0.90 0.91 0.92 1 1
kNN 0.65 0.82 0.90 0.89 1 1

SVM = support vector machine, NB = naïve bayes, RFerns = random ferns, and kNN = K-nearest neighbor, Min = minimum, 1st Qu. = first quartile, 3rd Qu. = third quartile,
Max. = maximum.

Fig. 1. Models’ comparison graph based on accuracy and Kappa metrics.
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For good classifiers, accuracy, Kappa, sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV),
and balanced accuracy (B) metrics should be close to 1 (Cakir
et al., 2021). These related assessment metrics were equal to 1
for all classes. This shows that the SVM and RFerns models tested
with the test data were quite successful. Confusion matrix table of
NB and kNN classifiers is shown in Table 5.

As seen in the confusion matrix in Table 4, all 5 observations
belonging to class 1 were correctly classified. Similarly, 2 observa-
tions belonging to class 2, 6 observations belonging to class 3, 4 out
of 5 observations belonging to class 4 and 4 out of 5 observations
Table 3
Confusion matrix of support vector machine (SVM) and random ferns (RFerns) classifiers.

Actual

1 2

Prediction 1 5 0
2 0 2
3 0 0
4 0 0
5 0 0
6 0 0

4

belonging to class 6 were successfully predicted in their relevant
classes. However, it is seen that the models predicted 1 observation
in class 5, which is in class 4, and 1 observation in class 5, which is
in class 6. Accuracy value of NB and kNN classifiers was obtained
91.3%, Kappa value is 89.15% and p-value is 7.93E-11, which is very
close to zero. In addition to these metrics, evaluations of other
metrics are given in Table 6.

The sensitivity metric measures how many of all positive obser-
vations we classify as positive. The sensitivity values for class 4 and
6 were 0.8. This indicates that the NB and kNN models were in fact
20% incorrectly estimated that the group of bacteria in class 4
(Aeromonas sobria, Lactococcus garvieae, Yersinia ruckeri) was the
group of bacteria in class 5 (Acinetobacter sp, Aeromonas hydrophila,
Lactococcus garvieae). Similarly, the NB and kNN models show that
the group of bacteria in class 6 (Acinetobacter sp, Aeromonas sobria,
Lactococcus garvieae) is incorrectly estimated by 20% as the group
of bacteria incClass 5 (Acinetobacter sp, Aeromonas hydrophila, Lac-
tococcus garvieae). For class 4 and 6, the BA metric calculates the
arithmetic mean of the sensitivity and specificity metrics of the rel-
evant classes (arithmetic mean of 0.8 and 1) and gives the value
0.9. Other assessments may be considered successful because their
metric value is > 90%. These related assessment metrics do not
appear to equal 1 for all classes. This shows that the NB and kNN
models tested with the test data were good but more unsuccessful
compared to the SVM and RFerns. The SVM and RFerns ML algo-
rithms achieved more accurate results (100% for both) during the
testing phase, while kNN and NB algorithms achieved less accurate
results (91.3% accuracy for both).

According to literature search, no study was found related to
RFerns in aquaculture applications. In a reported study, the effects
of water quality on livestock performance in freshwater ponds was
studied with 8 different ML techniques. Among them 3 ML tech-
niques (SVM, NB and kNN) were analogous with ours. In that study,
SVM and NB were successfully applied with 80–83% accuracy but
kNN was insufficient (71–82 %) (Rana et al., 2021). We obtained
the compatible result with SVM. Furthermore, the consistent
3 4 5 6

0 0 0 0
0 0 0 0
6 0 0 0
0 5 0 0
0 0 0 0
0 0 0 5



Table 4
Evaluation metric values of support vector machine (SVM) and random ferns (RFerns) classifiers.

Evaluation matrices Classes

1 2 3 4 5 6

Sensitivity 1 1 1 1 NA 1
Specificity 1 1 1 1 1 1
Positive predictive value (PPV) 1 1 1 1 NA 1
Negative predictive value (NPV) 1 1 1 1 NA 1
Balanced accuracy (BA) 1 1 1 1 NA 1

Table 5
Confusion matrix of naïve bayes (NB) and K-nearest neighbor (kNN) classifiers.

Actual

1 2 3 4 5 6

Prediction 1 5 0 0 0 0 0
2 0 2 0 0 0 0
3 0 0 6 0 0 0
4 0 0 0 4 0 0
5 0 0 0 1 0 1
6 0 0 0 0 0 4

Table 6
Evaluation metric values of naïve bayes (NB) and K-nearest neighbor (kNN) classifiers.

Evaluation matrices Classes

1 2 3 4 5 6

Sensitivity 1 1 1 0.8 NA 0.8
Specificity 1 1 1 1 0.9 1
Positive predictive value (PPV) 1 1 1 1 NA 1
Negative predictive value (NPV) 1 1 1 0.9 NA 0.9
Balanced accuracy (BA) 1 1 1 0.9 NA 0.9
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results were reported in the other studies with SVM (Chen et al.,
2022; Fan and Liu, 2013; Saberioon et al., 2018; Costa et al.,
2019). The SVM was adopted in recirculating aquaculture system
with the 98.95% accuracy for optimal variable-flow regulation
(Chen et al., 2022). Besides, Fan & Liu (2013) achieved automate
fry counting with the 98.73% of the average counting accuracy rate
by SVM. In a reported study (Saberioon et al., 2018) fish diets were
evaluated by ML methods. While the SVM provided the best clas-
sifier with correct classification rate of 82%, the k-NN was the least
(40%). Moreover, SVM obtained the best result with 97.19% correct
oocyte recognition against kNN (94.40%) and NB (90.03%) (Costa
et al., 2019). It can be concluded that SVM has the great potential
to be an effectively viable technique in aquaculture applications.
4. Conclusion

In the current study, SVM and RFerns ML algorithms achieved
better results in terms of model success in both the training and
testing phase, while the kNN and NB algorithms obtained results
with lower success. While the success of the SVM algorithm in
aquaculture is supported by previous studies, the fact that the
RFerns algorithm shows the same success as SVM and is applied
to this field for the first time is also valuable in terms of contribu-
tion to the literature. Computer-aided intelligent production sys-
tems can help predict possible cases and develop precautionary
recommendations by following all variables instantly. These algo-
rithms obtained in the computer environment need to be tested
quickly in the real farm environment. Successful results will pave
the way for sustainable farming by reducing the giant loss of the
aquaculture sector, while more product supply will ensure the
effective use of resources.
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Saberioon, M., Císař, P., Labbé, L., Souček, P., Pelissier, P., Kerneis, T., 2018.
Comparative performance analysis of support vector machine, random forest,
logistic regression and k-nearest neighbours in rainbow trout (oncorhynchus
mykiss) classification using image-based features. Sensors 18 (4), 1027.

Samuel, A.L., 2000. Some studies in machine learning using the game of checkers.
IBM J. Res. Dev. 44 (1.2), 206–226.

Vapnik, V., 1995. The nature of statistical learning theory. Springer, New York.
Verschuere, L., Rombaut, G., Sorgeloos, P., Verstraete, W., 2000. Probiotic bacteria as

biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 64 (4), 655–671.
Winton, J.R., 2001. Fish health management. In: Wedemeyer, G. (Ed.), Fish Hatchery

Management. 2nd ed. American Fisheries Society, Bethesda, MD, pp. 559–639.
Yilmaz, M., Çakir, M., Oral, O., Oral, M.A., Arslan, T., 2022. Using machine learning

technique for disease outbreak prediction in rainbow trout (Oncorhynchus
mykiss) farms. Aquaculture Res. 53 (18), 6721–6732.

http://refhub.elsevier.com/S1018-3647(23)00216-1/h0025
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0025
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0025
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0025
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0030
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0030
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0030
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0035
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0035
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0035
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0040
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0040
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0040
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0040
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0045
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0045
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0045
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0050
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0050
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0050
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0055
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0055
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0055
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0055
https://doi.org/10.1002/wics.10
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0065
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0065
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0065
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0070
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0070
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0070
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0075
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0075
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0080
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0080
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0080
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0080
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0085
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0085
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0090
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0090
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0090
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0090
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0095
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0095
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0100
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0100
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0100
https://doi.org/10.15864/jmscm.1208
https://doi.org/10.15864/jmscm.1208
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0110
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0110
http://r-statistics.co/Information-Value-With-R.html%233.4.IV
http://r-statistics.co/Information-Value-With-R.html%233.4.IV
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0125
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0125
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0130
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0130
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0130
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0130
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0135
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0135
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0135
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0145
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0145
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0145
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0145
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0150
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0150
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0160
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0165
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0165
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0170
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0170
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0175
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0175
http://refhub.elsevier.com/S1018-3647(23)00216-1/h0175

	Accuracy assessment of RFerns, NB, SVM, and kNN machine learning classifiers in aquaculture
	1 Introduction
	2 Material and methods
	2.1 Data collection
	2.2 Machine learning classifiers

	3 Results and discussion
	3.1 Training success of models
	3.2 Testing success of models

	4 Conclusion
	Declaration of Competing Interest
	ack11
	Acknowledgements
	Ethical statement
	References


