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In this work, we exemplify the behaviour of the nonlinear model of arbitrary order differential equations
by adopting q-homotopy analysis transform method (q-HATM). In the present study, the illustrated
scheme is a graceful amalgamation of Laplace transform with q-homotopy analysis algorithm and we
considered arbitrary order derivative using Atangana-Baleanu (AB) operator. The suggested nonlinear
system exhibits chaotic behaviour in nature with respect to considered initial conditions. Fixed point
hypothesis heard present the existence and uniqueness for the attained solution. We exemplified sug-
gested arbitrary order system with to illustrate and confirm the efficiency of the projected solution pro-
cedure. Further, the numerical simulation is illustrated and also the chaotic behaviour of the obtained
result captured with respect to arbitrary order in terms of plots. The obtained results confirm the pro-
jected scheme is highly methodical, easy to implement and very powerful to exemplify the nature of
the dynamical system of arbitrary order.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The theory and applications of arbitrary order derivative
recently magnetise the attention of many young researchers even
though it was originated in Newton’s time. Fractional calculus is
the most influential apparatus from the last few decades to exam-
ine and exemplify the nonlinear complex phenomena, due to the
auspicious assets namely, memory effect, nonlocality, analyticity
and hereditary. Within the frame of FC, the most simulating leaps
in science, technology and their associated areas have been arises.
The fractional differential operators accomplished to exemplify the
necessary development of the nonlinear phenomena having a dif-
fusion mechanism. Many scholars begin to investigate on the FC
with fundamentals and its applications due to the progress of a
mathematical algorithm. The diverse definitions are anticipated
by numerous pioneering for fractional calculus, and which prear-
ranged the groundwork for FC (Liouville, 1832; Riemann, 1896;
Caputo, 1969; Miller and Ross, 1993; Podlubny, 1999; Kilbas
et al., 2006). The fundamental theory and applications of FC are
widely illustrated in various aspects with emerging phenomena
like nanotechnology (Baleanu et al., 2010), chaos theory (Esen
et al., 2018), human diseases (Veeresha et al., 2019), optics
(Baleanu et al., 2017), and other fields (Veeresha et al., 2019a,
2020b, 2019c; Gao, 2020). Particularly, mathematical models
exemplifying diverse phenomena are analysed by the aid of
notions and fundamentals of FC, for instance authors in (Singh
and Srivastava, 2020) studied Liénard and D uffing equation arising
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in oscillating circuit theory and presented the numerical stimula-
tion within the frame of arbitrary order calculus, the epidemiolog-
ical model of the Ebola virus is analysed by Srivastava et al. in
(Srivastava et al., 2020) with the help of spectral collocation tech-
nique, the behaviour of the solution achieved for arbitrary-order
Drinfeld-Sokolov-Wilson system is captured by authors in
(Srivastava and Saad, 2020), Singh and his co-authors derived
numerical solution for arbitrary-order Bloch equation by adopting
the Jacobi polynomials (Singh and Srivastava, 2020), the overview
and recent developments are effectively illustrated by senior and
emeritus scholar in (Srivastava, 2020), new mathematical models
of the human immune against IAV infection is nurtured within
the frame of arbitrary order calculus by authors in (Srivastava
et al., 2020), and researchers in (Izadi and Srivastava, 2020) pre-
sented few stimulating results with respect to nonlinear arbitrary
order logistic equation by using an discretization approach.

Nowadays, there is a tremendous fascination towards the study
of nonlinear dynamics, particularly chaos and fractals. Dynamics is
the subject that deals with changes and systems that evolve in
time. This subject originated in the mid of 1600s when Newton
invented DEs. Particularly, the theory of chaos magnetized the
attention of many scientists and engineers due to the discovery
of the Lorenz attractor (Lorenz, 1963) and the innovation of high-
speed computers. In has been proven that, chaotic signal play a
vibrant role in the chaos-based information systems, and is used
for the control processing and secure communication. In addition
to this, authors in (Grigorenko and Grigorenko, 2003; Hammouch
and Mekkaoui, 2014; Baskonus et al., 2015) demonstrated the
essence of fractional order with chaos system in order to study
the various physical phenomena and capture the behaviour of nat-
ure in an effective and systematic manner.

The chaotic nature of the systems is the emerging and interest-
ing topic in the recent era. It has been studied and analysed by
many senior scholars in order to illustrate the many interesting
and emerging consequences arisen in diverse areas. In connection
with this, authors in (Owolabi and Atangana, 2018) capture the
chaotic behaviour of some fractional-order system, authors in
(Bhalekar et al., 2012) illustrated the chaotic nature of Bloch equa-
tions which address the key issue in NMR relaxation problem,
authors in Daftardar-Gejji et al. (2012) presented the chaotic
dynamics of Chen system having fractional order.

Many nonlinear interesting phenomena arisen in related fields
of science and engineering are systematically and effectively
demonstrated using fractional calculus. Many pioneers defined
the diverse notions for arbitrary order differential and integral.
However, each definition has its own limitation. The Riemann–
Liouville derivative fails to define the importance of the ICs, the
Liouville-Caputo fractional operator is not related to describe sin-
gular kernel. Later Caputo and Fabrizio in 2015 overcome these
limitations (Caputo and Fabrizio, 2015), and soon after many
researchers applied to analyse and illustrate some stimulating nat-
ure for complex models. Recently, some authors raised some issues
associated with important properties exemplifying the behaviour
of nonlinear problems like non-singular kernel and non-local. In
2016, Atangana and Baleanu proposed definition with the assist
of Mittag–Leffler functions, namely Atangana-Baleanu (AB) deriva-
tive (Atangana and Baleanu, 2016) and which get huge attention of
the research community.

We assume the model of the equation which described the
chaotic nature studied by Hammouch and Mekkaoui (Hammouch
and Mekkaoui, 2018):

_x tð Þ ¼ �2x tð Þ � y2 tð Þ; _y tð Þ ¼ �4x tð Þz tð Þ þ 3y tð Þ � z2 tð Þ; _z tð Þ
¼ 4x tð Þy tð Þ � 7z tð Þ þ y tð Þz tð Þ ð1Þ
2

Authors in (Hammouch and Mekkaoui, 2018) suggested the
simulation for the arbitrary order system with Caputo derivative
which poses the interesting chaotic behaviour by the aid of
Adams–Bashforth–Moulton scheme and also they demonstrated
the circuit design. In this work, we consider with AB derivative
to include non-singular kernel and non-local, and which as follows

aABCDa
t x tð Þ ¼ �2x tð Þ � y2 tð Þ;

aABCDa
t y tð Þ ¼ �4x tð Þz tð Þ þ 3y tð Þ � z2 tð Þ;

aABCDa
t z tð Þ ¼ 4x tð Þy tð Þ � 7z tð Þ þ y tð Þz tð Þ;

0 < a 6 1; ð2Þ

whereais arbitrary order of the system.
In the last few decades, many advanced methods are proposed

by mathematicians and physicist to examine the differential and
integral equations. In this connection, Liao Shijun defined the
homotopy analysis technique (Liao, 1997, 1998). It has advanta-
geously and efficiently considered evaluating the solution for non-
linear problems. But, there is an essence of the amalgamation of
this algorithm and classical transform methods. Since this method
requires more computer memory and huge time for calculation
work.

In this present investigation, we exemplified and evaluate the
solution for the arbitrary order system describes the interesting
chaotic behaviour by the help of q-HATM. The projected scheme
is suggested by Singh et al. (Singh et al., 2016) with the aid of
Laplace transform associated to q-HAM. Here, q is an embedded
parameter defined by q 2 0; 1n

� �
n � 1ð Þ; and as q increases from 0

to 1
n, then the obtained results vary from the primary guess to the

solution. As q gradually increases continuously toward 1=n, the
system goes through a sequence of deformations, and the solution
at each stage is close to that at the previous stage of the deforma-
tion. Moreover, authors in (El-Tawil and Huseen, 2012) illustrated
that the convergence region of series solutions achieved by q-HAM
is increasing as q is decreased and which provides on improvisa-
tion in the classical scheme.

The suggested algorithm will reduce vast mathematical compu-
tations. The projected solution procedure is recently many
researchers considered in to exemplify the behaviour of many
classes of nonlinear and complex systems (Srivastava et al., 2017;
Veeresha et al., 2020, 2019; Gao, 2020; Veeresha and Prakasha,
2019, 2020; Kumar et al., 2018; Prakasha and Veeresha, 2020;
Kiran, 2020). Moreover, it cogently encompasses the consequences
of various classical techniques such as HPM, RDTM, Adomian
decomposition method and q-HAM, these shows its prodigious
generality. The projected method can decrease the computation
of the time and work as weigh compared the other classical
scheme while conserving the decent accuracy.

2. Preliminaries

We present the essential definitions of Laplace transform (LT)
and FC (Singh et al., 2018; Veeresha et al., 2020; Atangana and
Alkahtani, 2015, 2016; Prakasha et al., 2020).

Definition 1. For a function f 2 H1 a; bð Þ the arbitrary order ABC
derivative is described as follows:

aABCDa
t f tð Þð Þ ¼ B a½ �

1� a

Z t

a
f 0 #ð ÞEa a

t � #ð Þa
a� 1

� �
d#; b > a: ð3Þ

Definition 2. For a f 2 H1 a; bð Þ the AB arbitrary order derivative in
Riemann-Liouville sense is presented as
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aABRDa
t f tð Þð Þ ¼ B a½ �

1� a
d
dt

Z t

a
f #ð ÞEa a

t � #ð Þa
a� 1

� �
d#; b > a: ð4Þ

Definition 3. The arbitrary order AB integral presented as

aABRIat f tð Þð Þ ¼ 1� a
B a½ � f tð Þ þ a

B a½ �C að Þ
Z t

a
f #ð Þ t � #ð Þa�1d#: ð5Þ

Definition 4. The Laplace transform (LT) with AB operator is
described as

L aABRDa
t f tð Þð Þ� � ¼ B a½ �

1� a
saL f tð Þ½ � � sa�1f 0ð Þ
sa þ a= 1� að Þð Þ : ð6Þ

Theorem 1. For the Riemann-Liouville and AB derivatives, the
subsequent Lipschitz conditions respectively satisfy (Grigorenko
and Grigorenko, 2003)

k aABRDa
t f 1 tð Þ � aABRDa

t f 2 tð Þ k < K1k f 1 xð Þ � f 2 xð Þ k; ð7Þ
and

k aABRDa
t f 1 tð Þ � aABRDa

t f 2 tð Þ k < K2k f 1 xð Þ � f 2 xð Þ k: ð8Þ

Theorem 2. The arbitrary order DEs aABRDa
t f 1 tð Þ ¼ s tð Þ has a

unique solution is described by (Grigorenko and Grigorenko, 2003)

f tð Þ ¼ 1� a
B a½ � s tð Þ þ l

B a½ �C að Þ
Z t

a
s 1ð Þ t � 1ð Þa�1d1: ð9Þ
3. Solution for considered system with suggested method

In this segment, we illustrate the efficiency of the suggested
algorithm to find the solution for a considered arbitrary-order non-
linear chaotic system. Moreover, we capture the behaviour of the
achieved results. Now, we have by the aid of Eq. (2), we have

aABRDa
t x tð Þ þ 2x tð Þ þ y2 tð Þ ¼ 0;

aABRDa
t y tð Þ þ 4x tð Þz tð Þ � 3y tð Þ þ z2 tð Þ ¼ 0;

aABRDa
t z tð Þ � 4x tð Þy tð Þ þ 7z tð Þ � y tð Þz tð Þ ¼ 0

;0 < a 6 1; ð10Þ

associated to

x 0ð Þ ¼ x0 tð Þ; y 0ð Þ ¼ y0 tð Þ; z 0ð Þ ¼ z0 tð Þ: ð11Þ
Using the Eq. (11) after applying LT on Eq. (10), one can have

L x tð Þ½ � ¼ 1
s

x0 tð Þð Þ þ 1
B a½ � 1� aþ a

sa

� �
L 2x tð Þ þ y2 tð Þ� 	

L y tð Þ½ � ¼ 1
s

y0 tð Þð Þ þ 1
B a½ � 1� aþ a

sa

� �
L 4x tð Þz tð Þ � 3y tð Þ þ z2 tð Þ� 	

L z tð Þ½ � ¼ 1
s

z0 tð Þð Þ

� 1
B a½ � 1� aþ a

sa

� �
L 4x tð Þy tð Þ þ 7z tð Þ � y tð Þz tð Þf g: ð12Þ

Now, Nis defined as

N1 u1 t; qð Þ;u2 t; qð Þ;u3 t; qð Þ½ � ¼ L u1 t; qð Þ½ � � 1
s

x0 tð Þð Þ
3

þ 1
B a½ � 1� aþ a

sa

� �
L 2u1 t; qð Þ þu2

2 t; qð Þ� 	
;

N2 u1 t; qð Þ;u2 t; qð Þ;u3 t; qð Þ½ � ¼ L u2 t; qð Þ½ � � 1
s

y0 tð Þð Þ

þ 1
B a½ � 1� aþ a

sa

� �
Lf4u1 t; qð Þu3 t; qð Þ

�3u2 t; qð Þ þu2
3 t; qð Þg;

N3 u1 t; qð Þ;u2 t; qð Þ;u3 t; qð Þ½ � ¼ L u3 t; qð Þ½ � � 1
s
u2 t; qð Þð Þ

� 1
B a½ � 1� aþ a

sa

� �
Lf4u1 t; qð Þu2 t; qð Þ

�7u3 t; qð Þ þu2 t; qð Þu3 t; qð Þg: ð13Þ
At Hðx; tÞ ¼ 1, the m-th order deformation equation is sug-

gested as is given as follows

L xm tð Þ � kmxm�1 tð Þ½ � ¼ �hR1;m x!m�1; y
!

m�1; z
!

m�1

h i
;

L ym tð Þ � kmym�1 tð Þ½ � ¼ �hR2;m x!m�1; y
!

m�1; z
!

m�1

h i
;

L zm tð Þ � kmzm�1 tð Þ½ � ¼ �hR3;m x!m�1; y
!

m�1; z
!

m�1

h i
;

ð14Þ

where

R1;m x!m�1; y
!

m�1; z
!

m�1

h i
¼ L xm�1 tð Þ½ � � 1� km

n


 �
1
s

x0 tð Þð Þ
� 


þ 1
B a½ � 1� aþ a

sa

� �
L 2xm�1 þ

Xm�1

i¼0

yiym�1�i

( )
;

R2;m x!m�1; y
!

m�1; z
!

m�1

h i
¼ L ym�1 tð Þ½ � þ 1� km

n


 �
1
s

y0 tð Þð Þ
� 


þ 1
B a½ � 1� aþ a

sa

� �
Lf4

Xm�1

i¼0

xizm�1�i

�3ym�1 þ
Xm�1

i¼0

zizm�1�ig

R3;m x!m�1; y
!

m�1; z
!

m�1

h i
¼ L zm�1 tð Þ½ � þ 1� km

n


 �
1
s

z0 tð Þð Þ
� 


� 1
B a½ � 1� aþ a

sa

� �
Lf4

Xm�1

i¼0

xiym�1�i

�7zm�1 þ
Xm�1

i¼0

yizm�1�ig ð15Þ

The Eq. (14) simplifies after employing inverse LT, as follows

xm tð Þ ¼ kmxm�1 tð Þ þ �hL�1 R1;m x!m�1; y
!

m�1; z
!

m�1

h in o
; ym tð Þ

¼ kmym�1 tð Þ þ �hL�1 R2;m x!m�1; y
!

m�1; z
!

m�1

h in o
; zm tð Þ

¼ kmzm�1 tð Þ þ �hL�1 R3;m x!m�1; y
!

m�1; z
!

m�1

h in o
: ð16Þ

On clarifying the Eq. (16) with x0 tð Þ ¼ 0:7; y0 ¼ 0:1 and
z0 tð Þ ¼ 0we can find the terms of
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x tð Þ ¼ x0 tð Þ þ
X1
m¼1

xm tð Þ 1
n


 �m

;

y tð Þ ¼ y0 tð Þ þ
X1
m¼1

ym tð Þ 1
n


 �m

; z tð Þ ¼ z0 tð Þ þ
X1
m¼1

zm tð Þ 1
n


 �m

: ð17Þ
4. Existence of solutions

Now, we consider the system (10) to illustrate the existence of
the solution as follows:

0ABCDa
t x tð Þ½ � ¼ G1 t; xð Þ;

0ABCDa
t y tð Þ½ � ¼ G2 t; yð Þ;

0ABCDa
t z tð Þ½ � ¼ G3 t; zð Þ:

8><
>: ð18Þ

By the help of Theorem 2, the above model transformed to the
Volterra integral equation and we have

x tð Þ � x 0ð Þ ¼ 1�að Þ
B að Þ G1 t; xð Þ þ a

B að ÞC að Þ
R t
0 G1 f; xð Þ t � fð Þa�1df;

y tð Þ � y 0ð Þ ¼ 1�að Þ
B að Þ G2 t; yð Þ þ a

B að ÞC að Þ
R t
0 G2 f; yð Þ t � fð Þa�1df;

z tð Þ � z 0ð Þ ¼ 1�að Þ
B að Þ G3 t; zð Þ þ a

B að ÞC að Þ
R t
0 G3 f; zð Þ t � fð Þa�1df:

8>>><
>>>:

ð19Þ

Theorem 3. The kernel G1 admits the Lipschitz condition and

contraction if 0 � 2þ k22
� �

< 1 gratifies.
Fig. 1. Chaotic nature of the suggested model ðaÞ x� y,

4

Proof. Now, we consider uand u1 to illustrate the essential result,
then

kG1 t; xð Þ � G1 t; x1ð Þk ¼ k 2 x tð Þ � x t1ð Þ½ � þ y2 tð Þ� �k
� k2þ k22kkx tð Þ � xðt1Þk
� 2þ k22

� �kx tð Þ � xðt1Þk ð20Þ

where ky tð Þk � k2 be the bounded function. Putting g1 ¼ 2þ k22
in Eq. (20), then

kG1 t; xð Þ � G1 t; x1ð Þk � g1kx tð Þ � x t1ð Þk ð21Þ
Therefore, the Lipschitz condition is attained for G1. Moreover, if

0 � 2þ k22
� �

< 1, then it leads to contraction. Further, we get

kG2 t; yð Þ � G2 t; y1ð Þk � g2ky tð Þ � y t1ð Þk;
kG3 t; zð Þ � G3 t; z1ð Þk � g3kz tð Þ � z t1ð Þk:

�
ð22Þ

The recursive form of Eq. (19) described as follows

xn tð Þ ¼ 1�að Þ
B að Þ G1 t; xn�1ð Þ þ a

B að ÞC að Þ
R t
0 G1 f; xn�1ð Þ t � fð Þa�1df;

yn tð Þ ¼ 1�að Þ
B að Þ G2 t; yn�1ð Þ þ a

B að ÞC að Þ
R t
0 G2 f; yn�1ð Þ t � fð Þa�1df;

zn tð Þ ¼ 1�að Þ
B að Þ G3 t; zn�1ð Þ þ a

B að ÞC að Þ
R t
0 G3 f; zn�1ð Þ t � fð Þa�1df:

8>>><
>>>:

ð23Þ

The associated initial conditions are

x 0ð Þ ¼ x0 tð Þ; y 0ð Þ ¼ y0 tð Þandz 0ð Þ ¼ z0 tð Þ ð24Þ
bð Þ y� z and cð Þ x� z at �h ¼ �1;n ¼ 1 and a ¼ 0:9.



;

;

:

Fig. 2. Chaotic nature of the suggested model ðaÞ x� y, bð Þ y� z and cð Þ x� z at
�h ¼ �1;n ¼ 1 and a ¼ 0:95.
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The successive difference between the terms is described as

/1n tð Þ ¼ xn tð Þ � xn�1 tð Þ
¼ 1�að Þ

B að Þ G1 t; xn�1ð Þ � G1 t; xn�2ð Þð Þ þ a
B að ÞC að Þ

R t
0 G1 f; xn�1ð Þ t � fð Þa�1df

/2n tð Þ ¼ yn tð Þ � yn�1 tð Þ
¼ 1�að Þ

B að Þ G2 t; yn�1ð Þ � G2 t; yn�2ð Þð Þ þ a
B að ÞC að Þ

R t
0 G2 f; yn�1ð Þ t � fð Þa�1df

/3n tð Þ ¼ zn tð Þ � zn�1 tð Þ
¼ 1�að Þ

B að Þ G3 t; zn�1ð Þ � G3 t; zn�2ð Þð Þ þ a
B að ÞC að Þ

R t
0 G3 f; zn�1ð Þ t � fð Þa�1df

8>>>>>>>>>><
>>>>>>>>>>:

ð25Þ
Clearly

xn tð Þ ¼ Pn
i¼1/1i tð Þ;

yn tð Þ ¼ Pn
i¼1/2i tð Þ;

yz tð Þ ¼ Pn
i¼1/3i tð Þ:

8><
>: ð26Þ

By using Eq. (21) after employing the norm on the xn tð Þ, we get

k/1n tð Þk � 1� að Þ
B að Þ g1k/1ðn�1Þ tð Þk þ a

B að ÞC að Þg1

�
Z t

0
k/1ðn�1Þ fð Þkdf: ð27Þ

In the same manner, we have

k/2n tð Þk � 1�að Þ
B að Þ g2k/2 n�1ð Þ tð Þk þ a

B að ÞC að Þg2

R t
0 k/2 n�1ð Þ fð Þkdf;

k/3n tð Þk � 1�að Þ
B að Þ g3k/3 n�1ð Þ tð Þk þ a

B að ÞC að Þg3

R t
0 k/3 n�1ð Þ fð Þkdf:

8<
:

ð28Þ
With the assist of forgoing theorem, we find the following

result:

Theorem 4. If we have particular t0, then the solution for the
model (10) exist and unique, and

1� að Þ
B að Þ gi þ

a
B að ÞC að Þgi < 1;

for i ¼ 1;2 and 3.

Proof. Let x tð Þ; y tð Þ and z tð Þ be the bounded functions and admits the
Lipschitz condition. With the help of Eqs. (26) and (28), one can get

k/1i tð Þk � kxn 0ð Þk 1� að Þ
B að Þ g1 þ

a
B að ÞC að Þg1

� �n
;

k/2i tð Þk � kyn 0ð Þk 1� að Þ
B að Þ g2 þ

a
B að ÞC að Þg2

� �n
;

k/3i tð Þk � kzn 0ð Þk 1� að Þ
B að Þ g3 þ

a
B að ÞC að Þg3

� �n
: ð29Þ

Therefore, which show the existence and continuity for the
attained solutions. In order to verify the system (29) is a solution
for the model (10), we begin with

x tð Þ � x 0ð Þ ¼ xn tð Þ �K1n tð Þ;

y tð Þ � y 0ð Þ ¼ yn tð Þ �K2n tð Þ;

z tð Þ � z 0ð Þ ¼ zn tð Þ �K3n tð Þ: ð30Þ
Now, we consider

kK1n tð Þk ¼ k 1� að Þ
B að Þ G1 t; xð Þ � G1ðt; xn�1Þð Þ
5

þ a
B að ÞC að Þ

Z t

0
t � fð Þl�1

G1 f; xð Þ � G1 f; xn�1ð Þð Þdfk

� 1� að Þ
B að Þ k G1 t; xð Þ � G1 t; xn�1ð Þð Þk
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þ a
B að ÞC að Þ

Z t

0
k G1 f; xð Þ � G1 f; xn�1ð Þð Þkdf

� 1� að Þ
B að Þ g1kx� xn�1k þ a

B að ÞC að Þg1kx� xn�1kt: ð31Þ

Similarly at t0, we get

kK1n tð Þk � 1� að Þ
B að Þ þ at0

B að ÞC að Þ

 �nþ1

gnþ1
1 M: ð32Þ

From Eq. (32) we can observer that, as n ! 1, kK1n tð Þk ! 0.
Similarly, we can verify for kK2n tð Þk and kK3n tð Þk.

Now, we present the uniqueness of the obtained solution. Sup-
pose x� tð Þ; y� tð Þ and z� tð Þ be the set of other solutions, then one can
get

x tð Þ � x� tð Þ ¼ 1� að Þ
B að Þ G1 t; xð Þ � G1 t; x�ð Þð Þ
Fig. 3. Chaotic nature for the suggested model ðaÞ x� y

6

þ a
B að ÞC að Þ

Z t

0
G1 f; xð Þ � G1 f; x�ð Þð Þdf: ð33Þ

the Eq. (33) reduces with the assist of the norm, to

kx tð Þ � x� tð Þk ¼ k 1� að Þ
B að Þ G1 t; xð Þ � G1 t; x�ð Þð Þ

þ a
B að ÞC að Þ

Z t

0
G1 f; xð Þ � G1 f; x�ð Þð Þdfk

� 1� að Þ
B að Þ g1kx tð Þ � x� tð Þk þ a

B að ÞC að Þg1tkx tð Þ � x� tð Þk: ð34Þ

With the assist of the above relation, one can get

kx tð Þ � x� tð Þk 1� 1� að Þ
B að Þ g1 �

a
B að ÞC að Þg1t


 �
� 0: ð35Þ

By the aid of forgoing relation, we can see that x tð Þ ¼ x� tð Þ, if
, bð Þ y� z and cð Þ x� z at �h ¼ �1;n ¼ 1 and a ¼ 1.



Fig. 4. Chaotic nature of the suggested model at �h ¼ �1;n ¼ 1 and a ¼ 1.
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1� 1� að Þ
B að Þ g1 �

a
B að ÞC að Þg1t


 �
� 0: ð36Þ

Hence, Eq. (53) evidences our essential result.
5. Results and discussion

In this paper, we applied an analytical technique in order to
capture the chaotic nature of the projected fractional dynamical
system using q-HATM. The chaotic natures of the system (10) with
x0; y0; z0ð Þ ¼ 0:7;0:1;0ð Þ for different fractional order
i:e:;a ¼ 0:90;0:95;1ð Þ have been respectively cited in Figs. 1 to 3
in the form of 2D plots. In Fig. 4, we present the 3D chaotic attrac-
tor for the future model at a ¼ 1. In Fig. 5, the behaviour of the time
series for the system is demonstrated. The responses of the
obtained solution for the diverse value of a are presented in
Fig. 6. To demonstrate the nature of achieved results with the
7

homotopy parameter, the �h-curves are schemed with different
fractional-order and cited in Fig. 6. These curves help us to control
and adjust the convergence region. For a proper choice of �h, the
acquired result quickly converges to the analytical solution. Fur-
ther, with the aid of all figures one can observe that the procedure
is exact and very efficient to exemplify the projected fractional
chaotic system (Fig. 7).

6. Conclusion

In this paper, we examined and capture the chaotic nature of
the projected arbitrary order model. In the present framework,
we illuminate the effeteness of the projected AB derivative and
since this derivative proposed by the assist of generalized
Mittag-Leffler function. We presented the existence and unique-
ness for the achieved results with the help of fixed point theorem.
More preciously, the considered scheme offered the solution for
the considered model without necessitating any discretization,
conversion or perturbation. As associated with consequences
accessible in the literature, the results acquired by the projected
solution procedure are more stimulating. The present investigation
illuminates, the projected chaotic system highly be contingent on
the time history and the time instant, and these phenomena can
be effectively exemplified will be aid of the concept of fractional
calculus. Lastly, the present study ensures considered solution pro-
cedure is very accurate, more effective and extremely methodical,
and it can be employed to describe the distinct classes of the
dynamical system.
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Fig. 5. Behaviour of the time series for the suggested model ðaÞ x� y, bð Þ y� z and cð Þ x� z at �h ¼ �1;n ¼ 1 and a ¼ 1.
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Fig. 6. Nature of the attained result for að Þx tð Þ; bð Þy tð Þ and cð Þz tð Þ with distinct a at�h ¼ �1 and n ¼ 1.
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Fig. 7. ⁄-curves for the attained result of að Þx tð Þ; bð Þy tð Þ and cð Þz tð Þ with different a at t ¼ 0:01 for n ¼ 1 and 2.
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