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Abstract The purpose of this study is to define an optimal strategy for tomographic acquisition

procedure using single photon emission computed tomography (SPECT) phantom and apply it

in routine bone scintigraphy studies. Acquisition parameters include the number of projections,

matrix size; types of collimator used data and the multi-channel analyzer windows. This work

demonstrates that, increasing number of views leads to better contrast and resolution of the

reconstructed image due to increasing cancellation region of noise. The matrix size of

128 · 128 provides improvement in the resolution of the reconstructed image more than the

64 · 64 matrix although it takes more memory space in acquisition and takes longer time in

processing the data. The ultra-high resolution collimator provides improvement in the resolution

of the reconstructed image compared with the high resolution collimator. Energy window

width 20% of the photo-peak energy gives the best contrast with adequate resolution in the

reconstructed image than others energy window widths of 10% and 15% of the photo-peak

energy. These could lead to an accurate investigation in the early detection of small metastatic

lesions.
ª 2009 King Saud University. All rights reserved.
1. Introduction

Single photon emission computed tomography (SPECT) is a

medical imaging modality that combines conventional nuclear
medicine (NM) imaging technique and CT methods. Different
from X-ray and CT, the SPECT uses radio-active labeled
ity. All rights reserved. Peer-

d University.

lsevier
pharmaceuticals, i.e., radiopharmaceuticals, that distribute in
different internal tissues or organs instead of an external X-
ray source, the gamma photons emitted from the radio-active

source are detected by radiation detectors similar to those used
in conventional nuclear medicine. The SPECT method
requires projection (or planar) image data to be acquired from

different views around the patient. These projection data are
subsequently reconstructed using image reconstruction meth-
ods that generate cross section images of the internally distrib-
uted radiopharmaceuticals. The SPECT images provide much

improved contrast and detailed information about the radio-
pharmaceutical distribution as compared with the planar
images obtained from conventional nuclear medicine methods

(Craft and Tsui, 1995).

http://dx.doi.org/10.1016/j.jksus.2009.07.004
http://www.sciencedirect.com/science/journal/10183647
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To produce quality emission tomographic images, the fun-

damental principles required to produce planar images must be
employed along with those unique characteristics and princi-
ples of SPECT; these include instruments integrity, proper col-
limation, minimal source to detector distance and sufficient

statistics (English and Brown, 1990). In a perfect imaging sys-
tem, projections opposite each other are essentially mirror
images of each other. Thus, the opposing views are mirror im-

age and only one is needed. However, the nuclear medicine
gamma camera is not a perfect imaging system, therefore,
opposing views are not the same. First, the resolution of the

gamma camera degrades as the distance between the camera
and the object being imaged is increased. Second, a certain
percentage of Compton scattered photons cannot be excluded

owing to the finite energy resolution of the camera. Third, a
certain fraction of gamma rays from an object is attenuated
(absorbed) when they are emitted in an attenuating medium
such as a patient. This phenomenon varies according to the

depth of the attenuating medium between the object and gam-
ma camera. In clinical SPECT, opposing projection views will
never be the same. Therefore, the 360� arc is required for accu-

rate reconstruction in most SPECT studies. One generally
accepts exception to this rule in SPECT myocardial imaging,
where the 180� acquisition is the standard practice. Although

distortions due to variable and directionally resolution across
the transverse slices in the 180� SPECT reconstruction will oc-
cur (Eisner et al., 1986), they are countered by the fact that the
heart is generally positioned somewhat interiorly at the left in

the thorax. Projection views opposite the heart see significantly
less myocardial activity due to the attenuation through the pa-
tient’s chest. Those views contribute mostly noise and scatter

to the reconstruction, degrading overall resolution and con-
trast, while reconstruction from 180� acquisition will have im-
proved resolution and contrast, at the expense of some

distortion (Groch and Erwin, 2000).

1.1. Matrix size

The matrix size used to acquire the projection data plays a
large part in the quality of the reconstructed image. The Ny-
quist theorem states that the highest spatial frequency in the

image must be sampled at least twice to be accurately repro-
duced; i.e.:

DX 6
1

2
Uc

where Uc is the Nyquist frequency; DX is the spatial sampling
interval or (pixel size).

Groch and Erwin show that the choice of matrix size de-

pends on several factors. The size of a pixel should, ideally,
be less than one third of the expected full-width at half maxi-
mum (FWHM) resolution of the SPECT system, measured at

the center of rotation for the isotope where is being imaged,
including the effects of the collimator and the radius of rota-
tion (i.e., distance of camera from patient). In the SPECT sys-

tem, where the camera’s digital field of view (FOV with
zoom= 1), the size of a pixel, D, in millimeters, may be calcu-
lated from (Groch and Erwin, 2000)

D= FOV/(Z · N)
FOV (mm) = the widest dimension of the computer image
matrix
Z = zoom factor (e.g., 1.5, 2.0, etc.) during acquisition

N = number of pixels (e.g., 64 or 128) (Groch and Erwin,
2000).

When large matrices are used for smaller areas, higher res-
olution images can be obtained, but they have more statistical
fluctuation (noise). Statistical fluctuation in large matrix size
can be reduced by smoothing, but spatial resolution will

decrease (Anthony et al., 2001).

1.2. Number of projections

Filtered back projection (FBP) is a technique used in nuclear
medicine to reconstruct a slice from a set of its projection (Jain,

1989; Jalleau and Berche, 1983). The FBP technique uses a fast
algorithm, but its streak artifact (or star artifact), which is
present in the nuclear medicine modality, is a drawback. In nu-

clear medicine, this artifact is especially visible when a small re-
gion in the slice of interest contains high activity. The artifact
is caused by the small number of acquired projections (in prac-
tice, usually equal to matrix size of the slice), whereas an infi-

nite number of projections is theoretically required to perfectly
reconstruct a slice. The mathematical formula of the FBP uses
a Ramp filter, but usually, to reduce the streak artifact, this

Ramp filter is replaced by a low-pass filter. This results in a
loss of contrast and resolution in the reconstructed image. If
the number of projections can be increased, the streak artifact

is expected to be reduced without the drawbacks of a low-pass
filter (Bruyant et al., 2000). Theoretically, for projection data
acquired over a 180� arc, the number of projections required
is dependent on the object diameter.

Where Dmax is the number of linear samples (pixels) across
the largest source diameter. The sampling distance is given by
the linear dimension of one pixel. However, projection data in

SPECT are acquired over a full 360� arc. the optimal number
of projections in SPECT indicated by the above equation
should therefore be doubled (Halama and Henkin, 1986).

1.3. Energy window

SPECT imaging is not ideal, however. Inherent in SPECT
imaging is degradation which distorts the projection data.
The essential source of degradation is the inclusion of scatter
in the projections data. Compton scattering is the dominant

mode of interaction. During Compton scattering the photons
are reduced in energy and are deflected from their original
path. Thus one can adjust the energy window to reduce the

amount of scattered photons imaged, but not to eliminate
scatter due to the presence of classically scattered photons
and the finite energy resolution of current imaging system.

The imaging of scattered photons degrades contrast and sig-
nal to noise ratio (SNR) and must be accounted for if atten-
uation compensation AC is to be accurate. The best way to
reduce the effects of scatter would be to improve the energy

resolution of the imaging systems by adjusting the NaI (TL)
scintillator so that few scattered photons are acquired (Hala-
ma and Henkin, 1986).

1.4. Types of collimators

A collimator is a mechanical device used as a direction
selector of photons incoming to the scintillation camera. The
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collimator also defines the geometrical field of view of the cam-

era as well as being the major contributor to the limited spatial
resolution and to the low sensitivity of the system (Sorenson
and Phelps, 1987). In the case of parallel hole collimators, only
photons that are incident in a narrow solid angle, perpendicu-

lar to the collimator surface, will pass the collimator and inter-
act in the scintillator. Consequently, it is possible to express the
uniform spatial resolution and the uniform geometric effi-

ciency of this collimator in terms of their physical dimensions.
When conventional parallel hole collimators are used in
SPECT, sources at a certain distance from the axis of rotation

will contribute to the projection data with a collimator re-
sponse that depends on the acquisition angle. As the projec-
tions are used in the reconstruction of the transverse images

by means of, for example, filtered back projection, a variant
non-isotropic blurring appears. The magnitude and character-
istic of this non-isotropy are mainly a function of the distance
from the center of rotation (COR), but other factors, such as

the collimator hole length and the radius of rotation (ROR),
also influence the non-isotropy.

2. Materials and methods

The gamma camera used in this study was the Sopha DST-

XLi, which has dual detectors, and each detector head housed
the NaI (TL) crystal and 94 photomultiplier tubes (PMTs)
responsible for converting the incident gamma rays to electri-

cal signals used to display patient images.

2.1. SPECT phantom

The SPECT phantom consists of a commercially supplied cylin-
drical Perspex container, internal diameter 180 mm and length
300 mm. The phantom has three distinct sections; the cold-rod

section, a uniformity section and a hot rod section. Seven cold
rods 80 mm long, have different diameters ranging from 35 mm
to 9 mm. There are nine hot holes with diameters ranging from

30 mm to 3 mm. The long axis of all rods are aligned parallel to
the long axis of the container. One end of the container is
removable, as it is fixed with nylon screws and made water tight

with a rubber o-ring. The top of the container has a screw filling
plug. The total volume of the empty container is approximately
10.0 L and with the inserts in place the total fluid volume is
about 6.0 L, with filled weight of approximately 13.0 kg. This

phantom is designed to provide the periodic performance test-
ing for the SPECT systems and is usually called Jaszczak phan-
tom. It offers a single system for measuring resolution, slice

thickness, linearity and uniformity. The phantom can be filled
with a 99 mTc water solution having an activity of 15 mCi.

2.2. SPECT phantom imaging

For system performance, the SPECT phantom is filled with

water containing approximately 555 MBq (15 mCi) of Tc-
99 m. The radio-active material was mixed thoroughly by sev-
eral shacking for about 15 min. It was turned up by inversion
and then topped up to leave a small residual air bubble. The

phantom was positioned on the gamma camera SPECT imag-
ing table. The cylinder axis of the phantom was positioned par-
allel to the axis of rotation of the gamma camera detector,

within the rotational field of view. SPECT acquisitions are
then acquired to evaluate the different parameters. Acquisition
parameters were established to represent the highest possible

resolution as follows:

2.3. Acquisition parameters (acquisition protocol) used

[1] Camera information
Matrix size: 128 · 128; pixel size: 4.51 mm.
Magnification: 1.0; window width: 20%.
Collimator information: LEUHR.

[2] Scan information

Rotation type: step and shoot.
Orbit type: 25 cm.
No. of views: 128.

Time per acquisition (s): 20.
2.4. Acquisition parameters

2.4.1. Acquisition matrix size
The effect of matrix size type on SPECT images was stud-

ied. The SPECT phantom was used with fixed parameters
for both acquisition and reconstruction. We recorded the
data with a matrix size of 64 · 64 and a matrix size of

128 · 128.
The acquisition parameters were as in acquisition protocol

[1], the only variable was in the matrix size

Matrix size: 64 · 64, 128 · 128.
Pixel size (mm): 9.02, 4.51.

2.5. Number of acquired views

In this study, the effect of the number of acquired views on
SPECT images are evaluated. The SPECT phantom was im-
aged three times using fixed parameters in both acquisition
and reconstruction. The only difference was the number of

views per scan as we used 32, 64 and 128 views per each detec-
tor per study.

Acquisition parameters were as in acquisition protocol [1],

but only variable was in the scan information. The number
of views per each detector per scan was 32, 64 and 128 per
study and angle step size (deg) changed, respectively.

2.6. Window width of multi-channel analyzer

In this study three acquisition of SPECT phantom images are
acquired with three different window widths of the multi-chan-
nel analyzer: 10%, 15% and 20% for 99 mTc energy peak. We
used fixed data in the three acquisition and reconstruction

parameters. The only variable was the window of multi-chan-
nel analyzer (10%, 15% and 20%).

Acquisition parameters were as in the acquisition protocol

[1], the variable was in the camera information window width:
10%, 15% and 20%.

2.7. Type of collimators

The effect of the collimator type on SPECT images was stud-
ied. The SPECT phantom was used with the fixed parameters

for both acquisition and reconstruction. We recorded our data
with low energy high resolution collimator (LEHR) and a low
energy ultra-high resolution collimator (LEUHR).
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Figure 2 Shows the counts profile with respect to position for

different matrix size.
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Acquisition parameters were as in the acquisition protocol

[1], the only variable was in the camera collimator: LEHR,
LEUHR.

3. Results and discussion

3.1. Acquisition matrix size

Digital images are characterized by the matrix size and pixel
depth. Matrix size determines the number and size of discrete

picture elements and hence the degree of spatial details that
can be presented. Higher SPECT resolution will be achieved
with the smaller pixel size of 128 · 128 (pixel size = 4.51 mm)

matrices than with a pixel size of 64 · 64 (pixel
size = 9.02 mm) matrices. This can be achieved by using the
SPECT phantom (Fig. 1). A line profile is taken through the

cold holes of the SPECT phantom imaging with different ma-
trix size (Fig. 2). However, the signal to noise ratio for the pixel
may be much poorer as the image will have about 1/4 the
counts per pixel of the 64 · 64 matrix. For the same acquisi-

tion, the image of the 128 · 128 matrix will have 1/5 the counts
per pixel (Table 1). This means that for the same acquisition
128 · 128 matrix reconstructed percent noise more than

64 · 64 matrix. Also for the same number of projection views,
128 · 128 image acquisition will consume 4 times the disk
space and computer memory, and the reconstructed volume

will consume 8 times the disk space and memory, compared
to the 64 · 64 image data. In addition, the 128 · 128 image
data takes longer time in processing. Concerning the SPECT
Figure 1 Transaxial image reconstruction of a cylindrical
resolution for perfect imaging gamma camera in the order
18–25 mm at the center of rotation, the matrix size 128 · 128
gives the best resolution, although matrix size 64 · 64 is per-

fectly adequate for most application.

3.2. Number of acquired views

Tomographic images reveal the internal distributions of radio-
activity in three-dimensional objects, and thus allow anatomic

localization and improve the contrast. Tomography requires a
stable distribution of radionuclide, and a complete set of pro-
jections. In emission CT, a large number of measurements,
phantom filled with 99 mTc using different matrix sizes.



Table 1 The count variation of reconstructed slice with matrix size.

No. of slice Matrix size 64 · 64 Matrix size 128 · 128

Counts Max x, y Max Counts Max x, y Max

1 336,825 38, 16 1276 70,873 61, 30 118

2 350,139 30, 13 1265 66,121 77, 32 134

3 425,477 36, 19 1633 83,195 60, 40 136

4 435,509 36, 16 1470 96,695 66, 48 158

5 433,292 33, 18 1541 100,249 54, 41 143
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Figure 4 The counts profile with respect to position for different

projection numbers.
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called projections, are collected at various angles about patient

during examination. This information is organized by the
angles of acquisition into a stack, called a sinogram. Each pro-
jection is modified by applying a reconstruction filter (Ramp).

These modified projections are back projected to form the
transverse tomographic images. The quality of the tomo-
graphic image generated from filtered back projection depends
on the number of acquired projections. For accurate recon-

struction, the number of angular views over 360� should be
at least equal to the projection image matrix size (e.g., 64 views
for a 64 · 64 matrix and 128 views for the 128 · 128 matrix).

When the number of views is less than the minimum, streak
artifacts (image noise) may appear in the reconstructed slice.
In SPECT phantom scan acquired with 32, 64 and 128, projec-

tions (Fig. 3), one can see that star artifacts (noise) are
observed in the lower angular view and the image quality is de-
creased due to the limited collected counts and increasing
noise. Taking a profile line through the X-axis of sphere holes
Figure 3 Transaxial image reconstruction of a cylindrical pha
of SPECT phantom including all projections views, we can see

that the image resolution and contrast are improved with
increasing the number of views (Fig. 4). This could be
ntom filled with Tc-99 m with different projection numbers.
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attributed to the region of cancellation of star artifacts being

larger with a greater number of projection views used for back
projection. The drawbacks of acquiring projections at an
increasing number of angles are in the increasing data storage
and computation requirements, of the computer, leading to an

increasing study time since a significant amount of time is
spent in moving the detector from one position to another.

3.3. Window width of multi-channel analyzer

The effect of energy window width on contrast and resolution

of the image was measured using cold spheres of different sizes
Figure 5 Transaxial image reconstruction of a cylindrical phantom

20% of the photo-peak energy.

Table 2 A comparison study for mean counts taken for different e

Slice no. Mean counts

Energy window 20%

1 100% (201.54)

2 100% (258.45)

3 100% (255.88)

4 100% (267.53)

5 100% (267.53)

6 100% (270.73)

7 100% (268.23)

8 100% (272.12)

9 100% (266.82)

( ) = pixel count per slice.
with different energy window widths of 10%, 15% and 20% of

the photo-peak energy window for the 140 keV for 99 mTc
(Fig. 5). With (10%) energy window there is reduction of
counts (Table 2) due to the rejection of scattered photons giv-
ing an improve signal to noise ratio and resolution, while the

contrast is degraded. For this reason we cannot visualize the
cold spheres with low energy windows of 10% and 15% of
the photo-peak energy. On the contrary, with an energy win-

dow of 20%, we notice an improvement in both resolution
and contrast of the image due to more collected counts. By
taking an activity profile through the cold spheres with differ-

ent energy window widths (Fig. 6) we can demonstrate the cold
filled with Tc-99 m with different energy window 10%, 15%, and

nergy window.

Energy window 15% Energy window 10%

81.785% (164.74) 46.2% (93.17)

81% (209.45) 45.56% (118.55)

79% (203.05) 44.12% (112.91)

77% (206.23) 42.1% (112.84)

77% (206.23) 42.1% (112.84)

77% (209.19) 42.1% (115.23)

77% (207.71) 43.16% (115.79)

78% (211.6) 43.3% (118.04)

78% (207.95) 43.3% (115.75)
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spheres with the energy window of 20% than with the other

windows of 15% or 10%. This means that with the energy win-
dow of 20% there is an improved contrast and adequate reso-
lution than with the 15% and 10% windows.
Figure 7 Transaxial image reconstruction of a cylindrical phantom fi

and LEHRC).
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Figure 8 This figure shows the counts profile with
3.4. Types of collimators

In SPECT studies, collimators of different spatial resolution
and geometric efficiency are available for imaging. With select-

ing the appropriate collimator for SPECT use, there is a trade-
off between spatial resolution, which can limit the contrast of
the reconstructed image, and detection efficiency, which deter-

mines the noise in the image. In our study, we used two types
of collimators to study their effect on the resolution of image
using active rods of the SPECT phantom (Fig. 7). From this
figure, the resolution between active rods decreases when the

diameter of this rods is decreased for both types of collimators
(LEUHRC and LEHRC) but the LEUHRC was able to sepa-
rate small spheres (lesion) from each other better than

LEHRC. The resolution is improved due to a reduction of
scattered photons and statistical noise of the image taken by
LEUHRC, where the diameter of the holes of this collimator
lled with Tc-99 m using different types of collimators (LEUHRC

12 13 14 15 16 17 18 19 20 21 22 23

osition

LEUHRC

LEHRC

respect to position for different type collimators.
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is narrow and the septa thickness is large compared to LEHRC

which affect the resolution parameter. Activity profiles drawn
through the eight activity rods demonstrate the separation of
the small sphere (lesion) in LEUHRC than in LEHRC
(Fig. 8). The first three rods are well seen by both types of col-

limators. while the other rods are seen only by LEUHRC,
Rods seven and eight are scarcely appreciable, because their
diameters are too small for adequate separation. Also the edge

artifacts on the phantom are greater in the image using the
LEHRC. The LEUHRC is recommended in order to provide
good spatial resolution. This could help when one is interested

in imaging small lesion in bone scan imaging.
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