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conditions. We consider

w(x,0) = uo(x),
2010 Mathematics Subject Classification:

In this paper we discuss a nonlocal approximation to the classical heat equation with Neumann boundary

WE(x,t) = wr [o) ()W, 8) = WX E)dy + & [oo] ()8, 1)dS,, (x,t) € Qx (0,T),

xeQ,

45A05 and we show that the corresponding solutions, w¢, converge to the classical solution of the local heat equa-
45]05 tion v, = Av with Neumann boundary conditions, 22 (x,t) = g(x, t), and initial condition »(0) = uy, as the
35K05 parameter ¢ goes to zero. The obtained convergence is in the weak star on L topology.
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1. Introduction

The nonlocal evolution equation
wix ) = [ Jx-pue.6 - ux Oldy. (x.6) € 2 (0.7)
Q

u(x,0) = up(x),

(1.1)
xeQ,

see (Fife (2003)), can be seen as similar to the local heat equation
with homogeneous Neumann boundary conditions

ve(x,t) = Av(x,t), (x,t) € Qx(0,T),

9 (x t) =0, (x,t) € 0Q x (0,T), (1.2)

on
v(x,0) = up(x), xeQ.

Here, | is a symmetric continuous nonnegative real function
defined on R", compactly supported in the unit ball, and such that
JenJ(x)dx = 1,Q is a bounded smooth domain in R" and u, stands
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for the initial condition. The problem is known as a nonlocal model
since the diffusion of the density u at a point x and time t not only
depends on u(x,t) locally, but also on all values of u through the
convolution like term [, J(x —y)u(y,t)dy. Following (Fife, 2003),
the model (1.1) can be interpreted as follows: If u(x, t) is the den-
sity of a population at point x and time t, and J(x — y) is thought as
the probability distribution of jumping from location y to location
x, then the convolution [, J(y — x)u(y, t)dy, is the rate at which the
individuals are arriving to location x from all other places y € Q
(notice that no individuals may arrive to x coming from outside
Q). In the same way, — [,,J(y¥ — X)u(x, t)dy, is the rate at which indi-
viduals are leaving the location x to travel to other sites y € Q
(notice that no individual can jump outside Q). So, in absence of
external or internal sources, the density u satisfies the nonlocal
Eq. (1.1). Now we remark that the fact that there is no individuals
that enter or leave the domain makes this problem a zero flux dif-
fusion problem and therefore the total mass is preserved,
Jou(x,t)dx = [,uo(x)dx, as happens with solutions to (1.2). The
model (1.1) shares more properties with (1.2) such as: bounded
stationary solutions are constant, a maximum principle is satisfied
and perturbations propagate with infinite speed (Fife, 2003).
Concerning applications, (1.1) and some variants of it have been
used, for instance, in Biology (Carrillo and Fife, 2005), image pro-
cessing, Gilboa and Osher (2006), and particle systems, Bodnar
and Velazquez (2006); see also (Alberti and Bellettini, 1998 and
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Fournier and Laurencot, 2006). For the mathematical analysis of
nonlocal models the list of references is large and we refer to
Abu Arqub et al. (2015), El-Ajou et al. (2015a,b), Andreu et al.
(2008), Bates et al. (1997), Bogoya and Gémez (2012), Caffarelli
and Silvestre (2009), Chasseigne et al. (2006), Coville et al.
(2008), Coville and Dupaigne (2007), Ignat and Rossi (2007), and
to the book (Andreu-Vaillo et al., 2010) and references therein.

Moreover, when one rescales the kernel ] considering
J(&) = =] (), it was shown in Cortazar et al. (2008) that the corre-
sponding solutions to (1.1) with a fixed initial condition converge
to the solution to (1.2) as € — 0. In addition, concerning the non-
homegeneous problem, that is, (1.2) with 92(x,t) =g(x,t), in
Cortazar et al. (2008) it is proved that this problem can be approx-
imated with

(W) (x,0) =t o] () Wy, 0) —u(x,0)dy + i fon o] ()8 (Y. 1) dy,
u(x,0) =uo(x),
(1.3)

as € — 0 (with an appropriate choice of the constant K). Notice that
in this model there are individuals that enter the domain coming
from outside (this is the meaning of the integral in RN\ Q). This
model has the following disadvantage: when one tries to approxi-
mate solutions to (1.2) with 22(x,t) = g(x,t) the datum g(x,t) is
given only for x € 9Q and therefore one has to extend it outside
(to a strip around 4Q inside R \ Q of width of order €) in order to
consider (1.3). An easy way to obtain such extension is to consider
gy +n(y)s) =g(y) wherey € 9Q and s € [0, ] (with ¢ small), being
n the exterior normal vector to 0Q at y.To overcome the fact that an
extension of the Neumann datum g outside Q is needed, recently,
following (Cortazar et al., 2007), the authors of Bogoya and
Gomez (2012) have introduced the nonlocal diffusion model

ue(x,t) - )&y, t)dSy,

= JoJ(x =y)(u(y, t) —u(x, ))dy + [, G(x
(x,£) € Q% (0,T),

u(x,0) =up(x),x € Q,
(1.4)

where Qis a bounded domain, J : RN — R and G : RV — R are contin-
uous, nonnegative, radially symmetric functions compactly sup-
ported in the unit ball and such that [ J(z)dz =1, [~ G(2)dz =1,

and g € L2 [(0, 00); L' (0Q)].

Remark 1.1. The main advantage of the model given by (1.4)
compared with (1.3) is that when one deals with a nonlinear
datum of the form g(y,t) =f(u(y,t)) it is necessary to use an
extension of the solution u from Q to RN\ Q in the case of (1.3)
(notice that such an extension is not trivial since g depends on the
solution itself). However, it is not necessary to perform such
extension when dealing with (1.6).

For the problem (1.4) in Bogoya and Gémez (2012) it is proved
existence and uniqueness of solutions for u, € L'(Q), that a com-
parison principle is satisfied and it is also studied the asymptotic
behavior of the solutions as t — cc.

Our main goal in this paper is to study the behaviour of
solutions to this nonlocal model when the involved kernels are
rescaled appropriately. If we consider the new kernels

J(&) = G,VlﬂJ(é),

6 -l (5).

(1.5)

then we arrive to

W‘(X t) =@ Jo] () Wy, t) — wi(x, £))dy
+at Jnd ()8, D) dSy. (x,t) €Q x (0,T)
w(x,0) = ug(x), xeQ,

We have the following existence and uniqueness result:

Theorem 1.1. For every uy € L'(Q) and every g € L2.[(0, 00); L1 (9Q)]
there exists a unique solution w¢ e C[[0, c0); L' (Q)] to problem (1.6).

The proof follow the same lines of Theorem 2.2 in Bogoya and
Gomez (2012) and then we omit the details here.As we have men-
tioned, our main objective is to show that the solution of the non-
homogeneous Neumann problem for the heat Eq. (1.2), can be
approximated by solutions of (1.6) when the parameter € goes to
zero. We have the following theorem:
domain,

Theorem 1.2.Let Q be a bounded C***
gECHZX‘%

“(RV\ Q) x [0,T]), let v the solution to (1.2) and assume
that v € C***4(Q x [0,T]), for some 0 < o < 1. Let w® be the solution
to (1.6). Then, for each t € [0, T]

we(x, t) — v(x,t) as € — 0x —weakly in L*(Q).

We remark that the obtained convergence is the weak-x* topol-
ogy is the same that was obtained in Cortazar et al. (2008) for the
problem (1.3).

2. Proof of Theorem 1.2. Weak-+ convergence in L”

In this section we give the proof of Theorem 1.2. To this end we
use a result proved in Cortazar et al. (2008) for the problem (1.3).
More precisely, we will use the following theorem:

Theorem 2.1.Let Q be a bounded C>** domain,
geclﬁﬂx,%

“(RV\ Q) x [0,T]), v € C***3(Q x [0, T]) the solution to
(1.2), for some 0 < o < 1. Let u¢ be a solution to (1.3). Then, there is
an adequate constant K such that, for each t € [0,T],

u(x,t) — v(x,t) x —weakly in L™ (Q).

We fix K in such a way that the conclusion of Theorem 2.1 holds.

Proof (Proof of Theorem 1.2). With the aim to prove Theorem 1.2,
we just want to obtain that we(x, t) the solution to (1.6) is close to
u¢(x,t) the solution to (1.3). To this end we consider equation
verified by the difference

u(x,t) — we(x,t)

that is,

(e w0, = oy [J(ED) (0.0 - w.0)
Ut —w <,>>>dy+Af<x,t> 2.1)
(uﬁ(xv 0) - We(x’ 0)) = 07

where, from the fact that we, u¢ satisfies (1.6) and (1.3) respectively,
we get that

ar [ JEDemar -G [ (E)swas,

After integration in Q of (2.1), we consider Ac(x,t) and we
decompose it as follows:

Ac(x,t) =
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/Ae(x, =1 b, 2.2)
Q

x y
=g [, [ JEDsmava
o [ [
oQ

Let 6 such that 2e < . We consider the following sets:
={xeQ/d(x,0Q) <3},

with

and

y)dS, dx.

S ={ke (RY\ Q) /d& Q) < 5},

and
INss={x¢ RN/d(x,0Q) < 0} = ryur;.
Note that

(y)dy dx.

X— y
€N+1 / /

When y € 9Q and s € [-4, 6], we use the change of variables
y=y+n@ys

being n(y) the normal vector at y to obtain

W e L (= st ms . s s .
(2.3)

where [J(¥,s)| is the Jacobian of the change of variable. In the same
way we can transform I, and obtain

_G /r /OQ (x y) 7)ds; dx. (2.4)

Now we consider the extension of g given by

gy +ny)s) =gwy)
and from (2.3) and (2.4) we get

LI :ElN /r: [/09 (I;,)dj/} dx, (2.5)

being

b= [0 n0)3)ew w9 - (L )aw
Fn@)s)

Using the change of variables

in the first integral we obtain
Vox—y o\ - SO,
b= [ k(2= ns)e0 -+, cs)ds

-cu () +nos) 26)

Taking into account (2.2), (2.5) and (2.6), making the change of
variables

and considering that

X=y+ez
we obtain
[ A= { / ( / Kz-nG)3)0, e§>|d§—cu<z>)dz}g@>dsy
Q 0 {z/ (y+€z)eQ}
(2.7)
Choosing C; appropriately in such a way that
lim ( / KJ(z -~ n@)5)(7.€9)d5 - ) ) dz O
€0 Jiz/ (G+e2)eQ)
we conclude
lim | Ac(x,t) =0. (2.8)
-0 Jo

With this estimate we can control
u(x,t) — w(x,t).

In fact, let zc be a nonnegative solution of the problem
Zi(x%,0) = Jo) () @ (1.1) =2 (%, 0)dy + A (x,0)| (x,£) €Qx (0.T),
z(x,0)=0, xeQ.

(2.9)

Integrating (2.9) in Q and using the symmetry of | we have

0
8t/ (xtdx_/\A (x,t)|dx

and therefore

/Q 2(x, t)dx = /0 ' /Q IAc (x, £)|dxd.

From (2.8) we obtain that

/ze(x7 t)dx -0  whene— 0. (2.10)
Q
Now, since
Ac(x,t) < JAc(x, 1)),
we get that
|uF(X7 t) - WG(Xv t)l < ZG(X’ t)
Hence, from (2.10), it holds that
/|u (x,t) —w(x,t)|dx — 0, when € — 0. (2.11)

To finish the proof of the theorem, let 6 € L*(Q), then
/ w 0dx</ [we(x,t) — u(x,t)]|0(x )\dx-s—[zue(x,t)@(x)dx.
Taking into account (2.11) and Theorem 2.1 we conclude that
/waedxﬂ /Q v(x,t)0dx, when € — 0,

as we wanted to show. O

Remark that we obtained [|u® — W[~ 1,1 (q — 0in (2.11). This

says that solutions to the nonlocal models (1 3) and (1.6) are close
for € small in a topology that is stronger than weak-x in L*.
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