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Abstract A facile and highly efficient one-pot synthesis of 1,4-dihydropyridine derivatives (1,4-

DHPs) is reported via three component condensation reaction of aldehydes, ethyl acetoacetate or

methyl acetoacetate and ammonium acetate using environmentally benign melamine trisulfonic acid

(MTSA) as a catalyst in solvent free condition at 60 �C. The method presented here is applied to the

tenets of green chemistry to the generation of biologically interesting products under solvent-free

media that is less expensive and less toxic than those with organic solvents. Also, the catalyst is recy-

clable and could be reused without significant loss of activity. Even after three runs for the reaction,

the catalytic activity of MTSA was almost the same as that of the freshly used catalyst.

The method also offers several advantages including high yields and simple work-up procedure.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

In recent years, an increasing interest has been focused on the

synthesis of Hantzsch 1,4-dihydropyridines, a class of model
compounds of NADH coenzyme, due to the biological perti-
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nence of these compounds to NADH redox process (Miri
et al., 2006; Tewari et al., 2004). 1,4-dihydropyridines have
been reported as anticancer (Tsuruo et al., 1983), neurotropic

(Krauze et al., 1999), glycoprotein inhibitors (Zhou et al.,
2005), anticoagulant (Kumar et al., 2011a), antioxidant (Vijesh
et al., 2011), anti-inflammatory and anti-microbial agents

(Kumar et al., 2011b). Calcium entry into the cytosol is medi-
ated by multiple types of calcium channel, each with a distinct
physiological role. Dihydropyridines are commercially used as

calcium channel blockers for the treatment of cardiovascular
diseases, including hypertension (Zamponi, 1998). Recently,
the synthesis of dihydropyridines with respect to multidrug
resistance (MDR) reversal in tumour cell gave a new dimen-

sion to their applications (Tanabe et al., 1998; Tasaka et al.,
ing Saud University.
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192 S.S. Mansoor et al.
2001). Tuberculosis (TB) is a common and often deadly
infectious disease caused by various strains of mycobacterium,
usually Mycobacterium tuberculosis. Tuberculosis has been

considered to be a disease of poverty for many years with quite
rare occurrences in the developed countries. Recently, studies
showed that 3,5-dicarbamoyl derivatives of 1,4-dihydropyri-

dine (DHP) with lipophilic groups have considerable anti-
tubercular activity against M. tuberculosis H37Rv (Trivedi
et al., 2011; Khoshneviszadeh et al., 2009).

Generally, the basic skeleton of DHP was first discovered
by Hantzsch in 1882 (Hantzsch, 1882). Due to the biological
importance of these compounds several methods have been
reported for the improvement of 1,4-dihydropyridine ring

and polyhydroquinoline derivatives. Different approaches
for the syntheses of 1,4-dihydropyridine derivatives using
various catalysts, such as cellulose sulphuric acid (Safari

et al., 2011), triphenylphosphine (Debache et al., 2009), silica
supported 12-tungstophosphoric acid (Rafiee et al., 2009),
Iron (III) trifluoroacetate (Adibi et al., 2007), ionic liquid

[tbmim]Cl2/AlCl3 (Reddy et al., 2011), organo catalyst
(Baghbanian et al., 2010), cerric ammonium nitrate (Reddy
and Raghu, 2008), nickel nanoparticle (Saikia et al., 2012),

aluminium phosphate (Purandhar et al., 2012), bismuth ni-
trate (Bandyopadhyay et al., 2012), gadolinium triflate
(Mansoor et al., 2012a), titanium dioxide nanoparticles
(Tajbakhsh et al., 2012), ferric fluoride (Surasani et al.,

2012) and silica sulphuric acid (Kolvari et al., 2011), MgO
nanoparticles (Mirzaei and Davoodnia, 2012), visible light
(Ghosh et al., 2013) and protic pyridinium ionic liquid

(Tajbakhsh et al., 2013) have been reported. Many of these
reported methods involve the use of expensive reagents, haz-
ardous solvents, long reaction times and tedious workup

procedures. Thus, the search for new reagents and methods
is still of growing importance.

Melamine trisulfonic acid is effectively used as a catalyst in

organic reactions, such as regioselective nitration of aromatic
compounds (Albadi et al., 2012), N-formylation of amines
(Yang and Zhang, 2012), aryldithienylmethanes (Wu et al.,
2012), spiro[pyrazolo[3,4-b]pyridine-4,30-indoline] derivatives

(Yang et al., 2012), acetylation of alcohols, phenols and
amines (Shirini et al., 2010a), trimethylsilylation of alcohols
and phenols (Wu et al., 2011), solvent free synthesis of couma-

rins (Shirini et al., 2010b), chemoselective methoxymethylation
of alcohols (Shirini et al., 2010c), synthesis of chromen-6-ones
(Ma et al., 2011) and synthesis of 3,4-dihydropyrimidin-2(1H)-

ones/thiones (Shirini et al., 2011).
To the best of our knowledge, there are no examples on the

use of melamine trisulfonic acid as a catalyst for the synthesis
of 1,4-dihydropyridine derivatives. In continuation of our

investigation with the one-pot synthesis of biologically active
molecules, such as 3,4-dihydropyrimidin-2(1H)-ones/-thiones/
imines (Mansoor et al., 2011), b-amino ketone compounds

(Mansoor et al., 2012b), amidoalkyl naphthols (Mansoor
et al., 2012c), 2-amino-4,6-diphenylpyridine-3-carbonitrile
derivatives (Mansoor et al., 2012d) and a-amino nitriles

(Mansoor et al., 2012e), herein, we wish to report the one-
pot condensation of aldehydes, ethyl/methyl acetoacetate and
ammonium acetate under solvent free conditions at 60 �C
using melamine trisulfonic acid as a reusable catalyst for the
synthesis of 1,4-dihydropyridine derivatives via Hantzsch reac-
tion. Melamine trisulfonic acid is safe, easy to handle and envi-
ronmentally benign.
2. Experimental

Chemicals were purchased from Merck, Fluka and Aldrich
Chemical Companies. The benzaldehydes used were with sub-

stituents H, p-OCH3, p-CH3, p-Cl, p-NO2, p-Br, p-OH, m-Cl,
m-NO2 and m-OH. Heterocyclic aldehydes like Furfural and
2-Thienal were also used for the synthesis. The solid aldehydes

were used as such and the liquid aldehydes were used after vac-
uum distillation. Ethyl acetoacetate and methyl acetoacetate
were used as 1,3-dicarbonyl compounds. Ammonium acetate
was used as the nitrogen source. Solvents like THF, methanol,

ethanol, dichloromethane, acetonitrile, cyclohexane and ben-
zene were used. Melamine and chlorosulfonic acid were used
for the preparation of MTSA. All yields refer to isolated prod-

ucts unless otherwise stated.

2.1. Preparation of melamine trisulfonic acid (MTSA)

Melamine trisulfonic acid was prepared from melamine and
chlorosulfonic acid as reported previously in the literature by
Shirini et al. (2010a) Scheme 1.

2.2. General experimental procedure for the synthesis

(compounds 4a–p)

A mixture of aldehyde 1 (1 mmol), ethyl acetoacetate 2

(2 mmol), ammonium acetate 3 (1.5 mmol) and MTSA
(5 mol%) was taken in a 50 ml flask and heated at 60 �C under
solvent-free condition for the appropriate time monitored by

TLC. The reaction mixture, after being cooled to room tem-
perature was poured into cold water and extracted with ethyl
acetate. The organic layer was washed with brine and water

and dried over Na2SO4. The crude products were purified by
crystallization from ethanol to afford 1,4-dihydropyridines.
The catalyst was filtered and washed with methanol for reuse

(see Scheme 2).

2.3. Spectral data for the synthesized compounds

2.3.1. 2,6-Dimethyl-4-phenyl-1,4-dihydropyridine-3,5-
diethylcarboxylate (4a)

White solid; mp 157–159 �C; IR (KBr, cm�1): 3342, 1691,

1643, 1489, 1210, 779.
1H NMR (500 MHz, DMSO-d6) d: 1.19 (t, J= 7.2 Hz, 6H,

2CH3CH2), 2.33 (s, 6H, 2CH3), 4.08 (q, J= 7.0 Hz, 4H,

2CH3CH2), 4.96 (s, 1H, CH), 5.97 (s, 1H, NH), 7.16–7.33 (m,
5H, Ar-H) ppm; 13C NMR (125 MHz, DMSO-d6) d: 14.0, 19.4,
39.6, 59.5, 104.0, 121.8, 129.0, 131.0, 144.4, 146.5, 166.8 ppm;

MS (ESI): m/z 330 (M+H)+. Anal. Calcd. for C19H23NO4

(%): C, 69.30;H, 6.99; N, 4.25. Found: C, 69.22; H, 6.94; N, 4.23.
2.3.2. 2,6-Dimethyl-4-(4-methylphenyl)-1,4-dihydropyridine-

3,5-diethylcarboxylate (4b)

Yellow solid; mp 135–137 �C; IR (KBr, cm�1): 3338, 1698,
1653, 1480, 1200, 789.

1H NMR (500 MHz, DMSO-d6) d: 1.24 (t, J= 7.4 Hz, 6H,
2CH3CH2), 2.28 (s, 6H, 2CH3), 4.09 (q, J= 7.2 Hz, 4H,
2CH3CH2), 5.00 (s, 1H, CH), 5.90 (s, 1H, NH), 7.10–7.43
(m, 4H, Ar-H), 2.22 (s, 3H, CH3) ppm; 13C NMR

(125 MHz, DMSO-d6) d: 14.3, 19.5, 38.9, 60.0, 103.5, 119.3,
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129.8, 131.0, 144.0, 146.4, 167.5 ppm; MS (ESI): m/z 344
(M +H)+. Anal. Calcd. for C20H25NO4 (%): C, 69.97; H,
7.29; N, 4.08. Found: C, 69.91; H, 7.28; N, 4.07.

2.3.3. 2,6-Dimethyl-4-(4-methoxyphenyl)-1,4-dihydropyridine-
3,5-diethylcarboxylate (4c)

Yellow solid; mp 156–158 �C; IR (KBr, cm�1): 3329, 1700,

1633, 1494, 1214, 783.
1H NMR (500 MHz, DMSO-d6) d: 1.21 (t, J = 7.4 Hz, 6H,

2CH3CH2), 2.29 (s, 6H, 2CH3), 4.10 (q, J = 7.0 Hz, 4H,

2CH3CH2), 4.99 (s, 1H, CH), 6.07 (s, 1H, NH), 6.96–7.12
(m, 4H, Ar-H), 3.62 (s, 3H, OCH3) ppm; 13C NMR
(125 MHz, DMSO-d6) d: 15.0, 20.0, 40.3, 59.5, 104.4, 118.8,
131.0, 131.5, 144.4, 147.3, 166.5 ppm; MS (ESI): m/z 360
(M +H)+. Anal. Calcd. for C20H25NO5 (%): C, 66.85; H,
6.96; N, 3.90. Found: C, 66.77; H, 6.97; N, 3.88.

2.3.4. 2,6-Dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-
diethylcarboxylate (4d)

Yellow solid; mp 132–134 �C; IR (KBr, cm�1): 3348, 1688,

1644, 1481, 1207, 782.
1H NMR (500 MHz, DMSO-d6) d: 1.24 (t, J = 7.4 Hz, 6H,

2CH3CH2), 2.31 (s, 6H, 2CH3), 4.08 (q, J = 7.2 Hz, 4H,
2CH3CH2), 5.06 (s, 1H, CH), 6.00 (s, 1H, NH), 7.14–7.54

(m, 4H, Ar-H) ppm; 13C NMR (125 MHz, DMSO-d6) d:
15.1, 19.6, 39.8, 59.5, 103.9, 119.0, 129.5, 131.4, 143.9, 146.5,
167.0 ppm; MS (ESI): m/z 375 (M +H)+. Anal. Calcd. for

C19H22N2O6 (%): C, 60.96; H, 5.88; N, 7.49. Found: C,
60.93; H, 5.86; N, 7.48.

2.3.5. 2,6-Dimethyl-4-(4-chlorophenyl)-1,4-dihydropyridine-
3,5-diethylcarboxylate (4e)

White solid; mp 144–146 �C; IR (KBr, cm�1): 3335, 1695,
1645, 1499, 1219, 789.
1H NMR (500 MHz, DMSO-d6) d: 1.19 (t, J = 7.2 Hz, 6H,
2CH3CH2), 2.34 (s, 6H, 2CH3), 4.10 (q, J= 7.2 Hz, 4H,
2CH3CH2), 5.09 (s, 1H, CH), 5.94 (s, 1H, NH), 7.22–7.48

(m, 4H, Ar-H) ppm; 13C NMR (125 MHz, DMSO-d6) d:
14.6, 19.4, 39.8, 59.4, 103.6, 119.0, 130.4, 131.4, 144.5, 146.6,
166.8 ppm; MS (ESI): m/z 364.45 (M + H)+. Anal. Calcd.

for C19H22ClNO4 (%): C, 62.73; H, 6.05; N, 3.85. Found: C,
62.64; H, 6.01; N, 3.80.

2.3.6. 2,6-Dimethyl-4-(4-bromophenyl)-1,4-dihydropyridine-
3,5-diethylcarboxylate (4f)

White solid; mp 160–162 �C; IR (KBr, cm�1): 3332, 1692,
1649, 1491, 1213, 772.

1H NMR (500 MHz, DMSO-d6) d: 1.25 (t, J = 7.2 Hz, 6H,
2CH3CH2), 2.31 (s, 6H, 2CH3), 4.14 (q, J= 7.2 Hz, 4H,
2CH3CH2), 4.97 (s, 1H, CH), 6.02 (s, 1H, NH), 7.12–7.53

(m, 4H, Ar-H) ppm; 13C NMR (125 MHz, DMSO-d6) d:
14.4, 18.9, 39.7, 59.6, 103.7, 119.5, 130.2, 131.2, 143.9, 145.7,
165.3 ppm; MS (ESI): m/z 408.9 (M + H)+. Anal. Calcd. for
C19H22BrNO4 (%): C, 55.90; H, 5.39; N, 3.43. Found: C,

55.82; H, 5.36; N, 3.40.

2.3.7. 2,6-Dimethyl-4-(3-chlorophenyl)-1,4-dihydropyridine-

3,5-diethylcarboxylate (4g)

White solid; mp 140–142 �C; IR (KBr, cm�1): 3340, 1689,
1652, 1480, 1200, 770.

1H NMR (500 MHz, DMSO-d6) d: 1.20 (t, J = 7.2 Hz, 6H,

2CH3CH2), 2.29 (s, 6H, 2CH3), 4.09 (q, J= 7.0 Hz, 4H,
2CH3CH2), 5.02 (s, 1H, CH), 5.96 (s, 1H, NH), 7.26–7.61
(m, 4H, Ar-H) ppm; 13C NMR (125 MHz, DMSO-d6) d:
15.1, 19.3, 39.7, 60.1, 104.0, 119.4, 130.0, 131.1, 144.4, 146.4,
165.2 ppm; MS (ESI): m/z 364.45 (M + H)+. Anal. Calcd.
for C19H22ClNO4 (%): C, 62.73; H, 6.05; N, 3.85. Found: C,

62.66; H, 6.03; N, 3.84.
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2.3.8. 2,6-Dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-

diethylcarboxylate (4h)

Yellow solid; mp 162–164 �C; IR (KBr, cm�1): 3344, 1701,
1643, 1487, 1217, 777.

1H NMR (500 MHz, DMSO-d6) d: 1.21 (t, J= 7.2 Hz, 6H,

2CH3CH2), 2.32 (s, 6H, 2CH3), 4.16 (q, J= 7.2 Hz, 4H,
2CH3CH2), 4.96 (s, 1H, CH), 6.04 (s, 1H, NH), 7.06–7.42 (m,
4H, Ar-H) ppm; 13C NMR (125 MHz, DMSO-d6) d: 14.6,

19.7, 39.8, 59.5, 102.9, 119.5, 130.3, 131.3, 143.9, 146.4,
166.6 ppm; MS (ESI): m/z 375 (M+ H)+. Anal. Calcd. for
C19H22N2O6 (%): C, 60.96; H, 5.88; N, 7.49. Found: C, 60.88;
H, 5.88; N, 7.47.

2.3.9. 2,6-Dimethyl-4-(4-hydroxyphenyl)-1,4-dihydropyridine-
3,5-diethylcarboxylate (4i)

White solid; mp 228–230 �C; IR (KBr, cm�1): 3443, 3341,
1698, 1640, 1493, 1213, 778.

1H NMR (500 MHz, DMSO-d6) d: 1.23 (t, J= 7.2 Hz, 6H,
2CH3CH2), 2.33 (s, 6H, 2CH3), 4.09 (q, J= 7.0 Hz, 4H,

2CH3CH2), 5.11 (s, 1H, CH), 6.10 (s, 1H, NH), 7.12–7.43
(m, 4H, Ar-H), 9.96 (s, 1H, OH) ppm; 13C NMR (125 MHz,
DMSO-d6) d: 14.9, 19.6, 38.9, 59.7, 103.6, 119.9, 129.9,

130.5, 144.0, 146.5, 166.8 ppm; MS (ESI): m/z 346
(M+ H)+. Anal. Calcd. for C19H23NO5 (%): C, 66.09; H,
6.67; N, 4.06. Found: C, 66.01; H, 6.65; N, 4.04.

2.3.10. 2,6-Dimethyl-4-(3-hydroxyphenyl)-1,4-dihydropyridine-
3,5-diethylcarboxylate (4j)

White solid; mp 172–174 �C; IR (KBr, cm�1): 3429, 3336,

1687, 1633, 1487, 1215, 781.
1H NMR (500 MHz, DMSO-d6) d: 1.25 (t, J= 7.4 Hz, 6H,

2CH3CH2), 2.27 (s, 6H, 2CH3), 4.08 (q, J= 7.2 Hz, 4H,

2CH3CH2), 4.98 (s, 1H, CH), 5.99 (s, 1H, NH), 6.96–7.23
(m, 4H, Ar-H) 9.88 (s, 1H, OH) ppm; 13C NMR (125 MHz,
DMSO-d6) d: 15.0, 19.6, 39.6, 59.7, 103.6, 119.7, 130.0,
130.7, 144.6, 147.0, 167.2 ppm; MS (ESI): m/z 346

(M+ H)+. Anal. Calcd. for C19H23NO5 (%): C, 66.09; H,
6.67; N, 4.06. Found: C, 66.05; H, 6.66; N, 4.05.

2.3.11. 2,6-Dimethyl-4-(2-furyl)-1,4-dihydropyridine-3,5-
diethylcarboxylate (4k)

Yellow solid; mp 160–162 �C; IR (KBr, cm�1): 3333, 1704,
1635, 1499, 1213, 772.

1H NMR (500 MHz, DMSO-d6) d: 1.22 (t, J= 7.4 Hz, 6H,
2CH3CH2), 2.29 (s, 6H, 2CH3), 4.10 (q, J= 7.1 Hz, 4H,
2CH3CH2), 4.96 (s, 1H, CH), 6.03 (s, 1H, NH), 6.32–6.41

(m, 2H, Furyl-H), 7.13 (m, 1H, Furyl-H) ppm; 13C NMR
(125 MHz, DMSO-d6) d: 14.3, 19.4, 37.3, 59.8, 103.6, 118.8,
132.0, 133.8, 144.5, 147.9, 167.5 ppm; MS (ESI): m/z 320

(M+ H)+. Anal. Calcd. for C17H21NO5 (%): C, 63.95; H,
6.58; N, 4.39. Found: C, 63.88; H, 6.55; N, 4.36.

2.3.12. 2,6-Dimethyl-4-(2-thienyl)-1,4-dihydropyridine-3,5-
diethylcarboxylate (4l)

Yellow solid; mp 172–174 �C; IR (KBr, cm�1): 3347, 1700,
1630, 1486, 1215, 766.

1H NMR (500 MHz, DMSO-d6) d: 1.19 (t, J= 7.4 Hz, 6H,
2CH3CH2), 2.28 (s, 6H, 2CH3), 4.08 (q, J= 7.2 Hz, 4H,
2CH3CH2), 5.04 (s, 1H, CH), 6.07 (s, 1H, NH), 6.08–6.13
(m, 2H, Thienyl-H), 6.89 (m, 1H, Thienyl-H) ppm; 13C
NMR (125 MHz, DMSO-d6) d: 14.5, 19.5, 39.4, 59.6, 103.7,
118.9, 131.1, 131.8, 144.6, 146.5, 167.3 ppm; MS (ESI): m/z
336 (M +H)+. Anal. Calcd. for C17H21NO4S (%): C, 60.89;

H, 6.27; N, 4.18. Found: C, 60.80; H, 6.28; N, 4.17.

2.3.13. 2,6-Dimethyl-4-phenyl-1,4-dihydropyridine-3,5-

dimethylcarboxylate (4m)

White solid; mp 116–118 �C; IR (KBr, cm�1): 3317, 1692,
1648, 1477, 1205, 765.

1HNMR (500 MHz,DMSO-d6) d: 3.72 (s, 6H, 2OCH3), 2.27

(s, 6H, 2CH3), 4.96 (s, 1H, CH), 6.08 (s, 1H, NH), 6.91–7.22 (m,
5H, Ar-H) ppm; 13C NMR (125 MHz, DMSO-d6) d: 20.2, 41.3,
56.8, 105.4, 129.0, 130.8, 143.5, 148.9, 167.6 ppm;MS (ESI):m/z

302 (M+ H)+. Anal. Calcd. for C17H19NO4 (%): C, 67.77; H,
6.31; N, 4.65. Found: C, 67.66; H, 6.28; N, 4.62.

2.3.14. 2,6-Dimethyl-4-(4-chlorophenyl)-1,4-dihydropyridine-
3,5-dimethylcarboxylate (4n)

Yellow solid; mp 194–196 �C; IR (KBr, cm�1): 3315, 1698,
1653, 1487, 1212, 772.

1H NMR (500 MHz, DMSO-d6) d: 3.72 (s, 6H, 2OCH3),
2.27 (s, 6H, 2CH3), 5.05 (s, 1H, CH), 5.94 (s, 1H, NH),
7.01–7.34 (m, 4H, Ar-H) ppm; 13C NMR (125 MHz,

DMSO-d6) d: 20.4, 41.4, 56.5, 105.6, 129.0, 130.4, 143.6,
149.1, 167.4 ppm; MS (ESI): m/z 336.45 (M +H)+. Anal.
Calcd. for C17H18ClNO4 (%): C, 60.81; H, 5.36; N, 4.17.
Found: C, 60.70; H, 5.34; N, 4.15.

2.3.15. 2,6-Dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-
dimethylcarboxylate (4o)

Yellow solid; mp 152–154 �C; IR (KBr, cm�1): 3322, 1690,

1650, 1479, 1207, 771.
1HNMR (500 MHz,DMSO-d6) d: 3.72 (s, 6H, 2OCH3), 2.27

(s, 6H, 2CH3), 4.99 (s, 1H, CH), 6.00 (s, 1H, NH), 7.09–7.47 (m,

4H, Ar-H) ppm; 13C NMR (125 MHz, DMSO-d6) d: 20.1, 41.0,
56.3, 105.7, 129.7, 131.3, 144.0, 149.3, 167.2 ppm;MS (ESI):m/z
347 (M +H)+. Anal. Calcd. for C17H18N2O6 (%): C, 58.96; H,

5.20; N, 8.09. Found: C, 58.90; H, 5.18; N, 8.06.

2.3.16. 2,6-Dimethyl-4-(2-furyl)-1,4-dihydropyridine-3,5-

dimethylcarboxylate (4p)

Yellow solid; mp 148–150 �C; IR (KBr, cm�1): 3324, 1694,
1654, 1481, 1211, 773.

1H NMR (500 MHz, DMSO-d6) d: 3.66 (s, 6H, 2OCH3),

2.19 (s, 6H, 2CH3), 4.93 (s, 1H, CH), 6.07 (s, 1H, NH),
6.22–6.34 (m, 2H, Furyl-H), 7.22 (m, 1H, Furyl-H) ppm; 13C
NMR (125 MHz, DMSO-d6) d: 19.8, 41.0, 56.4, 105.7, 129.3,
130.7, 143.6, 149.0, 167.1 ppm; MS (ESI): m/z 292
(M+ H)+. Anal. Calcd. for C15H17NO5 (%): C, 61.85; H,
5.84; N, 4.81. Found: C, 61.75; H, 5.82; N, 4.79.

3. Results and discussion

Initially, 4-nitro benzaldehyde has been used to react with
ethyl acetoacetate and ammonium acetate in the presence of

5 mol% melamine trisulfonic acid under various solvents like
THF, methanol, ethanol, dichloromethane, acetonitrile, cyclo-
hexane and benzene at 60 �C in order to optimize the reaction

conditions (Table 1, entries 1–7). The reaction was studied
under solvent-free conditions also. It was found that the best



Table 1 Synthesis of 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihy-

dropyridine-3,5-diethylcarboxylate from 4-nitrobenzaldehyde,

ethyl acetoacetate and ammonium acetate catalysed by MTSA

under various conditionsa.

Entry Solvent Amount of

catalyst (mol %)

Time (h) Yield (%)b

1 THF 5 6 68

2 Methanol 5 5 78

3 Ethanol 5 5 80

4 Dichloromethane 5 6 73

5 Acetonitrile 5 6 65

6 Cyclohexane 5 6 70

7 Benzene 5 6 55

8 None 5 4 92

a Reaction conditions: 4-nitrobenzaldehyde (1 mmol), ethyl ace-

toacetate (2 mmol) and ammonium acetate (1.5 mmol), the amount

of solvent used for entries 1–7 was 5 mL.
b Isolated yields.

Table 2 Optimisation of temperature using MTSA (5 mol%)

as catalysta.

Entry Temperature (�C) Time (h) Yield (%)b

1 r.t 6.5 65

2 40 6.0 74

3 50 5.0 83

4 60 4.0 92

5 70 3.5 86

6 80 3.0 80

a Reaction conditions: 4-nitrobenzaldehyde (1 mmol), ethyl ace-

toacetate (2 mmol) and ammonium aceate (1.5 mmol), under sol-

vent-free condition.
b Isolated yields.

Table 3 Synthesis of 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihy-

dropyridine-3,5-diethylcarboxylate from 4-nitrobenzaldehyde,

ethyl acetoacetate and ammonium acetate catalysed by MTSA

(5 mol%) under solvent-free conditiona.

Entry Cycle Time (h) Yield (%)b

1 0 4.0 92

2 1 4.0 90

3 2 4.0 89

4 3 4.0 87

a Reaction conditions: 4-nitrobenzaldehyde (1 mmol), ethyl ace-

toacetate (2 mmol) and ammonium aceate (1.5 mmol), under sol-

vent-free condition at 60 �C.
b Isolated yields.
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results were obtained with 5 mol% MTSA under solvent-free
condition. (Table 1, entry 8). The reaction was completed with-
in 4 h and the expected product was obtained in a 92% yield.
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Figure 1 Recyclability of melamine trisulfonic acid for the syn

diethylcarboxylate.
Next, we have studied the effect of temperature for the

model reaction. The reaction has been studied at various tem-
peratures like room temperature, 40, 50, 60, 70 and 80 �C. The
yield of the product increased up to 60 �C. After 60 �C,
increasing temperature leads to a decrease in yields. Therefore,
our optimized condition is 5 mol% of MTSA under solvent
free condition at 60 �C Table 2.

The reusability of the catalyst is one of the most important
benefits and makes it useful for commercial applications. Thus
the recovery and reusability of melamine trisulfonic acid were
investigated. The reusability of the catalyst was checked by

separating the melamine trisulfonic acid from the reaction mix-
ture and drying in a vacuum oven at 60 �C for 5 h prior to re-
use in subsequent reactions. The recovered catalyst can be

reused at least three additional times in subsequent reactions
without significant loss in product yield Fig. 1 Table 3.

A series of 1,4-dihydropyridines were synthesized by using

diverse aldehydes, 1,3-diketo compounds and ammonium ace-
tate in the presence of MTSA (5 mol%) as catalyst under sol-
vent-free conditions. As shown in Table 4, the reaction

proceeded equally well irrespective of the nature of the car-
bonyl compounds (aromatic, heteroaromatic) to afford the
corresponding products in excellent yield (86–94%). The cata-
lytic system worked well. It is noteworthy to mention that, the

effect of the nature of the substituents on the aromatic ring
3 4

87%

89%

er of Runs

ity of catalyst MTSA

thesis of 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-



Table 4 Synthesis of 1,4-dihydropyridine derivatives using aldehyde, ethyl/methyl acetoacetate and ammonium acetate in the

presence of MTSA (5 mol%) under solvent-free conditiona.

Entry Aldehyde Ar 1,3-dicarbonyl compound Ammonia source Product Time (h) Yieldb (%)

1 CHO

OC2H5

O O NH4OAc 4a 4.0 86

2 CHO

H3C OC2H5

O O NH4OAc 4b 3.5 88

3 CHO

H3CO OC2H5

O O NH4OAc 4c 3.5 87

4 CHO

O2N OC2H5

O O NH4OAc 4d 4.0 92

5 CHO

Cl OC2H5

O O NH4OAc 4e 3.0 91

6 CHO

Br OC2H5

O O NH4OAc 4f 3.0 92

7 CHO

Cl

OC2H5

O O NH4OAc 4g 3.5 90

8 CHO

NO2

OC2H5

O O NH4OAc 4h 4.0 91

9 CHO

HO OC2H5

O O NH4OAc 4i 3.0 89

(continued on next page)
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Table 4 (continued)

Entry Aldehyde Ar 1,3-dicarbonyl compound Ammonia source Product Time (h) Yieldb (%)

10 CHO

OH

OC2H5

O O NH4OAc 4j 3.5 87

11

O

CHO

OC2H5

O O NH4OAc 4k 4.0 91

12

S

CHO

OC2H5

O O NH4OAc 4l 4.0 90

13 CHO
OCH3

O O

NH4OAc 4m 4.0 91

14 CHO

Cl OCH3

O O NH4OAc 4n 3.0 93

15 CHO

O2N OCH3

O O NH4OAc 4o 4.0 94

16

O

CHO

OCH3

O O NH4OAc 4p 4.0 91

a Reaction conditions: aldehyde (1 mmol), ethyl/methyl acetoacetate (2 mmol) and ammonium aceate (1.5 mmol), under solvent-free condi-

tion at 60 �C.
b Isolated yields.
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showed no obvious effect on this conversion, because they
were obtained in high yields in relatively short reaction times.

In order to show the merit of MTSA in comparison with
other catalysts, we summarized some of the results for the
preparation of 2,6-Dimethyl-4-(4-nitrophenyl)-1,4-dihydro-

pyridine-3,5-diethylcarboxylate (4d) in Table 5. A number of
Lewis acid catalysts such as ZnCl2, AlCl3, FeCl3, BiCl3,
Bi(OTf)3 and BiBr3 have been screened using the model reac-
tion under solvent-free conditions at 60 �C (Table 5, entry 2–7).

The results showed that MTSA (5 mol%) is a more efficient
catalyst with respect to reaction temperature, catalyst load,
reaction time and yield than other catalysts (Table 5, entry

9). It was found that the reaction without catalyst produced
low yield (Table 5, entry 1).



Table 5 Synthesis of 2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihy-

dropyridine-3,5-diethylcarboxylate from 4-nitrobenzaldehyde,

ethyl acetoacetate and ammonium acetate using various cata-

lysts under solvent-free conditiona.

Entry Catalyst (h) Amount of

catalyst (mol%)

Time Yieldb (%)

1 None – 6 32

2 ZnCl2 50 6 42

3 AlCl3 50 64 8

4 FeCl3 50 6 40

5 BiCl3 10 6 70

6 Bi(OTf)3 10 6 76

7 BiBr3 20 6 60

8 MTSA 10 4 88

9 MTSA 5 4 92

10 MTSA 3 4 72

11 MTSA 2 4 66

a Reaction conditions: 4-nitrobenzaldehyde (1 mmol), ethyl ace-

toacetate (2 mmol) and ammonium aceate (1.5 mmol), under sol-

vent-free condition at 60 �C.
b Isolated yields.
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Recently Debache et al., reported the synthesis of 1,4-dihy-
dropyridines using triphenylphosphine (20 mol%) as a Lewis

base in ethanol (Debache et al., 2009). In our method we have
synthesized 1,4-dihydropyridines using MTSA (5 mol%) under
solvent-free conditions. We have described the reusability of

the catalyst also.
4. Conclusions

In conclusion, MTSA was found to be an efficient catalyst in
one-pot reaction of aldehydes, ethyl/methyl acetoacetate and
ammonium acetate to afford 1,4-dihydropyridines. Synthesis

of biologically significant heterocyclic molecules under sol-
vent-free conditions is very promising and challenging. The ulti-
mate aim, of course, is to use no solvent at all and to conduct the
reactions under solvent-free conditions.Development of cleaner

technologies is a major emphasis in green chemistry. Solvent-
free reaction condition is used as an eco-friendly approach for
the synthesis of a variety of products and this generally leads

to large reductions in reaction times and enhancements of con-
versions. There is a growing interest in the one-pot three compo-
nent synthesis of 1,4-dihydropyridines because of the significant

importance of this scaffold in preparing awide variety of biolog-
ically and pharmacologically active molecules. On this basis we
have developed an extremely rapid, convenient and environ-

mentally benign route for the one-step synthesis of 1,4-dihydro-
pyridines. The present methodology offers attractive features
such as shorter reaction times, milder conditions, and simplicity
of the reaction as well as excellent yield of the products. This

reaction will be applicable to the synthesis of various organic
compounds of medicinal interest. Also the catalyst could be suc-
cessfully recovered and recycled at least for four runs without

significant loss in activity. The one-pot nature and the use of
reusable and an eco-friendly catalystmake it an interesting alter-
native to multi-step approaches.
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