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Abstract Toxicity and effects of an antiepileptic drug, carbamazepine (CBZ) on transaminases like

glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT); lactate

dehydrogenase (LDH) activities in gill, liver and muscle of a freshwater fish, Cyprinus carpio were

investigated. The median lethal concentration (LC50) of CBZ to C. carpio for 24 h was determined

(59.70 mg l�l). 1/10th of LC50 value was taken as a sublethal concentration (5.97 mg l�l). Fish were

exposed to both acute and sublethal CBZ concentration for 24 h and 35 days (at weekly intervals),

respectively. During acute treatment, GOT activity was decreased in all the organs (gill, liver and

muscle); GPT and LDH activities were increased in liver and muscle while decreased in gill. During

sublethal treatment, GOT activity was decreased in liver and muscle, whereas GPT activity was

increased in these two organs. A biphasic trend was noted in GOT and GPT activity in gill and

LDH activity in gill, liver and muscle. The present study indicates that CBZ induced alterations

in the activities of GOT, GPT and LDH in various organs of fish; these enzymes may be used as

logical candidates to monitor the toxic levels of pharmaceuticals in aquatic organisms.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

The presence of pharmaceuticals and personal care products

(PPCPs) in the aquatic ecosystem has emerged as a serious
concern due to their rapid growing and unregulated disposal
practices (Richardson and Bowron, 1985; Daughton and

Ternes, 1999; Zuccato et al., 2005; Laura Martı́n-Dı́az et al.,
2009). These aquatic micropollutants disturb the ecological
balance and attracted the public as well as scientific commu-
nity (Halling-Sørensen et al., 1998; Yamamoto et al., 2009).

As a result, a number of investigations have been reported
on widespread occurrence of pharmaceuticals in the aquatic
environment (Ternes, 1998; Gomez et al., 2007; Letzel et al.,

2009).
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To date, more than 100 pharmaceutical compounds

(anti-inflammatory, beta-blockers, sympathomimetics, antiepi-
leptics, lipid regulators, antibiotics, etc.) have been reported in
sewage, rivers and creeks, seawater, surface water, groundwa-
ter and drinking water resources throughout the world (Fent

et al., 2006; Choi et al., 2008; Rosal et al., 2009). Major cause
of the population crash in vultures due to diclofenac provided
evidence in India and Indian subcontinent, Pakistan and Nepal

(Oaks et al., 2004; Shultz et al., 2004; Muralidharan and
Dhananjayan, 2010). Although these emerging pollutants
introduced into aquatic environment by discharges from sew-

age treatment plants, industrial and hospital wastewater, land-
fill leachates, disposal of unused drugs, effluents from
aquaculture, agricultural use and so on (Daughton and

Jones-Lepp, 2001; Thomas and Hilton, 2004; Isidori et al.,
2005; Kasprzyk-Hordern et al., 2009), the occurrence of drugs
in the environment was usually in low concentrations (ng-
Ag/L), where in rivers, lakes and seawater ranges from ng/L

(Zuccato et al., 2000; Thomas and Hilton, 2004; Gros et al.,
2006). Many pharmaceuticals are not completely degraded
after application, upon entering to the aquatic ecosystem the

metabolites and some unchanged form may interfere with
molecules, cells and organs of aquatic organisms due to their
lipophilic nature and may leads to biological effect (Halling-

Sørensen et al., 1998; Fent et al., 2006). In aquatic environ-
ment, the impact of drugs on organisms may occur after a long
term exposure of pharmaceuticals at lower concentrations; and
this to the non-target organisms is scanty (Thibaut and Porte,

2008).
In the present study we aimed to investigate the toxicity and

impact of carbamazepine on certain enzymatic parameters of a

freshwater fish Cyprinus carpio to fill up this lacuna. The selec-
tion of this group is based on the fact among different groups
of pharmaceuticals detected in the aquatic environment. CBZ

is a frequently detected pharmaceutical residue and anthropo-
genic marker in water bodies (Clara et al., 2004). CBZ is
consistently found in many cases and proposed as an anthro-

pogenic marker of urban contamination because of its persis-
tence (about 100 days) in effluent and surface waters (Clara
et al., 2004; Gagne et al., 2006). It is an antiepileptic drug
widely used to control seizures disorders, for relief of neural-

gia, and for a variety of mental disorders (Jones et al., 2002;
RxList, 2006). It has been frequently found in the aquatic
environment and detected in groundwater up to 610 ng l�1

(Drewes et al., 2002). Antiepileptic drugs like CBZ act on
the CNS by decreasing the neuronal activity. Based on its tox-
icity level, CBZ classified as a potentially harmful drug to

aquatic organisms. Further, the impact of CBZ on aquatic
organisms particularly on freshwater fish and its ecotoxico-
logical data remain largely unknown (Ayscough et al., 2000;

Sanderson et al., 2004).
Fish respond to toxicants by altering their enzyme activities

and the inhibition or induction of these enzyme activities has
been used to indicate tissue damage (Nemcsok and Boross,

1982; Webb et al., 2005). Many enzymatic like carboxyl ester-
ase (CE), lactate dehydrogenase (LDH), alkaline and acid
phosphates (ALP, ACP), glutamate oxaloacetate transaminase

and glutamate pyruvate transaminase (GOT and GPT) are
measured as useful biomarkers to determine cellular impair-
ment and cell rupture. Transaminases such as GOT and

GPT play a vital role in protein and carbohydrate metabolism
and act as an indicator for tissue damage (Nemcsok et al.,
1981; Nemcsok and Boross, 1982). LDH was also used as

indicative criteria of exposure due to chemical stress and
anaerobic capacity of tissue (Diamantino et al., 2001;
Rendon-von Osten et al., 2005).

The present investigation intended to monitor the impact

of a pharmaceutical drug, CBZ on a freshwater teleost fish
C. carpio using certain enzymatic parameters to assess the
possible risk caused by water borne drugs on survival and

physiology of aquatic organisms.
2. Material and methods

The Department of Zoology, Bharathiar University, Coimba-
tore-641046 has been registered with the Committee for the

Purpose of Control and Supervision of Experiments on Ani-
mals (CPCSEA), Government of India and the experiment
was conducted as per the guidelines.

2.1. Test substance

Carbamazepine (CBZ) was chosen to evaluate its toxicity on

freshwater fish at acute and sub lethal level. Carbamazepine
(CAS No. 298-46-4, purity >99%) was purchased from
Sigma–Aldrich Corporation, USA. Carbamazepine (1.0 g)

was dissolved in appropriate amount of dimethylsulphoxide
(DMSO) and then diluted with double-deionized water to
make stock solutions. The DMSO concentration in the expo-

sure solutions, including controls, was 0.01% (v/v) which is
non-effective dose and used for further studies.

2.2. Fish and maintenance

C. carpio, a common freshwater fish (average length of 7.5 cm
and average weight of 15.0 g) and widely cultivable in many

aquaculture farms in India were obtained from Tamil Nadu
Fisheries Development Corporation Limited; Aliyar Fish
Farm, Tamil Nadu, India and they were safely transported

to the laboratory in well packed polythene bags containing
oxygenated water. Fish were stocked in a large tank containing
dechlorinated tap water and acclimatized to test conditions for

20 days to their use in the experiment. During acclimatization,
fish were fed with groundnut oil cake and rice bran in 2:1 ratio
at ad libitum. Water (three fourth of the water) was replaced
every 24 h to maintain healthy environment. The physico-

chemical characteristics of tap water such as temperature,
pH, dissolved oxygen, total alkalinity and total hardness were
measured according to APHA (1998) and maintained

(27.4 ± 1.2 �C; 7.2 ± 0.09; 6.4 ± 0.04 mg l�l; 18.6 ± 8.0 mg
l�l; 18.4 ± 0.5 mg l�l) during the study. A static bioassay
was performed on fish by the method of APHA (1971).

2.3. Preparation of 24 h LC50 and toxicity stress

The LC50 concentration of C. carpio for 24 h was calculated by

the probit analysis method of Finney (1978). Stock solution of
CBZ (1000 mg l�l) was prepared using dechlorinated water
with nominal concentration (40, 50, 60, 70 and 80 mg l�l) to lo-

cate LC50 value for 24 h. For each concentration, 10 fish were
randomly selected from the stock and introduced into separate
glass tanks (120 cm · 80 cm · 40 cm). For each concentration

a control was also maintained (free from toxicant) with three



Table 1 Changes in the enzymological parameters (GOT,

GPT and LDH) activity in a freshwater fish Cyprinus carpio

treated with acute concentration of carbamazepine (59.70 ppm;

24 h).

Enzymological

parameters

Control fish CBZ treated fish

GOT (IU/L)

Gill 57.00 ± 1.183 28.60 ± 0.400* (�49.82)
Liver 64.40 ± 0.509 48.00 ± 2.154* (�24.22)
Muscle 62.80 ± 0.200 25.20 ± 0.374* (�59.87)

GPT (IU/L)

Gill 55.80 ± 0.490 42.20 ± 4.587* (�24.37)
Liver 57.80 ± 0.490 62.20 ± 0.812* (+7.612)

Muscle 42.90 ± 0.872 58.30 ± 5.767* (+35.89)

LDH (IU/L)

Gill 4814.00 ± 9.311 4594.60 ± 55.12* (�4.55)
Liver 1600.60 ± 5.306 4118.00 ± 7.092* (+157.27)

Muscle 2370.00 ± 9.121 4769.00 ± 6.811* (+101.22)

Values are means ± SE of five individual observations; (�) denotes
percent decrease and (+) denotes percent increase over control in

the parenthesis.
* Values are significant at p < 0.05.
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replicates. The concentration at which 50% mortality of fish

occurred after 24 h was taken as the median lethal concentra-
tion (LC50), which was 59.70 mg l�l. 1/10th value of the LC50

concentration for 24 h of carbamazepine (5.97 mg l�l) was ta-
ken for sublethal studies according to Sprague (1971).

2.4. Experimental design and exposure

2.4.1. Acute concentration of CBZ
A static acute toxicity test was employed, using 50 L aerated

glass tank (three replicates per treatment) filled with 30 l of
water. Then, LC50 (24 h) concentration of CBZ (59.70 mg l�l)
was added and 10 healthy fishes from the stock were intro-

duced into each tank after removal of the same quantity of
water. A common control was also maintained simultaneously
(free from toxicant). After 24 h, fish from control and
experiment were taken randomly; tissues (gill, liver and mus-

cle) were removed for the estimation of GOT, GPT and
LDH activities.

2.4.2. Sublethal concentration of CBZ
For sublethal studies, 200 healthy fish from the stock were
randomly selected and transferred to aquaria of 500 l capac-

ity which was filled with tap water. After introduction of the
fish to the aquaria contains toxicant water, they were contin-
uously exposed to CBZ concentration (5.97 mg l�l) under sta-

tic conditions for 35 days and the toxicant water was renewed
every day. A separate control was maintained (toxicant free).
During the study period fish were fed with ad libitum with

rice bran and groundnut oil cake (2:1 ratio), excess food
and faecal matter were removed from the aquaria to reduce
water quality deterioration. At the end of 7, 14, 21, 28 and
35 days exposure, samples of tissues (gill, liver and muscle)

from control and CBZ treated fish were collected and imme-
diately processed for enzymological (GOT, GPT and LDH)
studies.

2.5. Biomarker analysis

After removal of organs (gill, liver and muscle), blotted
dry with Whattman filter paper. Then 100 mg of each tissue
were homogenates (100 mg/2.5 mL, w/v) with 0.25 M sucrose
solution in ice cold condition (Hogeboom et al., 1948). The

homogenates were centrifuged for 20 min at 6000 rpm (ice
cold condition) and the clear supernatant fluid was removed
and used to determine the level of GOT, GPT and LDH

activities. GOT and GPT activities were measured according
to Reitmen and Franckel (1957) at 505 nm against distilled
water. The LDH activity was measured following the

methodology described by Tietz (1976) at 340 nm against dis-
tilled water. Optical density was measured with the help of a
UV-spectrophotometer. Activity of all enzymes was expressed

in IU/L.

2.6. Statistical analysis

The statistical analysis was made between control and CBZ
treated groups and the mean value of five individual observa-
tions was taken for each parameter. The standard error for the

sample mean was calculated and the significance of sample
means between control and drug treated fish was tested by
using student’s t-test.
3. Results

3.1. Acute toxicity – enzymological changes

During acute treatment, GOT activity in gill, liver and muscle
of drug treated fish was found to be decreased (Table 1). A

maximum decrease was observed in liver (24.22%) followed
by gill (49.82%) and muscle (59.87%) of treated fish contrast
to control. GPT and LDH activities were observed to be signif-

icantly increased in liver and muscle of CBZ exposed fish,
while a significant (p < 0.05) decrease in gill of treated fish
was noticed compared to control.

3.2. Sublethal toxicity

3.2.1. Changes in GOT activity
During sublethal treatment GOT activity in gill of drug treated
fish was slightly increased (0.69%) at the end of 7th day

(Fig. 1). After 7th day a progressive decrease in GOT activity
was observed up to 28th day. However at the end of 35th day
GOT activity was increased (24.08%) which is not significant

(p> 0.05) when compared to that of the control values.
GOT activity was observed to be significantly (p< 0.05) de-
creased throughout the study period in both liver and muscle

(Figs. 2 and 3).

3.2.2. Changes in GPT activity
The GPT level in gill, liver and muscle of the experimental
fish was found to be increased throughout the study
period (35 days) except at the end of 35th day in gill

(�14.38%) and at the end of 7th day in liver (�1.04%)
(Figs. 4–6). The values of gill during the study period were
not significant (p> 0.05). The GPT activity was found to be
not significant at the end of 7 and 35th day in liver and 35th

day in muscle.
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Figure 1 GOT activity in gill of control and carbamazepine

treated fish (5.97 ppm; 35 days). Bar represents SE of the mean.

Comparisons of means (control and treated fish) were done by

Student’s t-test. * Significant at 5% level (p< 0.05).
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Figure 2 GOT activity in liver of control and carbamazepine

treated fish (5.97 ppm; 35 days). Bar represents SE of the mean.

Comparisons of means (control and treated fish) were done by

Student’s t-test. * Significant at 5% level (p< 0.05).
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Figure 4 GPT activity in gill of control and carbamazepine

treated fish (5.97 ppm; 35 days). Bar represents SE of the mean.

Comparisons of means (control and treated fish) were done by

Student’s t-test. * Significant at 5% level (p< 0.05).
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Figure 3 GOT activity in muscle of control and carbamazepine

treated fish (5.97 ppm; 35 days). Bar represents SE of the mean.

Comparisons of means (control and treated fish) were done by

Student’s t-test. * Significant at 5% level (p< 0.05).
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Figure 5 GPT activity in liver of control and carbamazepine

treated fish (5.97 ppm; 35 days). Bar represents SE of the mean.

Comparisons of means (control and treated fish) were done by

Student’s t-test. * Significant at 5% level (p< 0.05).
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Figure 6 GPT activity in muscle of control and carbamazepine

treated fish (5.97 ppm; 35 days). Bar represents SE of the mean.

Comparisons of means (control and treated fish) were done by

Student’s t-test. * Significant at 5% level (p< 0.05).
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Figure 7 LDH activity in gill of control and carbamazepine

treated fish (5.97 ppm; 35 days). Bar represents SE of the mean.

Comparisons of means (control and treated fish) were done by

Student’s t-test. * Significant at 5% level (p< 0.05).
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3.2.3. Changes in LDH activity
The LDH activity in the gill of experimental fish was found to
be significantly (p < 0.05) increased up to 14th day (1.968%).

After 14th day, a progressive decrease in LDH level was ob-
served throughout the study period (Fig. 7). An increase in
LDH activity was observed throughout the study period ex-

cept 35th day in liver (�36.57%) and muscle (14.72%). The
values obtained during the study period in liver and muscle
were statistically significant except the value of 35th day in
muscle (p< 0.05) (Figs. 8 and 9).
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Figure 8 LDH activity in liver of control and carbamazepine

treated fish (5.97 ppm; 35 days). Bar represents SE of the mean.

Comparisons of means (control and treated fish) were done by

Student’s t-test. * Significant at 5% level (p< 0.05).
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Figure 9 LDH activity in muscle of control and carbamazepine

treated fish (5.97 ppm; 35 days). Bar represents SE of the mean.

Comparisons of means (control and treated fish) were done by

Student’s t-test. * Significant at 5% level (p< 0.05).
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4. Discussion

Ecotoxicity procedure for the mode of action of pharmaceuti-

cals on non-target organisms is presently attracted throughout
the world (Pomati et al., 2004). The presence of pharmaceuti-
cals in the aquatic environment may act on molecules, cells and
organs of organisms through unexpected mode of action (Fent

et al., 2006). Hoeger et al. (2008) suggested that although phar-
maceutical drugs are usually in low concentration, and are also
considered to be non-toxic compounds, they can exert toxic ef-

fects on non-target species. Knowledge on the acute toxicity of
pharmaceuticals could provide valuable information on the
mode of action and toxicity of these compounds. Recently,

many studies concentrated on the acute toxicity of pharmaceu-
ticals in organisms such as algae, cnidarians, crustaceans, mus-
sels and fishes (Canesi et al., 2007; Yang et al., 2008; Haap

et al., 2008; Choi et al., 2008). However Laura Martı́n-Dı́az
et al. (2009) suggested that chronic studies based on specific
endpoints should be used in risk assessment. The present study
reports the acute and sublethal toxicity of carbamazepine on a

freshwater fish C. carpio using certain enzymatic parameters as
an end points test.

In the present study, the 24 h median lethal concentration

of CBZ to a freshwater teleost fish C. carpio was found to be
59.70 mg l�l. For sublethal studies 1/10th of the above concen-
tration (5.97 mg l�l) was used. Many studies have reported

that acute toxicity of CBZ to aquatic organisms was found
to be below 100 mg l�1. The acute toxicity of CBZ was found
to be 17.2 mg l�1 in Daphnia and 34.4 mg l�l in midges,

43.0 lg l�l in zebra fish (Thaker, 2005), 52.5 mg l�l in Vibrio
fischeri and 76.3 mg l�l in Daphnia magna (Jos et al., 2003),

15.0–35.4 mg l�l in medaka fish (Kim et al., 2007); 74.0–
138.0 mg l�l to daphnids, zebra fish, and amphibian (Pfluger
and Dietrich, 2001). In the present study, CBZ was found to
be toxic to the fish C. carpio.

Aquatic vertebrates particularly fish appear to have similar
enzyme and receptor systems as in mammalian system (Hugg-
ett et al., 2003). Fish react to environmental toxicants by

changing and adapting their metabolic functions. Changes in
the enzymatic activities of aquatic organisms are widely used
to demonstrate tissue damage and also diagnosis of fish dis-

eases (Nemcsok and Boross, 1982; Pacheco and Santos,
2002). GOT and GPT usually present within cell membranes,
cytoplasm and mitochondria. The accumulation or binding

of toxicants in these cells may lead to damage and disintegra-
tion of cells, releasing these enzymes into blood circulation. As
a result, a dramatic increase in blood serum transaminases may
be expected during stress conditions (Nemcsok et al., 1981;

Galina et al., 1992). Elevation in GOT activity may indicate
muscle damage especially cardiac muscle, where as higher
GPT activity indicates damage in liver cells. Damage in liver,

kidney and gills is evident from elevated transaminase activi-
ties (Bernet et al., 2001). Changes in protein and carbohydrate
metabolism during stress conditions may also affect the activ-

ity of GOT and GPT and the elevation of transaminases can be
taken as a measure of compensatory mechanism to impaired
metabolism (Reddy and Venugopal, 1991). In aquatic moni-
toring, increased activities of GOT and GPT indicated hepatic

tissue damage. Increase in GOT and GPT activity in monocro-
tophos treated fish Channa punctatus indicates liver damage
(Agrahari et al., 2007). Increase in the activities of plasma

GOT and GPT can be used as a sensitive indicator to assess
even very minute cellular damage (Van der et al., 2003).

In the present study, the significant increase in GOT and

GPT activity in gill, liver and muscle during acute and suble-
thal treatment indicates that the damage of the organs due
to drug toxicity or the organism tries to mitigate the drug in-

duced stress by increased rate of metabolism. However the ob-
served decrease in GOT and GPT activity in gill, liver and
muscle during acute and sublethal treatment signifies that
detoxification mechanism may not be sufficiently effective to

prevent the action of the drug on the system. The decreased
activities of GOT indicate disturbance in the structure and
integrity of cell organelles.

LDH involved in carbohydrate metabolism and the deter-
mination of this enzyme activity can be used as a good indica-
tor of the anaerobic capacity of a tissue, chemical exposure

and stress in fish (Gagnon, 2002; Rendon-von Osten et al.,
2005). LDH is present in all tissues and normally associated
with cellular metabolic action; it is used as potential marker

for assessing the toxicity of a chemical (Agrahari et al.,
2007). Any changes in protein and carbohydrate metabolism
may cause change in LDH activity (Abston and Yarbrough,
1976). Normal LDH activity patterns were found to be altered

in situations of chemical stress (Diamantino et al., 2001).
Elevated LDH activity in gills suggests that the aerobic catab-
olism of glycogen and glucose has shifted towards the forma-

tion of lactate, which may have adverse long-term effects on
the organisms (Szegletes et al., 1995). Increased release of
LDH into the medium may indicate damage in the integrity

of cell membranes or heart muscle (Nemcsok et al., 1984). In
the present study, the elevation of LDH activity in gill, liver
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and muscle has occurred may be due to the metabolic changes

caused by the drug CBZ. Further disruption of respiratory epi-
thelium might have caused tissue hypoxia resulting in a de-
crease in oxidative metabolism which may be responsible for
increase in LDH activity in toxicant stressed animals (Gill

et al., 1990).
Jos et al. (2003) reported that leakage of LDH is a marker

of membrane permeability and cell death. They also suggested

that a slight increase in LDH activity may be due to stabiliza-
tion of cytoplasmic membrane and good viability of the
cultures exposed to CBZ. Elevation of LDH activity in mos-

quito fish, Gambusia holbrooki after acute exposure to clofibric
acid may be due to stress response caused by clofibric acid
(Nunes et al., 2004). Similarly in CBZ treated rainbow trout

Oncorhynchus mykiss, plasma enzymes like LDH and GPT lev-
els were increased during chronic exposure (Li et al., 2009).
The significant increase of these enzymes may indicate the
changes in the histological structure of the hepatic and extra

hepatic tissues (Svoboda et al., 2001; El-Sayed et al., 2007).
In C. carpio, alterations in cellular responses such as increased
number of macrophages in liver and increase in the membrane

material in the cytoplasm were noticed after exposure to CBZ
(Triebskorn et al., 2007). Similarly, gill shows epithelial lifting,
hypertrophy and hyperplasia of mucus cells.

Inhibition in the activity of the LDH may be either due to
the change in mitochondrial membrane junction or it may be
due to impaired glycolysis (Sastry and Siddiqui, 1984). Yadav
et al. (2007) reported that fertilizer industry effluent caused

marked reduction in tissue LDH activity in Channa striatus.
Decreased LDH activity may be due to lower metabolic rate
under toxic conditions (Agrahari et al., 2007). Gravel and

Vijayan (2007) reported that salicylate depressed liver GR
(glucocorticoid receptor) protein content and also modified
the stressor-mediated liver metabolic capacity in rainbow trout

O. mykiss. Severe histopathological alterations in gill and liver
and inhibition of cyclooxygenase activity were observed in dic-
lofenac treated fish Salmo trutta (Hoeger et al., 2005). Similar

histopathological alteration was also reported in rainbow trout
O. mykiss (Schwaiger et al., 2004) and cytological effects
(Triebskorn et al., 2004). Probably, the inhibition of LDH in
the present study during acute and sublethal treatment may

be due to impaired carbohydrate metabolism. Thus, the mea-
surement of alteration in the LDH activity in gill, liver and
kidney can be used as a biomarker indicating stress.

Li et al. (2010) reported a slight increase in SOD, CAT, and
GPx activity in CBZ-treated fish O. mykiss during the first per-
iod (7 days). However, activities of antioxidant enzymes were

significantly inhibited after 42 days. They also suggested that
prolonged exposure to CBZ resulted in excess reactive oxygen
species formation, finally resulting in oxidative damage to lip-

ids, proteins and inhibited antioxidant capacities in fish brain.
In rainbow trout O. mykiss after prolonged exposure to CBZ,
the levels of LPO and CP in fish gill were increased whereas
significant inhibition of the antioxidant enzymes such as

SOD, CAT, GR, GPx, glutathione level and Na+, K+-ATP-
ase activity was noticed (Li et al., 2009). Inhibition of AchE
activity was noted in muscle and gills of black tiger shrimp

Penaeus monodon exposed to antibiotics (Tu et al., 2009).
In the present study it was concluded that CBZ induced alter-

ations in the activities of the enzymes such as GOT, GPT and

LDH in a freshwater fish C. carpio and these enzymes may be
used to assess the effects of carbamazepine in test organisms.
5. Conclusion

The present study indicates that CBZ induced alterations in

the enzymatic activities of the freshwater fish both at acute
and sublethal concentrations. These alterations can be consid-
ered as a tool for biomonitoring of pharmaceutical drug sub-
stances in the aquatic environment. However, further studies

are needed to understand the risk of these compounds by using
different end points.
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