Journal of King Saud University — Science (2015) 27, 76-91

ags2sdlloldl

King Saud University

King Saud University
Journal of King Saud University — ST

-Science

Science =

www.ksu.edu.sa
www.sciencedirect.com

ORIGINAL ARTICLE

Preparation and characterization of novel ) comvin
CuBi,04/SnO, p—n heterojunction with enhanced
photocatalytic performance under UV A light

irradiation

Elaziouti Abdelkader *"*, Laouedj Nadjia *", Bekka Ahmed *

& LCMIA, Laboratory, Faculty of Sciences, University of the Science and the Technology of Oran (USTO M.B),
BP 1505 El M'naouar, 31000 Oran, Algeria
° Dr. Moulay Tahar University, Saida, Algeria, BP 138 Route Mascara, Saida 20000, Algeria

Received 19 February 2014; accepted 18 June 2014

Available online 7 July 2014

KEYWORDS

CuBi,04/SnO, heterostruc-
ture;

z-scheme photocatalysis sys-
tem;

Congo red;

Photocatalytic activity;
Band theory;

Synergy effect

Abstract A novel p-CuBi,O4/n-SnO; heterostructure photocatalyst with different mass ratios was
synthesized by the solid state technique, and characterized by X-ray diffraction (XRD), scanning
electron microscopy (SEM) and UV-Vis diffuse reflectance spectroscopy (DRS). The photocata-
lytic activities of p-CuBi,O4/n-SnO, photocatalysts were assessed based on the photodegradation
of Congo red (CR) dye as a probe reaction under UVA (365 nm) light irradiation. Experimental
results showed that the phase composition, surface morphology of particles, and optical absorption
of the sample were found to vary significantly with the mass ratios and pH medium. The p-CuBi,.
04/n-SnO, photocatalyst exhibited higher photocatalytic performance as compared with CuBi,O4
and SnO,. The photodegradation reactions were satisfactory correlated with the pseudo-first-order
kinetic model. The optimum amount of doped CuBi,O4 was 5 wt% as a result of 58.06% of photo-
activity of CR within 100 min under UVA light at pH = 8 and 25 °C, which is about 2 times higher
than that of pure SnO,. On the basis of the calculated energy band positions and the active species
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during photocatalytic process, the mechanism of the enhanced photocatalytic activity was discussed
by solid state z-scheme photocatalysis system.

© 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Advanced oxidation processes are of great scientific and prac-
tical interest in terms of ecology and sustainable development
(Fujishima and Honda, 1972; Zhang and Zhu, 2005). The het-
erogeneous photocatalysis of organic pollutants on semicon-
ductor surfaces has attracted much attention as a ‘green’
technique. Most researches consider heterogenic systems based
on TiO, (Degussa P25, Hombriat UV-100, Aldrich, etc.) owing
to their high photocatalytic activity and stability as well as
their widespread uses for large-scale water treatment (Wang
et al., 2006a,b). However, the intrinsic band gap of TiO, is
3.2 eV, which requires the excitation wavelength <387.5 nm.
It is a major disadvantage of TiO, using as a photocatalyst
working under visible light (=420 nm). The high rate of elec-
tron—hole recombination often results in a low quantum yield
and poor efficiency of photocatalytic reactions. In order
tomeet the requirement of future environment and energy tech-
nologies, it is necessary to develop highly efficient, non toxic
andchemically stable photocatalyst. Semiconductor catalysts
such as TiO, (Xiaoning et al., 2011), SnO, (Sangami and
Dharmaraj, 2012), ZrO, (Karunakaran et al., 2009) CeO,
(Yongchuan et al., 2014), Fe,O3 (Seiji and Toshiyuki, 2009),
Bi,O3 (Zhong et al., 2011), Sb,O3 (Arham et al., 2011), WO;
(Fumiaki et al., 2013) and ZnO (Vora et al., 2009) metal oxides
and CdS (Chae et al., 2010;), CdSe (Frame et al., 2008) CdTe
(Kovalenko et al., 2004), ZnS (Karunakaran et al., 2009), PbS
(Wang et al., 2011) and HgS (Rengaraj et al., 2014) metal
chalcogenides have long been investigated for environmental
applications. However, their practical uses have been con-
strained by their low photocatalytic activity under solar light,
short-term stability against photo- and chemical corrosion as
well as potential toxicity.

SnO,, with a wide band gap of 3.6eV at 300 K (Derbal
et al., 2008), is known as n-type semiconductor and exhibits
excellent optical, electrical and chemical properties and high
thermal stability. Research has shown that the semiconductor
SnO, material has wide potential applicabilities such as
solid-state gas sensors (Ying et al., 2004), transparent
conducting electrodes (Chopra et al., 1983), rechargeable Li
batteries and optical electronic devices (Aoki and Sasakura,
1970). The tin dioxide (SnO,) has low cost and toxicity, in
addition to high availability. This oxide is among the few
with the band gap energy near to visible light (Yang et al.,
2006; Zhang et al., 2006). During the past decade, SnO,
nanostructures have been one of the most important oxide
nanostructures due to their properties and potential applica-
tion (Cheng et al., 2004). Recently its composites have been
studied as promising semiconductors in the photocatalytic
decoloration of wastewaters (Xi et al., 2008; Wang et al.,
2006a,b; Nayral et al., 2000; Mukhpadhyay et al., 2000;
Teeramongkonrasmee and Sriyudthsak, 2000). Although
photocatalytic activity of SnO, has intensively been investi-
gated, the broad band gap energy and the electronic potential
position in the conductance and valence bands of this

material seriously limit its further application as a photocat-
alyst utilizing solar energy (Li et al., 2009).

Various strategies in the liquid-phase system have been
adopted for size-controlled synthesis of various functional
nanomaterials, including transition metal doping (Couselo
et al., 2008), noble metal deposition (Sasahara et al., 2006)
doping non-metallic elements (Geng et al., 2008), doping tran-
sition metal surface photosensitization (Mora-Sero et al., 2007)
and coupled polycrystallites or colloidal semiconductors (Bian
et al., 2008). Thus, the combination of semiconductor has
become a hot topic among researchers in the last decade to
improve the photostimulated electron—hole separation and
effectively inhibit their recombination. The major characteris-
tic of this technique is to assemble a heterojunction interface
between wide and narrow band gap semiconductors with
matching energy band potentials. In this way, electric field
assisted transportation of charges from one particle to the
other through interfaces is favorable for the electron—hole sep-
arations in the composite materials, and thus the electron and
hole transfer from catalyst to adsorbed substrate can be
obtained (Li and Yan, 2009; Liu et al., 2010a,b). The extensive
search published on n—n type junction semiconductor systems
were mostly focused on SnO,-based photocatalyst materials,
such as ZnO/SnO, (Wang et al., 2002), Fe;O3/Sn0O, (Zhuang
et al., 2008), SrNb,Os/SnO, (Xinping et al., 2008), TiO,-
SnO,/Fe*? (Sikong et al., 2010), La203/Sn0, (Xia et al.,
2006), AgizP0O4/SnO, (Zhang et al., 2011), RGO/SnO,
(Zhang et al., 2012), NbgO17/SnO, (Wang et al., 2010a,b),
TiO,/SnO, (Hou et al., 2007; Sasikala et al., 2009), CeO,/
SnO, (Foletto et al., 2012), Cr,O3/SnO, (Bhosale et al.,
2013), and so on. The results showed that nearly all the n—n
junction composite semiconductors exhibited better photocat-
alytic properties than single ones. However, to the best of our
knowledge, the use of the p—n type composite semiconductors
has been rarely reported in the literature and only few exam-
ples of the p—n junction photocatalysts, such as CuO/SnO,
(Xia et al., 2007), CuFeO,/SnO, (Derbal et al., 2008), and
NiO/SnO, (n-SnO, p-Si (Yang et al., 2009; Wang et al.
2010a,b; Mohamed and Aazam, 2012), have been studied.
Theoretically, when p-type semiconductor and n-type semicon-
ductor are connected to each other, the micro p—n heterojunc-
tion composite semiconductors will be formed; the inner
electric field will also be produced in the interface. Once optical
excitation occurs, a free electron (¢7) and an electronic
vacancy (a hole, h ™) are formed, separated and migrated effec-
tively in a semiconductor being partially localized on structural
defective centers of its crystalline lattice, hence improving the
electrical properties of semiconductor.

In this investigation, we have studied the photocatalytic
efficiency of a p-CuBi,O4/n-SnO, composite, in which SnO,
was associated with Bismuth Cuprites (CuBi,O4) to form
p—n heterojunction composite semiconductors in different
mass ratios. CuBi,O4 was chosen as a sensitizer semiconductor
due to its narrow band gap energy of 1.5 eV (Arai et al., 2007;
Liu et al., 2010a,b). CuBi,0y is well-known as an excellent host
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matrix for luminescent materials due to its low phonon energy,
high visible-light responsiveness and adequate thermal stabil-
ity. It functions as a sensitizer by the absorption of UV light
to yield an excited state in the heterojunction composite semi-
conductors of p-CuBi>O4/n-SnO,, which may increase the
probability of light-generated carrier transfer and hence
reduces the recombination of photogenerated electrons and
holes substantially improving the photocatalytic properties.

So, the aim of this study is to clarify the photocatalytic effi-
ciency of this novel p—n type composite semiconductor p-
CuBi,04/n-SnO, prepared by a physical mixing process
through doping CuBi,04 into SnO, matrix. The as-prepared
p-CuBi,O4/n-SnO, nanoparticles were characterized by a
number of techniques such as X-ray diffraction (XRD), scan-
ning electron microscopy (SEM) and UV-visible diffuse reflec-
tance spectroscopy (DRS). The photocatalytic degradation of
Congo red (CR) dye under UV light irradiation was investi-
gated over nanosized photocatalyst p-CuBi,O4/n-SnO, at dif-
ferent operating parameters such as, amount of doped
CuBi,0O4 and pH solution. The experimental data were quan-
tified by applying the pseudo-first order kinetic model. Mech-
anisms of the increase in the photocatalytic activity were also
investigated through a solid state z-scheme photocatalysis sys-
tem, which mimics the z-scheme in the natural photosynthesis
of green plants.

2. Experimental

2.1. Chemical reagents

The starting materials used in the synthesis: a-Bi,O3 (99.99%),
CuO (99.99%) and SnO, (99.99%) were all obtained from
Aldrich chemical company Ltd. Congo red (C.I. 22020,
MW = 696.67 ngl_l, C32H24N(,O()S2'2Na, ;“mzlx = 497 nm
and pKa = 4) and other chemicals used in the experiments
(NH4OH and H,SO,) were purchased from C.I.S.A. Espagne.
Distilled water was used for the preparation of various
solutions.

2.2. Preparation of p-CuBi>0,

The p-CuBi,O4 powder was prepared according to the previ-
ously reported procedure (Arai et al., 2007; Liu et al., 2010a,b;
Elaziouti et al., 2012). a-Bi,O3 and CuO were used as starting
materials. The stoichiometric proportion mixture of Bi,O3 and
CuO was previously ground for a period of time in an agate mor-
tar, and then heated at the rate of 5 °C/min in a muffle oven
(Linn High Therm) and thermally treated at 750 °C for 72 h in
air. After the muffle oven was naturally cooled to room temper-
ature, the black CuBi,O4 powder was ground in the agate mor-
tar and then was collected as the precursor to prepare the
composite photocatalyst p-CuBi,O,4/n-SnO,.

2.3. Preparation of semiconductor p-CuBi0 4/n-Sn0O,

Combined semiconductors CuBi,O,/SnO, were prepared by a
physical milling technique. Different CuBi,O4/SnO, powder
samples were prepared in a ratio (mass concentration) of
5%, 10%, 20%, 30%, 40% and 50% respectively, by varying
the amount of CuBi,O4 and subsequently milled in the agate

mortar for 30 min. The final samples were used for the deter-
mination of characterization and photocatalytic activity.

2.4. Characterization

Phase evolution and crystalline of the resulting powders were
characterized by X-ray diffraction (XRD) in an automatic
D8 Bruker AXS diffractometer using CuKo radiation
(4 = 1.5406 /OX). XRD diffractogrammes were collected in
10-70° intervals with a scan speed of 10°/min. The crystallite
average size (dprx) calculation using the Scherrer (Pullar
et al., 1988) equation is as follows (Eq. 1):

0.94
dprx = Bsin0 (1)

where f§ = \/(FWHM)2 — (0.3)* and 1 is the X-ray wavelength

(1.5406 A). FWHM is the full-width at half maximum and @ is
the Bragg angle. FWHM was calculated from the peak having
the highest intensity in all the samples. The lattice constants of
the samples calculated from their corresponding XRD pattern
data are obtained by Fullprof program. The crystallite sizes of
the pure nanoparticles were deduced from the XRD patterns
by calculation of the Scherrer equation.

Scanning electron microscopy (SEM) (Hitachi S-4800 N) is
used to characterize the morphology of the particles.

UV-Vis diffuse reflectance spectroscopy measurements
were carried out using a Perkin Elmer Lambda 650 spectro-
photometer equipped with an integrating sphere attachment.
The analysis range was from 200 to 900 nm, and polytetrafluo-
roethylene (PTFE, Teflon) was used as a reflectance standard.

The residual RC concentrations during the course of degra-
dation were monitored with UV mini-1240 Spectrophotometer
(Shimadzu UV mini-1240) in the range 200-800 nm, using
1 cm optical pathway cells.

2.5. Photocatalytic study measurements

The photodegradation of CR catalyzed by the p-CuBi,O4/n-
SnO, samples was investigated under UVA light irradiation.
100 mg of catalyst was suspended in a CR solution (200 mL,
20 mg/L) in quartz cell tube. The suspension pH value was pre-
viously adjusted at 8 using NaOH/H,SO, solutions using a
(Hanna HI 210) pH meter. Prior to UV light irradiation, the
suspension was stirred with magnetic stirrer (Speedsafe™
Hanna) for 30 min under dark conditions at 298 K to ensure
the establishment of adsorption/desorption equilibrium
between the catalyst and CR. The sample was then irradiated
at 298 K using 6 W ultraviolet (1 = 365 nm, BLX-E365) pho-
toreactor under continuous stirring. As the reaction proceeded,
a 5 ml suspension was taken at 20 min intervals during the cat-
alytic reaction and was centrifuged using centrifuge (EBA-Het-
lich) at 3500 rpm for 15min to completely remove
photocatalyst particles. The residual RC concentrations during
the course of degradation were monitored with a UV mini-1240
Spectrophotometer (Shimadzu UV mini-1240) in the range
200-800 nm, using 1 cm optical pathway cells.

The effect of initial pH on the photocatalytic degradation
of CR only was conducted from pH 6-12 for avoiding dye
aggregation. Data obtained from the photocatalytic degrada-
tion experiments were then used to calculate the degradation
efficiency n’ (%) of the substrate (Eq. 2):
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i ) = |5 oo @)
G
where C;: dye initial concentration (mg L™!) and Cy: dye resid-
ual concentration after certain intervals (mg L™").
According to Planck’s Law and some further calculation,
we can find that the absorption wavelength of the photoreactor
can be calculated by determining its band gap value (Eq. 3):

1239 eV . nm
Eg - f (3)

where h is Planck’s constant (4.13566733 x 10~'% eV s); ¢ is the
speed of light (2.99792458 x 10'7 nm/s) and / is the UVA-light
wavelength (355-375 nm).

From the calculation, in order to absorb a UVA-light wave-
length, the band gap value of the photoreactor has to be below
3.49 eV and above 3.30 eV.

The photocatalytic degradation efficiency of catalyst for the
degradation CR was quantified by the measurement of dye
apparent first order rate constants under operating parame-
ters. Surface catalyzed reactions can often be adequately
described by a monomolecular Langmuir—Hinshelwood mech-
anism, in which an adsorbed substrate with fractional surface
coverage 0 is consumed at an initial rate given as follows
(Eq. 4) (Vasanth Kumar et al., 2008):

B {dc K\ K>Cy

— | =rg=Kypp 0 =—— 4

dtJ T T T A K G @
where K| is a specific rate constant that changes with photocat-
alytic activity, K, is the adsorption equilibrium constant, and
Cy is the initial concentration of the substrate. Inversion of

the above rate equation is given by Eq. (5):
1 1 Co
= + —
KippCo KKy ' K,

(5)

Thus, a plot of reciprocal of the apparent first order rate con-
stant 1/K,,, against initial concentration of the dye C, should
be a straight line with a slope of 1/K; and an intercept of
1/K;K>. Such analysis allows one to quantify the photocata-
lytic activity of catalyst through the specific rate constant K,
(with larger K; values corresponding to higher photocatalytic
activity) and adsorption equilibrium constant K, (K, expresses
the equilibrium constant for fast adsorption—desorption
processes between surface of catalyst and substrates). The
integrated form of the above equation (Eq. (5)) yields the
following Eq. (6):

1
- KK,

&L -0 (6)

t
C K

where 7 is the time in minutes required for the initial concentra-
tion of the dye C, to decrease to C. Since the dye concentration
is very low, the second term of the expression becomes small
when compared with the first one and under these conditions
the above equation reduces to Eq. (7):

C
1nE° ~ K Kot = Kyppt (7)

where K,pp, is the apparent pseudo-first order rate constant, C
and C, are the concentration at time ‘t" and ‘t = 0’, respec-
tively. The plot of In Cy/C against irradiation time ¢ should
give straight lines, whose slope is equal to Kpp.

The half-life of dye degradation at various process param-
eters was raised from Eq. (8):

0.5C, n 0.693
K, K\ K,

hp = (8)
where half-life time, ?;,, is defined as the amount of time
required for the photocatalytic degradation of 50% of CR
dye in a aqueous solution by catalyst.

3. Results and discussions

3.1. XRD analysis of (x wt% ) CuBi,0,/SnO, Nanocomposites

Fig. 1, shows the XRD patterns of the as-synthesized (5 wt%)
CuBi,04/Sn0O, nanocomposites in comparison with those of
CuBi,0y4 precursor and pure SnO,. Diffraction peaks of pure
SnO, (Fig. 1a) at 20 of 26.63°, 33.73°,37.94°, and 51.79° can
be indexed as the (110), (101), (200), and (211) planes of
tetragonal rutile structure of stannic oxide (lattice constant
a = 4.7373(2) Aeth= 3.1865(3) 10\), which is in good agree-
ment with standard value (JCPDS file No. 41-1445). The crys-
tallite sizes of pure SnO,, dxgrp, deduced from the XRD
patterns by calculation of the Scherrer equation, was found
to be 50 nm. The diffraction peaks of the Cubi,O4 precursor
(Fig. 1b) at 26 of 28.03°, 29.73°, 30.73°, 32.54°, 33.36° and
46.71° were respectively indexed as (211), (220), (002),
(102), (310), and (411) planes of pure tetragonal phase of
crystalline CubiOy, according to the Joint Committee Powder
Diffraction Standards (P4,/mnm, JCPDS file No. 42-0334)
with lattice constants (a = 8.5004 A, ¢ = 5819 A) calculated
from their corresponding XRD pattern data obtained by Full-
prof program. Both precursors CuBi,O4 and pure SnO, show
preferred (002) crystallographic orientation owing to the prep-
aration route of the sample during the XRD analysis. On the
other hand, the XRD patterns of (5 wt%) CuBi,O4/SnO,
nanocomposite exhibited characteristic diffraction peaks of
both CuBi,O4 and SnO, crystalline phases, suggesting that
CuBi,0O4 and SnO; are coexistent in the composites as separate
phases. It can be seen from Fig. lc, that at 5% mass concen-
tration of Cubi,Qy, the diffraction pattern of the nanocompos-
ite materials was approximately similar to that of pure SnO,.
This is probably due to the high crystallinity of the SnO, phase
and the lowest amount of CuBi,O4 present in the composites
(5 wt%), thus appearing as the dominant peaks in the XRD
spectra of the nanocomposite sample. Compared with SnO,,
the XRD patterns (Fig. 2) in the 20 range from 20° to 37° of
(5 wt%) CuBi,04/Sn0O, exhibits the same broader peaks, indi-
cating a high solubility of CuBi,O4 in SnO, matrix. Thus the
presence of (5 wt%) Cubi,O4 has obviously no effect on the
particle size of the (5 wt%) CuBi,O4/SnO, nanocomposite.

3.2. SEM analysis

Fig. 3a, illustrates typical SEM image of CuBi,O4 powder syn-
thesized by solid-state reaction of CuO and o-Bi,O3 at 750 °C
for 24 h, pure SnO, and (5 wt%) CuBi,O4/SnO, nanocompos-
ites. It can be seen that, for the CuBi,Oy,, the appearance is a
shapeless sheet, and the particle size of the CuBi,Oy is about
10-20 um. Fig. 3b shows typical high-resolution SEM image
of CuBi,04 powder to further show the details of the nanopar-
ticles. As shown in Fig. 3b, it clearly shows two different crys-
tal shapes on the CuBi,O4 surface, corresponding to two
different particle sizes of CuBi,O,4. The appearance of CuBi,O,4
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Figure 1

XRD patterns of pure SnO, (a) precursor CuBi,Oy4 (b) and the synthesized (5 wt%) CuBi,O4/SnO, (c).
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is a shape sheet and a well-defined tetragonal phase with the
crystallite diameter of the CuBi,O4 about 5pum, whereas
groups of smaller particles do not have any specific shape with
size up to 500 nm tend to cover the bigger particles. However,
pure SnO; from SEM analysis (Fig. 3c) clearly shows two dif-
ferent tetragonal-shaped nanoparticle structures on the SnO,
surface, which can be assigned to SnO, (ion radius Sn**:
rSn*" = 0.071 nm) with a particle size in the range of
0.1 pm and SnO (ion radius Sn>*: rSn*>* = 0.112 nm) with
approximately 0.2 um dimensions, which agrees with the
UV-Vis diffuse reflectance spectrum of SnO, in Fig. 4. Both
nanoparticles are close to each other in the form of chains.

The as synthesized (5 wt%) CuBi,O4/SnO, nanocomposite
via the physical milling synthesis method (Fig. 3d) clearly
shows the presence of SnO, nanoparticles deposited onto the
CuBi,0y4 surface, displaying a particle size of 0.1-0.2 um and
strong assembly of the nanoparticles measuring from 0.2 pm
to 1 pm. Such aggregation can be explained by the solid-state
synthesis route, which generally requires repeated mechanical
mixing process and a high temperature process.

XRD patterns of pure SnO, (a) precursor CuBi,Oy4 (b) and the synthesized (5 wt%) CuBi,O4/SnO; (c) in the 26 range from 20

3.3. UV=Vis diffuse reflectance spectra and band gap energy

Fig. 4, shows the UV—Vis absorbance spectra of CuBi,O4 syn-
thesized by solid-state reaction at 750 °C for 24 h and pure
SnO,. It is clear from the recorded UV-visible spectrum of
SnO, that two absorption bands are observed in the UV region
at 210245 nm and at 270 nm. Generally, the absorption band
at 210-245 nm of SnO, in the UV region originates from the
charge-transfer transition between the O 2p and Sn 4d states
in O*~ and Sn*". The band at 270 nm is attributed, either to
the inter-valence transition of Sn**/Sn>" (Shen et al., 1994),
or to the charge-transfer transition s —p of Sn’>* ions
(Teegarden, 1966).

The UV-visible spectrum of CuBi,O4 nanostructures syn-
thesized by solid-state reaction at 750 °C for 24 h is presented
in Fig. 4. It can be seen that it has strong and broad absorption
in the range of 200-900 nm. This suggests that the prepared
sample absorbs both UV and visible light. Obviously, for
CuBi,04 nanostructures, the broad absorption band observed
in the UV-visible region was attributed to the charge-transfer
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5.00um

Figure 3 SEM images of (a) low-resolution of CuBi,O, (b) high-resolution of precursor CuBi,Oy (c) pure SnO, (d) (5 wt%) CuBi,O4/SnO,

nanocomposites.
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Figure 4 UV-visible absorbance spectra of SnO, and CuBi,O4 synthesized by solid-state reaction at 750 °C for 24 h.

transition between the O 2p and Cu 3dx? — )? states in O~
and Cu’", respectively (Nathan et al., 2012). Fig. 5 shows
UV-Vis diffuse reflectance spectra of a series of photocatalysts
(x wt%) CuBi,04/Sn0O; for x = 0-20 wt%. A progressive red
shift in the band gap absorption is observed with an increase
in the amount of (x wt%) CuBi,Oy in the SnO, matrix.

Pure SnO, has a negligible absorption in the range of UVA
light (355 nm < 4 < 375 nm) because the catalyst is only effec-
tive under ultraviolet irradiation (1< 345nm). With an
increase in the amount of x wt% of CuBi,Oy, the absorption

edge of the sample has some red shift. The red-shift observed
in the nanocrystalline SnO, would explain the formation of
localized states within the band gap owing to oxygen vacancies
and increase in Sn>* ion concentration. This phenomenon is
due to the shift of absorbance band toward the longer wave-
length (Lu et al., 2009; Charitidis et al., 2005). The red shift
is presumably ascribed to the homogeneous dispersion of
CuBi,0y, particles within SnO, matrix. The onset absorption
edges and band gap energies of the as-synthesized CuBi,O4
particle, pure SnO, nanoparticle and series of (x wt%)
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Figure 5 UV-visible absorbance spectra of a series of (x wt%) CuBiO4/SnO, (with x = 0-20 wt%) nanocomposites.

Table 1 Optical properties of the as-synthesized CuBi,O4 and pure SnO, nanoparticles.

Systems A (nm) Charge-transfer transition Band gap Eg (eV)
Experimental Literature Refs.
CuBi,O, 900 2p%(0) — 3dx>y? (Cu) 1.38 1.5 (Arai et al., 2007; Liu et al., 2010a,b)
SnO, 345 2p° (0) — 55 (Sn) 3.59 3.5-4.1 (Casey and Stephenson, 1990)
05 350 2p® (O) — 5s (Sn) 3.54
10 350 2p° (0) — 55 (Sn) 3.54
20 355 2p® (O) — 5s (Sn) 3.49

A: Wavelength, Refs.: References.

CuBi,04/Sn0O, nanocomposites are shown in Figs. 4 and 5,
respectively.

The absorption onsets of crystalline semiconductor were
determined by linear extrapolation from the infection point
of the curve (Absorbance versus Aapsorp. Edge) 1O the baseline
and Eg = 1240/Aabsorp. Edge @s shown in Figs. 4 and 5. The
as-synthesized CuBi,O4 exhibits an absorption onset at
900 nm, which corresponds to the band gap energy of
1.38 eV. This value is lower than that reported in the literature;
1.5eV (Araiet al., 2007; Liu et al., 2010a,b). It is clear from the
recorded spectrum (Fig. 4) that the pure nanocrystalline SnO,
has an absorption onset at 345 nm, which matches the band

gap energy of 3.59 eV, attributing to stannic oxide (SnQO»,).
These results are well in agreement with values reported in
the literature (Casey and Stephenson, 1990). The optical prop-
erties of the as-synthesized CuBi,O,4 and pure SnO, nanopar-
ticles are reported in Table 1.

It is widely accepted that electronic transport properties
depend on the physical and structural characteristics of photo-
catalyst, such as crystallite size, morphology, phase structure
and amount of CuBi,O4 loaded (Yu et al., 2008). As reported
from the UV-visible results in Fig. 5 and Table 1, for the series
of (x wt%) CuBi,0,4/SnO, nanocomposite materials, the band
gap energy slightly decreased from 3.59 to 3.49¢V as the
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amount of CuBi,O4 was increased up to 20 wt% on the SnO,
matrix, suggesting that a number of micro p—n heterostruc-
tures CuBi,O4/SnO, will be formed after doping CuBi,O,4
powder into SnO, particles. Hence it was concluded that
CuBi,0y4 played a role in electron separation. The increase in
photocatalytic activity of CuBi»O4/SnO, would be attributed
to the suppression of electron—hole recombination by the effec-
tive electron separation (Masami et al., 2013). So, the decrease
in the band gap energy with an enhanced absorption intensity
of the (5wt%) CuBiyO,4/SnO, nanocomposites upon loading
the amount of CuBi,O4 could be ascribed to the homogeneous
dispersion of CuBi,O4 within the SnO, matrix in the bulk of
the catalyst and the formation of conducting network at very
low temperature.

Chun-Ming et al. (2007) have already reported band gap
narrowing effect for doped SnO, nanoparticles. However there
is no clear understanding of this phenomenon. A direct—indi-
rect transition has been proposed by Rakhshani et al. (1998).
In order to explain the band gap narrowing effect, many
groups have suggested that alloying effect of parent compound
with some impurity phases may be responsible for the band
gap narrowing (Park and Kim, 2003; Barreau et al., 2002).
So we think that for the samples containing up to 5 wt%
CuBi,04 concentration, SnO,—Sn0O,_, alloying effect may be
responsible for the band gap narrowing effect. For the SnO,
nanoparticles above 5 wt% CuBi,O4 concentration there is a
huge drop in the band gap. This may be due to the formation
of sub-bands in between the band gap and the conduction
band and sub-bands are merging with the conduction band
to form a continuous band. This is perfectly in agreement with
the XRD analytical results and consistent with the previously
reported work (Chun-Ming et al., 2007).

3.4. Photocatalytic activity tests

3.4.1. Effect of pH solution on the photocatalytic activity of (5
wt% ) CuBi>0,/Sn0, nanocomposite

In order to study the effect of initial pH on the degradation
efficiency of (5 wt%) CuBi>O4/SnO, nanocomposite catalyst
on photodecomposition of CR, experiments were carried out
at various pH, ranging from 6 tol2 for avoiding dye
aggregation. Results showed that the pH significantly affected

60

n
=

42.16

P
=

33.69

Adsorption and photocatalytic
activities (%)
W
=

31.38

Table 2 Results of the effect of the pH solution on the
photocatalytic redox of CR under UVA light irradiation ([(5 wt%
CuBi;0,4/Sn0O,5] = 0.5g/L, [CR] =20mg/L, T = 298K,
Amax = 365nm, 7 = 90] /cm2 and irradiation time = 100 min).

pH initial Adsorption Photocatalytic
activity n (%) activity n’ (%)

2 Dye aggregation

4

6 0.93 12.03

7 33.69 42.16

8 31.38 58.06

10 8.64 13.77

12 0.46 12.27

the photocatalytic degradation efficiency of both CR. As
shown in Fig. 6 and Table 2, for CR, the degradation rate
increased from 12.03 to 58.06% as the pH value was increased
from 6 to 8, and then decreased to 12.27 at pH 12. The max-
imum degradation rate of CR (58.06%) was achieved at pH
8. For this reason, the pH 8 was selected for subsequent
experiments.

It is commonly accepted that in photocatalyst/aqueous sys-
tems, the potential of the surface charge is determined by the
activity of ions (e.g. H* or pH). A convenient index of the ten-
dency of a surface to become either positively or negatively
charged as a function of pH is the value of the pH required to
give zero net charge (pH pzc) (Zhang et al., 1998; Yath,
1974). pH pzc is a critical value for determining the sign and
magnitude of the net charge carried on the photocatalyst
surface during adsorption and the photocatalytic degradation
process. Most of the semiconductor oxides are amphoteric in
nature, can associate Eq. (15) or dissociate Eq. (17) proton.
To explain the relationship between the layer charge
density and the adsorption, so-called Model of Surface
Complexation (SCM) was developed (Fernandez et al., 2002),
which consequently affects the sorption—desorption processes
as well as the separation and transfer of the photogenerated
electron-hole pairs at the surface of the semiconductor
particles. In the 2-pK approach we assume two reactions for
surface protonation.

58.06

Adsorption activity
H photocatalytic activity

20
12.03 13.77 12.27
8.64
10
0.92 . 0.46 .
0
6 7 8 10 12
pH initial

Figure 6  Effect of the pH solution on the photocatalytic redox of CR under UVA light irradiation ([(5 wt% CuBi,O,4/Sn0O,]=0.5 g/L,
[CR]= 20 mg/L, T = 298 K, Amax = 365nm, I = 90 J/cm2 and irradiation time = 100 min).



84

E. Abdelkader et al.

60 58.06
50

~

N 40

~ 31.38 31.47
30 25.62

Adsorption and photocatalytic
activities

20
10
2.92
0
0 5

22.2
16
10

Adsorption activity

19.69

2 12.95
1251 q11.01
8.01
0
B ==
20 30 40

50 100

Amount of CuBi,O, (Wt%)

Figure 7  Effect of the amount of CuBiO, on the photocatalytic redox of CR under UVA light irradiation ([(x wt%) CuBi,O,/
Sn0,]=0.5 g/L, [CR]= 20 mg/L, pH = 8, T = 298 K, Apax = 365 nm, T = 90 J/cm® and irradiation time = 100 min).

The zero point charge pH pzc for SnO, (about 5) is approx-
imately identical to that of (5 wt%) CuBi,O,4/SnO, which is
mainly composed of SnO, nanopowders (shown in XRD pat-
terns), since there is no adsorption of CR ions than the poten-
tial determining H™ JOH™ at the surface of CuBi,O, particles.
This is often the case for pure (“pristine surface’) oxides in
water.

When the pH is lower than the pH pzc value, the system is
said to be ““below the PZC”. Below the PZC, the acidic water
donates more protons than hydroxide groups, and so the
adsorbent surface is positively charged (attracting anions/
repelling cations), according to the following reaction Egs.

9), (10):

PH < pH pyc
(5 Wt%) CuBi204SI’102 + HJr g (5 Wt%) Cl,lBizO4Sl’102HJr (9)

(5 wt%) CuBi,04/SnO,H" + CR™
— [(5 wt%) CuBi,0,/SnO,H", CR"]
(electrostatic interaction) (10)

Conversely, above pH pzc the surface is negatively charged
(attracting cations/repelling anions), given by the following
reaction Egs. (11) and (12):

pH > pH ;¢ (5 wt%) CuBi,O4/SnO, + OH™
— (5 Wt%) CuBi2O4/Sn07 + H2O (1 1)

(5wt%) CuBi,O4/SnO~ + CR™
— [(5§ wt%) CuBi,O4/SnO™, CR™]
(electrostatic repulsion) (12)

The experimental data revealed that higher adsorption and deg-
radation activities of CR were obtained in alkali medium (i.e.
pH = 8). Even though (5 wt%) CuBi,O4/SnO, nanocomposite
showed good photocatalytic efficiency among the CuBi,O4
loadings, but it seems to be that this activity may not be up
to our expectation. The poor adsorption affinity of the compos-
ite toward organic pollutant may be the primary cause of the
observed efficiency. As the adsorption reaction between anionic
dye/composite takes place on the solid surface, this means that

Table 3 Results of the effect of the amount of CuBi,O4 on the
photocatalytic redox of CR under UVA light irradiation
([(x wt%) CuBiy04/Sn0,,0.5 g/L, [CR] = 20 mg/L, pH = 8,
T =298K, ZApax = 365nm, I = 90 J/cm2 and irradiation
time = 100 min).

Amount of Adsorption Photocatalytic
CuBi)Oy4 x (%) activity n (%) activity ' (%)
0 2.92 25.62
5 31.38 58.06
10 22.24 31.48
20 16.21 19.69
30 12.52 12.95
40 11.01 8.01
50 5.18 3.64
100 4.71 3.13

the main dye-composite interaction is a coulomb-type interac-
tion. However, other interaction, such as hydrophobic effect
between guest molecules on the composite surface (Xie et al.,
2005) and/or H-bonding can contribute to the adsorption of
organic dye on composite surface, favoring the dye agglomera-
tion. Thus, the enhancement of adsorption activity was not
exclusively caused by the attractive interaction among
dye-composite because there are no obvious electrostatic inter-
actions between the negatively charged (5wt%) CuBi,O4/SnO,
surface (pH > pH pzc) and CR anionic dye (pH > pK,) at pH
8. As was reported previously, we believe that it is mainly due to
the hydrophobic effect between guest molecules on the compos-
ite surface and/or H-bonding. Thus, a strong adsorption can
lead to a drastic decrease in the active centers on the catalyst
surface, which results in a decrease in the absorption of the light
quanta by the catalyst and consequently reducing the kinetic
reaction. As a result, the moderate photodegradation activity
can be ascribed to the (5wt%) CuBi,04/SnO,-mediated
photocatalytic oxidation of CR dye under alkali medium. It
is noteworthy that heterogeneous photocatalytic processes sub-
stantially depend on a variety of environment conditions as
mentioned in Introduction section. Thus, the presence of the
tightly physically bonded or close contact interfaces between
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Figure 8 Photocatalytic degradation kinetics of CR at different experimental conditions ([Catalyst]=0.5 g/L, [CR]= 20 mg/L, pH = 8§,
T = 298 K, Apax = 365nm, I = 90 J/cm2 and irradiation time = 100 min).

the two materials, by which the photoinduced charge transfer
from one particle to the other through interfaces spatially is
available, can lead to a strong photocatalytic redox of CR over
the combined catalysts.

At neutral and acidic media (pH < 8), lower photocatalytic
efficiency of catalyst can be explained by the following possible
reasons. First, the electrostatic repulsion forces between the
negatively charged (5wt%) CuBi>O4/SnO, surface and CR
anionic dye, mainly sulfonated groups (-SO3), affecting
strongly the accessibility of the surface reducing species to
the CR photocatalytic oxidation/reduction kinetics. Second,
the excess of H;O " ions, especially at pH = 6, enters into elec-
trostatic interactions with both the negatively charged (5 wt%)
CuBi,04/Sn0O, surface and RC dye anions, leading to a mini-
mum adsorption extent at pH 6. Furthermore we found that,
where the adsorption of dye was strong, photodegradation
remarkably occurred.

At pH higher than pH pzc value (i.e. pH > 8), excess of
hydroxyl anions facilitates photogeneration of *OH radicals
which are accepted as primary oxidizing species responsible
for photocatalytic degradation, resulting in the enhancement
of the efficiency of the process. However, a dramatic decrease
in the degradation efficiency could be explained on the basis of
amphoteric behaviors of (5 wt%) CuBi,O4/SnO, catalyst. The
negatively charged surface of (5 wt%) CuBi,0,4/SnO, catalyst
(highly concentration of hydroxide ions) and the great nega-
tively charged RC dye anions resulted in electrostatic repul-
sion, leading to the reduction in the efficiency of the

photodegradation process. There were similar results in the
previous reports (Liu et al., 2010a,b).

3.4.2. Effect of the amount of CuBi>O4 on the photocatalytic
activity of (x wt% ) CuBi>0,/Sn0,

The effect of the amount of CuBi>,O4 on photocatalytic degra-
dation of CR was conducted over a range of catalyst amounts
from x =0 to x = 100 wt%. As observed in Fig. 7 and
Table 3, it is evident that the photocatalytic redox of CR
greatly depends on the amount of doped CuBi,O4. The photo-
catalytic activity increased drastically from 25.62 to 58.06% as
the catalyst amount was raised from x = 0 to x = 5wt%.
Upon further increase in the CuBi,O4 amount beyond
x = 5wt%, the photocatalytic activity decreased gradually,
almost reaching 3.13% at x = 100 wt%. The maximum photo-
catalytic activity of (x wt%) CuBiO4/SnO, (58.06%) under
UVA light irradiation was achieved within 100 min of light
illumination time when the amount of doped CuBi,O4 x was
5 wt%, which is obviously about 2.3 times higher than the
value of 25.62% over pure SnO,. So there is an optimum
CuBi,0,4 contents for high dispersion morphology of nanopar-
ticles CuBi,O4 on the SnO, surface with high activity. The
effective electron—hole separation both at the physically
bonded interfaces and in the two semiconductors as well as
charge defect during the physical mixing method was believed
to be mainly responsible for the remarkably enhanced photo-
catalytic activity of (5 wt%) CuBi,O4/SnO, in the course of
the photocatalytic redox conversion of CR. But until now,
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Table 4 Kinetic parameters of photocatalytic degradation of CR on (5 wt%) CuBi;O,4/SnO,, compared to the pure and combined
catalyst systems ([Catalyst]=0.5g/L, [CR] =20mg/L, pH =8, T = 298K, Jmax = 365nm, 7= 90J/cm® and irradiation

time = 100 min).

Systems Adsorption activity n (%) Photocatalytic activity n’ (%) K, (min~") t1)> (min) R? (%)
CR/UV-A - 0.49 - - -
CR/SnO,/UVA 2.92 25.62 0.0045 154.032 0.945
CR/CuBi,O4/UVA 0 3.130 0.0002 3465.736 0.203
CR/(5 wt.%)CuBi,04-SnO,/UVA 31.38 58.06 0.052 13.329 0.991

Table 5 Absolute electronegativity, estimated band gap,
energy levels of calculated conduction band edge, and valence
band at the point of zero charge for p-CuBi,O4 and n-SnO,.

Systems 72 (@€V) A(nm) Eg(eV) Ejc V) B (V)
p-CuBi,O, 4.75 900 1.38 —0.44 +0.94
n-SnO, 6.25 345 3.59 —0.05 +3.55

there are no reports about synergistic effect between SnO, and
CuBi,0y in the (5 wt%) CuBi,04/SnO, nanocomposite under
visible light excitation. From Fig. 7, it is clear that the photo-
catalytic activity of SnO, is significantly increased under the
presence of an amount of CuBi,O4 (5 wt%) compared to pure
SnO, and the CuBi>O4 samples. These results strongly suggest
the existence of a synergistic effect between SnO, and the
CuBi,0y in the (5 wt%) CuBi,O4/SnO, nanocomposite under
UVA light excitation.

However, at higher amount of doped CuBi,0O4 than 5 wt%,
the photocatalytic redox activity of (x wt%) CuBi,O4/SnO,
photocatalyst was obviously decreased on further increase in

the amount of CuBi,O4. Thus, such an above occurrence in
the present experiment is primarily attributed to overlapping
of adsorption sites of SnO, particles as a result of overcrowd-
ing of the CuBi,O4 granule owing to the decrease in screening
effect and interfering of light. Similar trends were reported in a
series of p—n heterojunction photocatalysts p-CuBi,O4/n-TiO,
(Lin et al., 2008) and CuBi,O4/BiVO, (Masami et al., 2013)
with high photocatalytic activity under visible and UV light
irradiation.

3.4.3. Effect of UV light and catalyst

The photocatalytic activities of all three CuBi,O4, SnO, and
(5 wt%) CuBiy04/SnO, photocatalysts were assessed by the
photocatalytic redox reaction of Congo red (CR) aqueous
solution under UVA light irradiation. Variations of CR
reduced concentration (C/Cy) versus visible-light irradiation
time over different catalysts under different experimental con-
ditions through alone (CR self-photolysis), CuBiO4/UVA,
SnO,/UVA and (5 wt%) CuBi,O4/SnO,/UVA are presented
in Fig. 8. The synergistic effect between SnO, and CuBi,O4
in the (5wt%) CuBi,O4/SnO, nanocomposite under UVA
light excitation showed that (5 wt%) CuBi,04/SnO, exhibited
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higher photocatalytic efficiency, as compared to the single
phases CuBi,O; and SnO,. The highest efficiency was
obtained, under UVA light irradiation over (5 wt%) CuBi,O4/
SnO,, as a result of 58.06% degradation of CR for 100 min of
irradiation time. However, the photocatalytic degradation of
CR over single phases CuBi,O4 and SnO, was only 3.13 and
25.62% respectively. With 20 mg/L of CR in the direct photol-
ysis for the same optimum irradiation time, disappearance of
dye was negligible (0.49%). On the basis of these results, the
high decomposition of CR dye in the presence of (5 wt%)
CuBi,04/Sn0, catalyst is exclusively attributed to the photo-
catalytic reaction of the combined semiconductor particles
under UVA light irradiation. As known, one of the basic
requirements for the combined photocatalysts with a higher
activity is the presence of the tightly physically bonded or close
contact interfaces between the two materials, by which the
photoinduced charge transfer from one particle to the other
via interfaces spatially is available. Thus, such an above occur-
rence in the present experiment is primarily assigned to the
charge defect during the physical mixing method, which is
advantageous for the effective electron—hole separation and
the suppression of the recombination rate of the photogenerat-
ed charge carriers; hence result in an improvement of the prob-
ability of light-generated carriers transfer via interfaces
spatially available. A similar result was reported in the hetero-
junction semiconductor SnO,/SrNb,O¢ with an enhanced pho-
tocatalytic activity (Gurlo, 2006).

3.4.3.1. Kinetic modeling. The photocatalytic degradation of
CR over different experimental conditions is displayed in
Table 4. As it can be seen, the straight lines for the entire

as-prepared samples of the plots of In C/Cy versus t with high
regression coefficients (R* = 0.945-0.991), for the pseudo-
first-order kinetic model strongly suggest that all the photo-
degradation systems were a pseudo-first-order model. Excep-
tion was observed in the cases of direct photolysis and
photocatalysis reaction in the presence of the single phase
CuBi,Oy respectively.

3.5. Discussion of mechanism

The above analysis shows that the migration direction of the
photogenerated charge carrier depends on the band edge posi-
tions of the two semiconductors. There are three methods to
determine the band edge positions: experiments based on pho-
toelectrochemical techniques, calculation according to the first
principle, and predicting theoretically from the absolute (or
Mulliken) electronegativity (Kim et al., 1993; Butler and
Ginley, 1978; Xu and Schoonen, 2000). The first one is not
always easy to handle, and the second one cannot obtain the
absolute energy of band edges with respect to vacuum and
always has large discrepancies between calculated and mea-
sured values. The third one is a simple approach with reason-
able results for many oxide photocatalysts (Xu and Schoonen,
2000). The conduction band edge of a semiconductor at the
point of zero charge (pHzpc) can be predicted by Eq. (13):

El; =y — Ec — 1/2Eg. (13)

where y is the absolute electronegativity of the semiconductor
(yx is 4.75 eV and 6.25 eV for p-CuBi,O4 and n-SnO,, respec-
tively). EC is the energy of free electrons on the hydrogen scale
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(4.5 eV) and Eg is the band gap of the semiconductor. The pre-
dicted band edge positions of CuBi,O4 and SnO, by the above
equation are shown in Table 5. Photocatalytic reaction pro-
ceeds owing to holes and electrons generated in materials by
absorbing light energy. The photogenerated holes have oxida-
tion ability and the photogenerated electrons have reduction
ability. For decomposition of organic pollutants by photocat-
alytic reaction, the oxidation potential of hole needs to be
more positive than+ 1V that is redox potential of general
organic compounds as well as of hydroxyl radical (E, (H,O/*
OH)) = 2.8 V/NHE at pH 7). In addition, the redox potential
of electrons needs to be more negative than that of superoxide
radical (Ey (0,/O57)=-0.28 V/NHE at pH 7).

Fig. 9 depicts reaction schemes of CuBi,Oy4 (a) and SnO, (b)
as the p and n type respectively for charge separation for the
reductivity/oxidizability improvement model. CuBi,Oy is a p-
type semiconductor, which always exhibits good stability under
UVA visible illumination, and SnO, is determined as an n-type
material. It was reported previously that that the band gap of
CuBi;04 is 1.38 eV, which can be excited by photons with
wavelengths below 900 nm, whereas SnO, with band gap of
about 3.59 eV can be excited by photons with wavelengths of
345nm. Under UVA (Ayva = 355-375nm — Eg_ = 3.3-
3.49 eV) light irradiation, the energy of the excitation light is
sufficient to directly excite the CuBi,O4 (4 = 900 nm — E-
g = 1.38 eV) semiconductor and it is large enough to yield a
higher energy level of SnO, (1 = 345nm — Eg = 3.59¢V)
portion of the photocatalyst.

According to the band edge position (Table 5), for the p-
CuBi,0, alone (Fig. 9 a), the electronic potential of the con-
duction band of p-CuBi,O, is around —0.44 eV/NHE at pH
7 which is more negative than that of superoxide radical (Eg
(0,/Oy7) = —0.28 V/NHE at pH 7). This indicated that the
electron photoproduced at the conduction band directly
reduced O, into O,". These reduced O, can subsequently
transfer the charge to the species present in the reaction med-
ium that is preferentially adsorbed onto the p-CuBi,Oy4 parti-
cles. Hence, the superoxide radical (O,”) reduces the
recombination of the charge carriers enhancing the activity
in the UVA light. However, the p-CuBi,O,4 valence band of
+0.94 eV/NHE at pH 7, is too negative than that of hydroxyl
radical (E; (H,O/"OH)) = + 2.8 V/NHE at pH 7). The holes
photogenerated in the p-CuBi,O4 are not able to oxidize
H,O0 to "OH.

p-CuBi,O4 powder formed in our laboratory by the solid-
state reaction of CuO and a-Bi,O5 at 750 °C for 24 h, exhibits
a black color. The presence of non stoichiometric regions of
the nominally p-CuBi204 particles or small domains of binary
oxide phases of Cu,O or Bi,O, undetected by XRD data, as
unstable impurity phases which could be originated from a
number of processes such as reduction of the p-CuBi,Oy, could
be responsible for higher recombination rates. Thus, the result
is consistent with the previous study in the electrochemical syn-
thesis and characterization of p-CuBi>Oy4 thin film photocath-
odes (Magesh et al., 2009). Therefore, CuBi,O4 alone shows
negligible photocatalytic activity under UVA light. As a result,
less efficient charge-carrier separation, and thus the increment
of photocatalytic activity were restricted (Elaziouti et al.,
2012).

For pure n-SnO, (Fig. 9b) which is only effective under
ultraviolet irradiation (4 = 345 nm), shows little photocata-
lytic activity under UVA light. These observations can be

explained as follows: The reduction of Sn™* to Sn™? requires
a potential of +0.15 V/NHE at pH 7 and the oxidation of
Sn*2to Sn"* needs —0.15 V/NHE at pH 7. The SnO, valence
band of SnO, is around +3.55¢eV (vs. NHE at pH 7) which is
more positive than Sn*? to Sn** oxidation potential. The
valence electron of SnO, can hence oxidize Sn*2 to Sn™*.
But the conduction band of SnO, has a potential of
—0.05eV/NHE at pH 7, which is more negative than Sn™*
to Sn "2 reduction potential. Hence, the conduction band elec-
trons of SnO, may be able to reduce Sn** to Sn*% These
reduced Sn*? and oxidized Sn™* species can subsequently
transfer the charge to the species present in the reaction med-
ium. Hence, the Sn ions can suppress the recombination of the
charge carriers, enhancing the activity in the UVA light.

In contrast, (5 wt%) p-CuBi,O4/n-SnO, composite exhibits
a higher photocatalytic activity compared to that of single
photocatalyst (p-CuBi,O4 and n-SnO,). To overcome the
recombination problem of composite photocatalyst while
maintaining its high efficiency, an artificial z-scheme photocat-
alytic system, which mimics the z-scheme in the natural photo-
synthesis of green plants (Sasaki et al., 2008) has been
suggested for p-CuBi,O4/n-SnO, composite mediated photo-
catalytic degradation of Congo red as probe pollutant. The
solid state z-scheme mechanism, in which two UVA light sen-
sitive photocatalysts, p-CuBi,O,4 and n-SnO, in our case, with
different levels of band gap energy Eg, is utilized without any
intermediates. This system, however, cannot be considered to
be a genuine z-scheme under irradiation by visible light
because bare n-SnO», can only generate electrons when irradi-
ated with UV light (Hyeong et al., 2011). The z-scheme photo-
catalysis system diagram is depicted in Fig. 10.

So, when p-type semiconductor CuBi,O4 and n-type semi-
conductor SnO, were connected to each other, a number of
micro p—n heterojunction CuBi,O4/SnO, will be formed
between p-CuBi,O4 powder and n-SnO, granule at the inter-
faces of p-CuBi,O4 loaded n-SnO, composite. According to
the band edge position (Table 5), the electronic potential of
the conduction band of n-SnO; is slightly more anodic than
that of p-CuBi,Oy4, whereas, the hole potential of the valence
band top of n- SnO,, is more positive than that of p-CuBi,Oy,.
The electron—hole pairs will be created under UVA light illu-
mination. The electrons that are photogenerated by n-SnO,
are transferred to the valence band of p-CuBi,O4. These elec-
trons then recombine with holes photogenerated at p-CuBi,Oy.
The electrons that are excited at p-CuBi,O4 then have a suffi-
ciently high potential to participate in the reduction step of the
reaction. By taking advantage of a combination of p-CuBi,Oy4
and n-SnQO,, the probabilities of electron—hole recombination
would be decreased significantly, thus resulting in more elec-
trons available on CuBi,04 surface and a larger amount of
holes on SnO, surface acting as powerful oxidants respectively
(Egs. 14, 15). The stepwise photocatalytic mechanism is illus-
trated below:

p-CuBizO4/n-SnOz + hv
— p-CuBi,04 (e + hihy)/n-SnOs(eqe + hyy) (14)
— p-CuBi,04(epc) /n-SnO, (hyy ) (15)

The electrons at the conduction band of p-CuBi,O4 react with
the adsorbed molecular Oj,4s. on the p-CuBiO4/n-SnO,
catalyst sites, reducing it to superoxide anion (O35 .q4),
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hydroperoxide (HO, .4s) radicals and hydrogen peroxide
(H>05 .45) (Egs. (16)—(18)), while the holes at the valence elec-
tron of n-SnO, can directly oxidize the CR dye H,O molecules
adsorbed on the photocatalyst surface forming the organic
cation-radicals (Ry4s) (Eq. 20) and hydroxyl radicals (OH)
(Eq. 19). These processes could be represented in the following
equations:

e + 02 uas. = 04 g (16)
O3 445 T 2H20445s — HO3, 4o + OHugs (17)
HO3, 45 + H20u4s — H2O2445 + OHugs (18)
H,0,q +h" — OHyq, (19)
Rugs +h" — Ry " (20)

The peroxide (H,03.45), hydroxylic ((OH,q4s), hydroperoxide
(HO3,45) and organic cation-radicals (R;) formed on the illu-
minated p-CuBiO4/n-SnO, catalyst surface via z-scheme
mechanism are highly effective oxidizing agent in the p-CuBi,.
04/n-SnO, composite mediated photocatalytic oxidation of
Congo red Eq. (21).

(H20244s," OHags, Ofgss Rigs ) + CR dye
— degradation of the CR dye (21)

On the basis of the above results, photogenerated electron
transfer between p-CuBi,O4 and n-SnO, photocatalysts is the
rate-determining process in the solid state z-scheme photocat-
alytic system. Recently, Sasaki et al. had a surprising success
in fabricating an overall water-splitting system driven by
z-scheme interparticle electron transfer between H,- and O,-
photocatalysts (Ru/SrTiO,: Rh-BiVO,) without a redox medi-
ator (Sasaki et al., 2009; Iwase et al., 2011). Hyeong et al.
reported on a novel strategy for generating H, fuel via an arti-
ficial photosynthesis system mimicking the z-scheme operation
under visible light. They combined two visible sensitive photo-
catalysts, TiO; 96Co.04 and CdS which are used of this combi-
nation, that is, CdS/Au/TiO;96Co 4. The system produced
about a 4 times higher amount of H, under irradiation by
visible light than CdS/Au/TiO, (Hyeong et al., 2013).

4. Conclusions

Novel p-CuBi,04/n-SnO, nanocomposite photocatalysts with
different mass ratios were synthesized with the solid state
method, and were characterized by a number of techniques
such as X-ray diffraction (XRD), scanning electron micros-
copy (SEM) and UV-Vis diffuse reflectance spectroscopy
(DRS) technique. The as-prepared p-CuBi,O4/n-SnO, photo-
catalysts were assessed based on the photodegradation of
Congo red (CR) dye as a probe reaction under UVA
(365 nm) light irradiation. Experimental results indicated that
the phase composition, surface morphology of particles, and
optical absorption of the sample were found to vary signifi-
cantly with the mass ratios and pH medium. The p-CuBi,Oy/
n-SnO, photocatalyst exhibited a higher photocatalytic redox
activity than single phases CuBi,O4 and SnO,. The photodeg-
radation reactions were satisfactory correlated with the
pseudo-first-order kinetic model. The highest efficiency was
observed at 5 wt% p-CuBi,O4 content as a result of 58.06%
of photoactivity for 100 min of exposure irradiation under
UVA light at pH 8 and 25°C. The effective electron—hole

separation at the physically bonded interfaces was believed
to be mainly responsible for the remarkably enhanced photo-
catalytic activity of 5 wt% CuBi,O4/SnO, in the course of
the photocatalytic redox conversion of CR. The presence of
the tightly physically bonded or close contact interfaces largely
performed via hydrophobic effect between guest molecules on
the composite surface and/or H-bonding by which the photo-
induced charge transfer from one particle to the other through
interfaces spatially is available, leading to a strong photocata-
lytic redox of CR at pH = 8. The efficient electron—hole sepa-
ration process in z-scheme mechanism under UVA light
irradiation was considered to be mainly responsible for the
obviously improved photocatalytic activity of (5 wt%) CuBi,.
04/Sn0O; catalyst in the course of the photocatalytic redox con-
version of Congo red.
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