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ABSTRACT

Objectives: Failure of chemical control methods in conferring protection against Cercospora leaf spot
(CLS) disease in mung bean crop led to the investigation of biocontrol agents for effective management
of the CLS. The current study was focused on increased defense response (histochemical and biochemical)
in mung bean plants by alginate pellet formulation of endophytic Amycolatopsis sp. SND-1 (SND-1)
against CLS disease.

Methods: The sodium alginate bioformulation of SND-1 was prepared by standard method using CaCl2
and evaluated for viability and contamination. Greenhouse study of prepared SND-1 formulation was
performed on mung bean plants against CLS infection. Further, the acceleration of histochemical deposi-
tions (lignin, H,0, and phenol) by differential staining methods and biochemical defense enzymes like
PAL, GLU, and POX, phenolic, flavonoid and chlorophyll contents and cell death analysis were evaluated
through microscopic and spectroscopic studies.

Results: The viability assay of the prepared formulation exhibited a negligible reduction in SND-1 spores
(99.5% to 86.55%) throughout the six months of storage period. In-vivo (Greenhouse) study exhibited
increased growth parameters in alginate pellet formulation of SND-1challenged with Cercospora patho-
gen (SND-1+Pathogen) treated mung bean plants in comparison with Control (SDW) and only pathogen
infested plants. Consequently, the plants with SND-1+Pathogen treatment showed significant reduction
in disease severity up to 56%. Furthermore, the microscopic evaluation of histochemical defense markers
depicted increased deposition of lignin (82.43+0.31%), H,0, (47.9710.66%), and phenol (76.74+0.79%) and
cell death analysis through microscopic observation exhibited lesser dead cells of 31% in SND-1+Pathogen
treatment in comparison with other treatments. Defense patterns at biochemical level hinted the eleva-
tion in activities of defense enzymes like PAL, GLU and POX at 12 and 24 h post pathogen inoculation
(hpi) in SND-1+Pathogen treatment. The formulation treatment with pathogen (SND-1+Pathogen) also
substantiated that enhanced total phenolic, flavonoid, and chlorophyll contents at different time inter-
vals.
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Conclusions: Overall the present investigation showed that Amycolatopsis sp. SND-1 formulation confers

the protection in mung bean upon Cercospora infection and it might be an effective eco-friendly approach

towards sustainable agriculture.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mung bean is a foremost legume crop growing predominantly
in Asia and worldwide. Over 7 million hectares were recorded for
the mung bean crop alone (Nair et al.,, 2019). The seeds of mung
bean are rich source of proteins, antioxidants, and fiber. The sprout
contains abundant niacin, thiamine, and ascorbic acid profile. The
seeds and sprouts of the mung bean are excellent source of miner-
als such as magnesium, phosphorus, calcium and iron (Itoh et al.,
2006). A recent estimation of yield consistency on mung bean
exhibited a reduction in the total production from 2.5 to 3.0
tons/hectare to 0.5 tons/hectare, and abiotic and biotic constrain
were considered as significant cause of the yield reduction
(Pratap et al.,, 2019). Among the biotic stresses the CLS disease
caused by the deuteromycete fungus Cercospora canescens (C.
canescens) is the most devastating entity which shows maximum
yield loss. The CLS is a foliar disease and showed high yield loss
in 50-70% and up to 96% in mung bean cultivation (Rafiq et al.,
2022). The symptoms shows water soaked spots with grey borders
and can affect leaf, petiole, pods and cause severe damage. Apart
from the aggressiveness of the pathogen, the susceptible nature
of the mung bean varieties and long term survival capability (Dor-
mant mycelium in plant debris as primary inoculums) of the
pathogen play significant affecting nature. The application of
chemical fungicides poses chemical contamination and pollution,
and repeated adaptation of these fungicides develops resistance
in pathogens. An alternative eco-friendly method for controlling
these diseases and improving the resistance in mung bean plants
is a much-needed strategy to achieve sustainable cultivation. Bio-
logical control is the eco-friendly strategy of controlling the plant
diseases that shows employment of beneficial living organism to
counteract the specific or targeted plant pathogen with. This strat-
egy includes the pathogen and disease control through the antibio-
sis, parasitism and resource competition (El-Tarabily et al., 2009).

Bioformulations developed with beneficial microbes (Bacteria,
actinomycetes, and non-pathogenic fungi) can trigger the defense
mechanisms and reduce the pathogen’s multiplication and severity
of diseases. Several studies reported that actinomycetes (Soil and
endophytic) play an essential role as antifungal agents and elicit
the induced systemic resistance in different crop plants (Bhat
etal., 2022; Sreenivasa et al., 2020). Endophytic actinomycetes col-
onize the different tissues (obligate or facultative) in plants and
create the symbiotic relationship. Furthermore, the colonized acti-
nomycetes play significant role in plant defense enhancement and
survival strategies during biotic and abiotic stresses
(Gopalakrishnan et al., 2019). The development bioformulations
through the encapsulation of plant growth promoting microbes
exhibits the protection, prolonged and controlled release of the for-
mulated microbes’ spores. The encapsulation of microbes through
sodium alginate is the most convenient for its rapid diffusion of the
spores and compounds preferable for large scale application. More-
over, the alginate bioformulations shows high adsorption, excel-
lent carrier and harmless to the environment (Miyada et al.,
2017). El-Tarabily et al. (2009) reported increased plant growth
and decreased severity of Pythium disease in cucumbers by
glucanase-producing endophytic actinomycetes through the accel-
eration of induced protection. In another study, significant plant
growth enhancement was observed when plants were exposed to
stress conditions with the endophytic Amycolatopsis pittospori sp.

nov., Amycolatopsis sp. BCA-696, and Streptomyces rochei strain
PTL2 in rice, sorghum and tomato plants (Onuma and
Christopher, 2021; Gopalakrishnan et al., 2019; Ting et al., 2017;
Miyada et al, 2017). In another report Sabarathanam et al.
(2015) studied the significant biocontrol activity of Streptomyces
sp. strain Di-944 formulation (Alginate-Kaolin-based) against
damping-off severity in tomato plants. Several actinomycetes
based formulations such as ‘Mycostop’ (Streptomyces griseovirids
K61 strain) for soil and seed borne fungal diseases, ‘Actinovate’ reg-
istered for control of Pythium ultimum and Rhizoctonia solani and
PGP trials, ‘Mykocide KIBC' registered in South Korea for control-
ling of brown pacth, powdery mildew and grey mold diseases
and ‘Actofit’, ‘Incide SP’ and ‘Actin’ are used for the control of
diverse diseases of the crop plants in Ukraine, USA and in India
were commercially available in the market (Churasia et al. 2018).

Plant defense response is initiated at the cellular level by
depositing frontline defense barriers (lignin, hydrogen peroxide
and phenol) in cell walls (Sudisha et al., 2020). Deposition of
increased lignin in plant’s cell walls was reported to block the
pathogen invasion (Milan et al., 2021). Another barrier, H,0,, and
phenol effectively induced the mechanism of programmed cell
death of plant pathogens (Singh et al., 2021). Several researchers
have found that acceleration in the activity of these enzymes can
significantly counteract the pathogen. In another report, formula-
tion of endophytic Streptomyces spp. elicited the PAL, GLU and
POX resulted in the suppression of S. rolfsii in chickpea, M. phasi-
olina in mung bean, Phytopthora megakarya in cocoa plants
(Singh et al., 2021; Sangeetha et al., 2018; Aristide et al., 2022).
The S. rimosus and S. monomycini increased the phenolic and flavo-
noid contents that showed effective inhibition of damping-off dis-
ease causing pathogen P. drechsleri in cucumber plants (Akram
et al., 2017). Considering the noteworthy literature of actino-
mycetes formulations, the current study performs the effect of bio-
formulation of endophytic Amycolatopsis sp strain SND-1 on the
acceleration of plant growth against Cercospora disease in mung
bean and elicitation of resistance at histochemical and biochemical
levels.

2. Materials and methods

2.1. Collection of actinomycetes strain, pathogen, and mung bean
variety

For the current study, the previously identified Amycolatopsis
sp. strain SND-1 (SND-1) with Accession No-OM807224 and char-
acterized for production of indole acetiac acid (IAA), gibberellic
acid (GA3), Cytokinin, Siderophore, hydrogen cyanide (HCN),
Ammonia and phosphate solubilization and plant growth promo-
tion in mung bean was selected (Basavarajappa et al., 2023). The
highly susceptible variety of mung bean seeds (DGGV-2) and
pathogen Cercospora canescens were collected from University of
Agricultural Sciences (UAS), Dharwad, Karnataka, India.

2.2. Preparation of sodium alginate pellet formulation

Final density of SND-1 spores ~ 10° CFU mL~! was adjusted by
the cell count method. The sodium alginate pellets formulation of
SND-1 was prepared according to Miyada et al., (2017). Finally, the
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dried SND-1 pellets were evaluated for the spores at ~ 2x10° CFU
g~ 1. The prepared sodium alginate SND-1 formulation was stored
with the double distilled water in the sterilized container for fur-
ther experimental use.

2.3. Purity and viability of pellet formulation

The purity and viability assay of SND-1 formulation was done
according to Miyada et al., (2017), by cell counting plate method
(CFU g ). All the viability trials were performed in triplicates for
statistical significance (Miyada et al., 2017).

2.4. Pathogen inoculums preparation

Inoculums of C. canescens pathogen were prepared according to
(Gopalakrishnan et al., 2019) and final spore load (10° CFU mL™!)
was adjusted.
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2.5. Greenhouse study

The growth promotion and biocontrol assay was conducted
under controlled greenhouse (in-vivo) conditions during the pre
monsoon season (May to July) with the pots (15 x 10 cm) filled
with sterilized soil, farm yard manure and sand (1:1:2). The dried
SND-1 alginate pellets (0.14 g) were added to the soil around the
seed inoculation area by soil drench method. Then the mung bean
seeds were surface sterilized with 2% sodium hypochlorite (NaOCl)
for 2-5 min, and then multiple times with SDW and sowed (4
seeds per pot). The inoculation of the pathogen was performed
for two weeks old mung bean plants by spraying the final spore
load for 5 consecutive days at early morning conditions. The tripli-
cate trials of each treatment were considered for statistical analy-
sis. After 35 days, the plants belonging to individual treatments
were uprooted and subjected to evaluate growth parameters. Dis-
ease severity assessed by employing the 5-class scale which
includes measurements such as O=no cerspora symptoms, 1=0-
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Fig. 1. Purity and viability assay: (A-F) Spore viability of sodium alginate formulation of SND-1 strain, evaluated up to 6 months (1 month interval) of storage period. (G)

Histogram representing % of viability of sodium alginate formulation of SND-1.
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25% of Cercospora symptoms, 2=26-50% of Cercospora symptoms,
3=51-75% Cercospora symptoms and 4=76-100% Cercospora
symptoms and the values were converted into percentage. Finally,
each treatment’s disease severity was measured using the follow-
ing formula.

DSI% =Y (R x N) x 100/HT x T
(R = Disease rating and N = Number of mung bean plants.

H = Highest disease rating, and T = Total number of plants).

2.6. Assessment of induced systemic resistance

The induced systemic resistance in treated mung bean plants
was analyzed histochemically through the localization of lignin,
hydrogen peroxide (H,0,), and phenol. Biochemical defense pat-

Control (SDW)

Control + Pathogen
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terns were evaluated by measuring the activity of antioxidant
enzymes like PAL, POX and GLU in the leaf epidermis. Each exper-
iment was performed with fresh leaves (1 g) from each treatment
at specified time intervals of hours after post pathogen inoculation
(hpi).

2.7. Microscopic observation of cell wall depositions

Deposition of lignin was assessed according to Milan et al.
(2021). The leaf peelings were observed for lignin deposition (red-
dish brown depositions) under a microscope (OLYMPUS, CX23) at
40 X magnification and deposition percentage (cells) was calcu-
lated. The H,0, deposition was examined by using 3, 3-
Diaminobenzidine (DAB) and phenol deposition in each treatment
was performed according to Milan et al. (2021) using 0.05% tolu-

SND-1 SND-1 + Pathogen

Fig. 2. Effect of SND-1 sodium alginate formulation on mung bean plants under greenhouse conditions: (A) Growth patterns of mung bean plants upon different treatments,
(B) Increased root length among the different treatments and (C) Disease severity among the different treatments.

Table 1

Effect of SND-1 sodium alginate formulation on mung bean growth parameters under controlled greenhouse conditions.
Treatments Root length (cm)  Shoot length (cm)  Root fresh weight (g)  Shoot fresh weight (g)  Total dry weight (g)  DiseaseSeverity(%)
Control (SDW) 10.6 £ 0.3 27.06 = 0.25 1.21 £ 0.02 2.23+0.15 0.59 + 0.03 55.2
Control+Pathogen 8.3 + 0.30 19.93 £ 0.55 0.81 £ 0.02 1.97 £ 0.03 0.42 + 0.03 88.19
SND- 1 11.27 £ 0.29 27.62 +0.52 1.53 £0.28 2.62 £0.25 0.62 + 0.04 8.85
SND-1+Pathogen 13.9 £ 0.04 30.05 £ 0.31 1.79 £ 0.05 3.34 £ 0.55 0.76 + 0.03 43.63
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Control (SDW)
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SND-1 +Pathogen

Fig. 3. Histochemical depositions in treated mung bean plants: (A) Lignin deposition in leaves and leaf epidermis (reddish brown deposition along the cell wall) stained with
phloroglucinol at 24 hpi. (B) Visualization of hydrogen peroxide (H,0,) deposition (brown color deposition along the cell wall) in leaves and leaf epidermis upon staining with

DAB at 24 hpi.

idine blue staining technique. The % cell death was evaluated using
trypan blue staining method (blue color depositions).

2.8. Estimation antioxidant defense enzymes

The enzyme extract obtained from the homogenized leaf sam-
ples was used as an enzyme source, and at respective time inter-
vals. The Phenylalanine ammonia-lyase (PAL) activity was
estimated using a spectrophotometer (Shanghai Metash Instru-
ments Co., Ltd., Shanghai, China) at 290 nm and B-1,3-glucanase
(GLU) activity was evaluated spectroscopically at 540 nm using
laminarin (1%). The Peroxidase (POX) quantification was done
using the substrate guaiacol (25%) and the activity was at
470 nm. Peroxidase and GLU activities were expressed in units/
mg protein/min (Milan et al., 2021).

2.9. Estimation of phenolic, flavonoid, and chlorophyll content

The phenolic content was quantified spectrophotometrically
according to Vernon et al. (1993) by Folin-Ciocalteu (FC) method
by measuring the absorbance at 765 nm. Flavonoid quantification
was performed using aluminum chloride method and recorded
the absorbance at 425 nm. The chlorophyll content was estimated
using N, N'-dimethylformamide (DMF) and absorption spectra was
recorded between 350 and 750 nm (Natale et al., 2023).

2.10. Statistical analysis

The viability assay, histochemical depositions and biochemical
tests were performed in triplicates trials and results were tabu-
lated as Mean + Standard deviation (SD).

3. Results
3.1. Purity and viability of pellet formulation

The prepared sodium-alginate pellet formulation of SND-1
exhibited alginate beads with the 0.3 mm of approximate size
and stored in sterilized container with distilled water. The SND-1
pellet formulation showed there is no contamination and a slight
decrease up to 6 months storage period (Fig. 1 A-F). It was recorded
2 x 10° CFU g~! (99.5%) up to 30 days from the day of formulation
preparation and reached 1.73 x 10° CFU g~ (86.5%) after 6 months
of storage period (Fig. 1 G).

3.2. Greenhouse study

In-vivo growth promoting and biocontrol assay (after 35 days of
the greenhouse study) showed significant increase in growth
parameters and less disease severity (DSI) in alginate pellet formu-
lation treated mung bean plants (Fig. 2A) in comparison with con-
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Control (SDW)

Control +Pathogen
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SND-1 SND-1 +Pathogen

A
l:v;gt

Fig. 4. Histochemical deposition and cell death analysis in mung bean plants: (A) Deposition of phenol in mung bean leaves and leaf epidermis (greenish blue deposition
along the cell wall) upon staining with toluidine blue at 24 hpi. (B) Detection of cell death in mung bean leaves and leaf epidermis staining with trypan blue (dark blue stain
represents dead cells). The results were displayed by considering the necrosis spot and compared with complete leaf blade surface.

trol and pathogen treatments (Table 1). The plants treated with
SND-1+Pathogen exhibited root length 13.9 + 0.04 cm, shoot length
30.05 + 0.31 cm, root fresh weight 1.79 + 0.05 g, shoot fresh weight
3.34 + 0.55 g and 0.76 £ 0.03 g of dry weight (Fig. 2B). Whereas
minimum root length of 8.3 £+ 0.30 c¢cm, shoot length of 19.93 +
0.55 cm, root fresh weight of 0.81 + 0.02 g, shoot fresh weight of
1.97 £ 0.03 g and 0.42 + 0.03 g of total dry weight. In the treatment
with only SND-1 formulation and Control (SDW) the moderate
growth parameters were observed. The biocontrol efficacy of
SND-1 alginate formulation was assayed by calculating the disease
severity (Table 1) in comparison with all the treatments and very
low severity 43.63% in SND-1+Pathogen was recorded. In only
SND-1 formulation treatment it was observed 8.85%, and disease
severity of 55.2% was noticed in Control (SDW) plants and highest
88.19% of disease severity was found in only pathogen treated
plants (Fig. 2C).

3.3. Evaluation of cell wall depositions

Microscopic observation of stress-responsive defense markers
such as lignin, H,0, and phenol deposition resulted maximum
deposition of lignin 82.43 + 0.31% at 24 hpi in SND-1+Pathogen
treatment and in only SND-1 formulation treated plants it was
found that 68.07 = 0.27% at 24 hpi. Lignin localization in Control
+Pathogen treatment showed 33.16 + 0.27% lignin at 24 hpi and
Control (SDW) plants exhibited a very low accumulation of 27.17

+ 0.30% at 24 hpi (Fig. 3A). The early deposition of H,O, was

observed at 4 hpi and reached 47.97 + 0.66% at 24 hpi was
observed in SND-1+Pathogen treatment and in SND-1 formulation
only it was found that 43.08 + 0.19% at 24 hpi (Fig. 3B). The plants
received Control+Pathogen showed maximum 23.28 + 0.43% of
deposition of H,0, at 24 hpi and in control (SDW) treatment it
was exhibited 21.12 + 0.18% of H,0, accumulation at 24 hpi.

The deposition of phenol was noticed early (at 4 hpi) and max-
imum phenol accumulation 76.74 + 0.79% at 24 hpi was observed
in SND-1+Pathogen received plants (Fig. 4A). A fair amount of phe-
nol deposition with 45.33 + 0.34% and 37.00 + 0.26% was detected
in only SND-1 formulation as well as in Control+pathogen treated
plants. The Control (SDW) treated plants showed delayed accumu-
lation of phenol 33.48 + 0.45% 24 hpi. Trypan blue staining method
revealed that highest percentage of cell death (65%) in pathogen
treated and 53% in Control (SDW) mung bean plants (Fig. 4B).
Where as in only SND-1 formulation treatment 41% of cell death
and significant reduction in cell death 31% was observed
SND-1+Pathogen treatment. The time course analysis of histo-
chemical depositions was graphically represented in Fig. 5 A-C.

3.4. Estimation of antioxidant defense enzymes

The PAL activity in SND-1+Pathogen was initiated at early (0 h)
after pathogen inoculation and maximum activity 45.48 U was
observed at 24 hpi (Fig. 6A). The only SND-1 formulation treated
plants showed 42.25 U of PAL activity at 24 hpi. PAL activity in
Control+Pathogen treated plants showed no activity up to 4 hpi
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Fig. 5. Histogram representing histochemical depositions in treated mung bean plants: (A) Time course analysis of lignin deposition. (B) Time course analysis of H,0,

deposition. (C) Time course analysis of phenol deposition.

and maximum activity 9.54 U was recorded at 24 hpi. Where as in
Control (SDW) treatment the highest PAL activity was recorded
4.79 U at 24 hpi. The varied activity of GLU was found in performed
treatments and highest GLU activity 14.54 U at 24 hpi was exhib-
ited in plants treated with SND-1+Pathogen at 24 hpi (Fig. 6B). A
progressive increase in GLU activity and maximum 12.13 U was
recorded in SND-1 alone treatment at 24 hpi. The plants treated
with Control+Pathogen showed 9.05 U of GLU and in control
(SDW) showed delayed activity of GLU 6.02 U at 24 hpi and was
declined drastically at later time intervals. The increased 21.21 U
of POX activity at 24 hpi was obtained in the SND-1+pathogen
treatment (Fig. 6C). Whereas SND-1 only treatment exhibited max-
imum POX activity 19.17 U at 24 hpi respectively. Control+Patho-
gen treatment displayed 5.2 U of POX activities at 24 hpi, whereas
Control (SDW) treatment the elevated POX activity 3.32 U was
observed at 24 hpi and later there was gradual decrease in the
POX activity was noted up to 72 hpi.

3.5. Estimation of total phenolic, flavonoid, and chlorophyll contents

The highest phenolic content 3.64 + 0.11 mg at 24 hpi was
recorded in plants treated with SND-1+Pathogen (Fig. 7A). A fair
phenolic content of 3.46 + 0.05, 2.70 + 0.05, and 1.73 £ 0.06 mg/g
fresh weight at 24 hpi was recorded in only SND-1 formualtion,

Control+Pathogen and control SDW plants. The maximum flavo-
noid 1.01 + 0.06 mg was observed in mung bean plants with the
treatment of SND-1+Pathogen at 24 hpi (Fig. 7B). Plants treated
with only SND-1 formulation, Control+Pathogen and Control
(SDW) plants offered 0.80 + 0.02, 0.60 + 0.01 and 0.43 + 0.02
mg/g fresh weight of flavonoid content. The chlorophyll content
1.16 + 0.03 mg was observed SND-1+Pathogen treatment and
0.82 + 0.02 mg/g fresh weight in only SND-1 formulation treat-
ment. A fair amount of chlorophyll 0.6 + 0.02 mg/g fresh weight
in Control (SDW) treated and lowest chlorophyll content 0.4 +
0.01 mg/g fresh weight was exhibited by Control+Pathogen treated
mung bean plants (Fig. 7C).

4. Discussion

The formulated actinomycetes products were excellent alterna-
tives of chemical products and proven for their biocontrol, growth
enhancement and ISR with beneficial actinomycetes in different
crop plants (Chakraborty et al., 2022). Furthermore, the chemical
fungicides creates the tremendous negative impacts on soil micro-
flora and reduction in soil nutrient profile results the decreased soil
quality. The Amycolatopsis sp. SND-1 was previously isolated from
Cleome chellidonii Linn. plant and characterized for its in-vitro plant
growth and potential antagonistic action against Cercospora
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pathogen was utilized for extended biocontrol efficacy in the
sodium alginate pellet formulation. The prepared SND-1 formula-
tion showed clear distribution of spores, purity and viability test
depicted no contamination and also a negligible decrease in the
viability of spores up to six months of storage period. Similar study
on Streptomyces rochei PTL2 alginate formulation displayed reduc-
tion from 2 x 10% CFU g~ ! to 1.7 x 10° CFU g~ of viability of spores
at 2 months intervals up to one year of storage period (Miyada
et al., 2017).

The greenhouse study resulted significant increase in growth
parameters of mung bean and minimum disease severity in SND-
1 formulation challenged with C. canescens pathogen when com-
pared with untreated plants. The results were compared with the
studies, where alginate formulation of Streptomycetes sp. Di-944
and Streptomyces palmae CMU-AB204" exhibited significant bio-
control activity up to 94% against Rhizoctonia solani and 96 to
97% against Ganoderma boninense infections, and increased the
growth in tomato and palm plants up to 30 to 50 cm in comparison
with the control and pathogen treatments (Sabarathanam et al.,
2002; Kanaporn et al., 2020).

The SND-1 formulation challenged with pathogen significantly
enhanced the histochemical defense markers such as lignin, H,0,
and phenol compared with other treatments. Milan et al. (2021)
reported that increased depositions of lignin and H,0, in leaf epi-
dermis of the pathogen P. viticola infected Vitis vinifera L. plants
treated with talcum formulation of Trichoderma harzianum and
showed potentially up to 82.9% protection from the downy mildew

disease. In their study, the histochemical depositions in the Tricho-
derma harzianum treated Vitis vinifera L. plants exhibited gradual
increase at early hours (0, 4, 12 and 24 h) of the of the pathogen
infection and decreased at later time intervals (at 36, 48 and
72 h). Similarly, the rhizobacteria treated Vigna radiata (L.) R. Wil-
czeck plants effectively conferred the M. phaseolina infection
through instigating maximum histochemical depositions
(Boubakri et al., 2012; Javed et al., 2021). Lignin, H,0, and phenol
accumulations can acts as mechanical barrier, signal molecule, and
synthesis of specific substrates that alters modifications of defense
enzymes that decrease the diffusion of toxins by pathogen. Lignin
(aromatic polymer) deposition increases the strength and impervi-
ousness, perturbations and high level of lignin biosynthesis induce
phenylpropanoid pathway and the corresponding defense related
enzymes results in controlling the invasion of the pathogen. The
H,0, acts as stress tolerance and higher concentrations leads to
oxidation of cell components such as lipids, proteins and nucleic
acids which shows enhancement in defense state in pathogen
affected cells (Milan et al., 2021). Another function of H,0, in plant
defense is it involves in the mechanism like superoxide dismuta-
tion (SOD) and it’s higher accumulation leads to the increased
and regeneration of enzymatic activity such as catalase and Glu-
tathione reductase (GSH reductase) which significantly involved
in the upregulation of antioxidant and oxidation reactions during
the pathogen suppression. Similarly phenol accumulations at
pathogen infected sites slowdown the pathogen proliferation
through the mechanisms like synthesis of stress related simple
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phenols, phytoalexins and hydoxycinnamic acids etc. (Lee et al.,
2019).

The upregulation of defense enzymes in SND-1 formulation
with the inoculation of Cercospora pathogen exhibited maximum
induced protection by the associated PAL, POX and GLU antioxi-
dant enzyme activities. The similar study reported the enhanced
activity of PAL, GLU and POX in T. virens-Tv4 treated mung bean
plants exhibited maximum protection against R. solani (Alfi et al.,
2020). The accelerated activity of these defense enzymes can coun-
teract the pathogen at the time of infection and plays a significant
role in induction of resistance patterns in plants through the
biosynthesis of cell wall thickenings such as lignin, H,O, and phe-
nol which play vital role as defense barriers. PAL initiates primary
enzyme metabolism (phenylpropanoids) which leads to increased
synthesis of defense related phenols and lignins. The GLU is the
polysaccharide that counteracts the pathogen cell wall and hydro-
lyzes the chitin a major component of the fungal cell wall (Javed
et al, 2021). POX is the oxidoreductive enzyme which directly cor-
relates with the suppression of pathogen through cell wall cross-
linking, phytoalexin synthesis, suberization, auxin metabolism
and phenol oxidation (Manjula et al., 2015).

The PAL, GLU and POX acts as key enzymes that regulates syn-
thesis of phenolic compounds, flavonoids, and hydrocinnamtes
also plays a significant role in lignin synthesis, creates oxidative
stress, and ROS during pathogen infection and significant impact

on plant physiology and expression of defense genes (Solekha
et al,, 2019; Rudrappa et al., 2022; Hammerschmidt et al., 1982).
These enzymes play a vital in biochemical defense mechanism
through increasing the cells wall deposition by activating the genes
related to synthesis of lignin, H,O, , callose, phenol and suberin. A
maximum phenolic content in the plants treated with SND-1 for-
mulation and pathogen in comparison with other treatments. In
previous report by Alfi et al. (2020) and Umar et al. (2019), where
significant defense response was observed through maximum
accumulation of phenolic content after R. solani and MYMV patho-
gen infection in mung bean plants. Increased phenolic content cor-
related with resistance and also proper functioning of plant tissues
(Sidra et al., 2017). The several studies reported that antifungal
action of different flavonoids against phytopathogens such as F.
oxysporum, S. sclerotium, A. flavus and R. solani (Morkunas et al.,
2005; Katsumata et al., 2018). The accelerated phenolic and flavo-
noid content significantly involves in the synthesis of estres, lignin,
tannins and flavonoids are chelating molecules of metal stresses
(Ullah et al., 2017).

The maximum chlorophyll content in plants treated with SND-1
bioformulation and challenged with Cercospora pathogen showed
the survival and adaptation of mung bean plants in stressful
(Pathogen infestation) conditions. However, the exogenous appli-
cation of bioformulations can induce the accelerated activity of
physiological conditions (Enzymatic levels) that strengthen the
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synthesis of chlorophyll in leaves (Li et al., 2018). Djebaili et al.
(2021) reported there was a significant increase of chlorophyll con-
tent in Triticum durum by the application of different actino-
mycetes formulations. As the chlorophyll increases, the plants
get proper photosynthesis process and high survival capability
during the biotic stresses (Umar et al., 2019).

5. Conclusion

In the present study, the application of Amycolatopsis sp. SND-1
alginate bioformulation significantly triggered the growth patterns
and histochemical and biochemical defense patterns in the Cer-
cospora infected in mung bean plants. Further, the induction of
systemic resistance study unveiled the involvement of SND-1 for-
mulation in the acceleration of histochemical depositions such as
lignin and H,0, and phenol with decreased cell death and bio-
chemical defense-related enzymatic levels (PAL, GLU, and POX)
that resulted in significant defense patterns in mung bean plants.
An increased phenolic, flavonoid, and chlorophyll content in
SND-1 formulation treated mung bean plants showed the higher
levels of the physiological and survival potential. Finally, we con-
cluded that Amycolatopsis sp. SND-1 formulation has the ability
to counteract the Cercospora pathogen stress in mung bean plants
through the enhancement of cellular and enzymatic defense pro-
cesses that render significant adaptability under pathogen stress
in mung bean plants.
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