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Risk management in financial derivative markets requires inevitably the calculation of price sensitivities.
The literature contains an abundant amount of research works on these important values. Most of these
works consider the well-known Black and Scholes model where the volatility is assumed to be constant.
Some works that attempt to deal with markets that are affected by financial crisis have appeared
recently. However, none of these papers deal with the calculation of the price sensitivities of the second
order. Providing the second order price sensitivities is an important issue in financial risk management
because the investor can determine whether or not each source of risk is varying at an increasing rate.
This paper treats the computation of the second order prices sensitivities for a market in crisis. The
underlying second order price sensitivities are derived explicitly. The obtained formulas are expected
to improve on the accuracy of the hedging strategies during a financial crunch.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction ing or increasing rate, this information is not provided by first
Price sensitivities are an integral part of financial risk manage-
ment nowadays. A number of papers has been devoted to this
important issue. Current literature has provided price sensitivities
for different volatility models starting with the pioneer Black and
Scholes work (Black and Scholes, 1973). Recently, some new ideas
have been developed in order to determine whether or not each
source of risk is increasing. Thus, within this context the computa-
tion of the second order price sensitivities is a pertinent and impor-
tant issue. The second order price sensitivities provide information
about whether or not the underlying risk is changing in a decreas-
order price sensitivities. To our best knowledge, the second order
price sensitivities have not been introduced for models that
account for markets with a crisis in the existing literature. The
book of Haug (2007) contains formulas for the second order greeks
in the Black and Scholes model. In Capriotti (2015), the author
studies a new approach to compute the second order sensitivities
for a general model driven by a multidimensional Brownian
motion. The new approach is a combination of the Adjoint Algo-
rithmic Differentiation(AAD) and the Likelihood Ratio Method.
The work of Landis (2011) analyzes the second order price sensitiv-
ities for a general equilibrium model. In Dilloo and Tangman
(2017) another numerical approach, namely the non-uniform dis-
cretization, is utilized for option pricing. The current paper
addresses the second order prices sensitivities of option pricing
for a market that is characterized by a financial crisis by providing
closed form solutions. The second order price sensitivities studied
in this paper are Vanna, Volga and Vega bleed, using the existing
denotations from the literature. It should be pointed out that Vega
is defined as the change in the price of the option contract with
regard to the change in the volatility of the underlying asset. Vanna
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is the change in Delta of an option with respect to the volatility of
its underlying asset. Vanna is also the change of the Vega with
regards to the price of the underlying asset. Thus, Vanna is a
second-order price sensitivity that is useful when an investor is
interested in making a Delta or Vega-hedged transaction. This is
especially the case when the investors hold a position of complex
options or a portfolio of options. The main goal of Vanna is to con-
sider the combined effect of changes in both volatility and the price
of the original asset on the option position. Volga represents the
variation of Vega with respect to a change in the underlying
volatility. Thus, it is the second order derivative of the price of
the option with regard to the volatility. This measures are dealt
with in the next section for a crisis model.
2. Options pricing and price sensitivities in a crisis period

The Black and Scholes option pricing formula is one of the most
applied formulas in modern financial risk management. However,
their model, despite its usefulness, has several shortcomings. The
constant volatility assumption as well as the continuity of the
underlying asset price trajectories is among the main shortcomings
of this model. There is an ample quantity of research papers that
try to remedy these limitations. For some recent pertinent articles
on option pricing and price sensitivities, see Alzghool (2017),
El-Khatib and Hatemi-J (2013), El-Khatib and Hatemi-J (2012) or
Phaochoo et al. (2016), where an estimation of stochastic volatility,
a crisis, a jump-diffusion and a fractional Brownian motion models
are studied to address these shortcomings. In this section, the crisis
model is presented. Some recent contributions to the modeling of
financial assets during crisis are (Dibeh and Harmanani, 2007; El-
Khatib and Hatemi-J, 2017; Savit, 1989 and Sornette, 2003). The
article written by Dibeh and Harmanani (2007) suggests a stochas-
tic differential equation (SDE) for the valuation of option prices in
markets characterized by a crisis. The underlying SDE has the prop-
erty to generate the volatility as a measure of risk that is depen-
dent on the stock price as well as time. The cited authors make
use of the partial differential equation (PDE) for call prices that is
derived assuming the risk-neutral situation. Some simulation
results are also provided for the European call options. Their find-
ings reveal that the call option prices are systematically less during
a crisis compared to those generated by the Black and Scholes
approach. The article of El-Khatib and Hatemi-J (2017) provides a
closed form solution for option pricing during financial crisis.
Savit (1989) proposes that the returns of risky assets might not
be generated by a stochastic process that is usually assumed to
be the case in the literature. The author suggests that the underly-
ing returns might rather be characterized by a deterministic chaos
process in such a way that the prediction errors develop exponen-
tially, which looks like being a stochastic process even though it is
deterministic. Sornette (2003) claims that most attempts in the lit-
erature try to clarify the market failures based on things that hap-
pen during short time before the crisis such as hours, days or
sometimes weeks. The author has a totally different view on this
issue and he thinks the main causes behind the crisis should be
searched months and even years before the underlying crisis. He
demonstrates via an empirical approach that the dynamic process
for the prices of assets during a crisis is characterized by a converg-
ing oscillatory motion. The current paper provides the second
order prices sensitivities in a market experiencing a financial crisis
by using the pricing formula obtained in El-Khatib and Hatemi-J
(2017).

Consider a probability space ðX;F ; PÞ and a Brownian motion
process ðWtÞt2½0;T� living in it. Let us denote by ðF tÞt2½0;T� the natural
filtration generated by ðWtÞt2½0;T�. The market has an European call
option with underlying risky asset S. The return on the asset with-
out risk is denoted by r. For the sake of simplicity, the denotation P
is used for the risk-neutral probability. As in El-Khatib and Hatemi-
J (2017) the underlying asset price process S ¼ ðStÞt2½0;T� is assumed
to be governed by

dSt ¼ rStdt þ ðrSt þ aertÞdWt; ð2:1Þ
where t 2 ½0; T� and S0 > 0;r and a are constant. The solution of
(2.1) is

St ¼ S0 þ a
r

� �
exp r � r2

2

� �
t þ rWt

� �
� a
r
ert ; t 2 ½0; T�: ð2:2Þ

Notice that when a ¼ 0; St is reduced to the log-normal process of
the Black–Scholes model. In the next subsection, the option pricing
formula as well as the different price sensitivities for the above
crash model as derived in El-Khatib and Hatemi-J (2017) is
presented.

2.1. Call-Put options prices

The next two propositions from El-Khatib and Hatemi-J (2017)
are needed for computing the second order price sensitivities. It is
assumed that the price process ðStÞt2½0;T� under the risk-neutral
probability is given by (2.2). Let

da1 ¼ 1
r
ffiffiffi
T

p ln
S0 þ a

r
K þ a

r e
rT

� �
þ r þ r2

2

� �
T

� �
; ð2:3Þ

and

da2 ¼ 1
r
ffiffiffi
T

p ln
S0 þ a

r
K þ a

r e
rT

� �
þ r � r2

2

� �
T

� �
¼ da1 � r

ffiffiffi
T

p
; ð2:4Þ

and UðdÞ ¼ R d
�1

e�u2=2ffiffiffiffi
2p

p du. Then, the following proposition can be

expressed.

Proposition 1. The premium of an European call option with
underlying asset S ¼ ðStÞt2½0;T�, strike K and maturity T is

CðST ;KÞ ¼ E e�rTðST � KÞþ	 

¼ S0 þ a

r

� �
Uðda1Þ � Ke�rT þ a

r

� �
Uðda2Þ: ð2:5Þ

Let ðn x
t;uÞu2½t;T� be the process defined as

dn x
t;u ¼ rn x

t;uduþ rn x
t;udWu; u 2 ½t; T�; n x

t;t ¼ x:

Note that nt ¼ n10;t ; t 2 ½0; T�. The prices of European call and put
options at any time t for the crisis model are stated in the next
proposition.

Proposition 2. The prices of an European call and an European put
options with underlying asset S ¼ ðStÞt2½0;T�, strike K and maturity T, at

time t 2 ½0; T�, are respectively given by

Cðt; StÞ ¼ St þ a
r
ert

� �
Uðdat;1Þ � Ke�rðT�tÞ þ a

r
ert

� �
Uðdat;2Þ;

and

Pðt; StÞ ¼ St þ a
r
ert

� �
Uðdat;1Þ � Ke�rðT�tÞ þ a

r
ert

� �
Uðdat;2Þ þ Ke�rðT�tÞ

� St;

where

dat;1 ¼ 1
r
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p ln
St þ a

r e
rt

K þ a
r e

rT

� �
þ r þ r2

2

� �
ðT � tÞ

� �
; ð2:6Þ

and
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dat;2 ¼ 1
r
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p ln
St þ a

r e
rt

K þ a
r e

rT

� �
þ r � r2

2

� �
ðT � tÞ

� �
:

2.2. Price sensitivities

The next proposition gives the price sensitivities for the crisis
model.

Proposition 3. The price sensitivities of an European call option with
underlying asset S ¼ ðStÞt2½0;T�, strike K and maturity T, at time

t 2 ½0; T�, are respectively given by

D :¼ @C
@St

¼Uðdat;1Þ

C :¼@2C

@S2t
¼ e�ðdat;1Þ

2
=2

ðrSt þaertÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðT� tÞp ¼ e�ðdat;1Þ

2
=2

Str
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðT� tÞp

H :¼@C
@t

¼�Strþaert

2
ffiffiffiffiffiffiffiffiffi
2ps

p e�
ðda
t;1

Þ2

2 � rKe�rsUðdat;2Þþ
ra
r
ertðUðdat;1Þ�Uðdat;2ÞÞ

¼� Str
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðT� tÞp e�

ðda
t;1

Þ2

2 � rKe�rðT�tÞUðdat;2Þþ
ra
r ertðUðdat;1Þ�Uðdat;2ÞÞ

q :¼ðT� tÞKe�rðT�tÞUðdat;2Þþ
at
r ert Uðdat;1Þ�Uðdat;2Þ

� �

m :¼ a
r2 e

rtðUðdat;2Þ�Uðdat;1ÞÞþ
e�

ðda
t;1

Þ2

2ffiffiffiffiffiffiffi
2p

p St þa
rert

� � ffiffiffiffiffiffiffiffiffiffi
T� t

p
:

Moreover, the price sensitivities of an European put option under sim-
ilar circumstances are as follows.

D :¼Uðdat;1Þ�1

C :¼ 1
Str

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðT� tÞp e�ðdat;1Þ

2
=2

H :¼�Strþaert

2
ffiffiffiffiffiffiffiffiffi
2ps

p e�
ðda
t;1

Þ2

2 � rKe�rsUðdat;2Þþ
ra
r
ertðUðdat;1Þ�Uðdat;2ÞÞþ rKe�rs

q :¼ðT� tÞKe�rðT�tÞUðdat;2Þþ
at
r ert Uðdat;1Þ�Uðdat;2Þ

� �
�sKe�rs

m :¼ a
r2 e

rtðUðdat;2Þ�Uðdat;1ÞÞþ
e�

ðda
t;1

Þ2

2ffiffiffiffiffiffiffi
2p

p St þ a
r
ert

� � ffiffiffiffiffiffiffiffiffiffi
T� t

p
:

For the proof of the above proposition see El-Khatib and
Hatemi-J (2017).
3. Calculation of the second order price sensitivities in crisis
times

In this section, the second order price sensitivities are com-
puted of an European call option for the crisis model. The European
put option second order price sensitivities can be obtained simi-
larly. More precisely, the following second order derivatives are
calculated:

Vanna :¼ @Vega
@S

¼ @2C
@S@r

; Volga :¼ @Vega
@r

¼ @2C
@r2 and Vega bleed :¼ @2C

@T@r
:

The proposition expressed below provides the second order
price sensitivities for the crisis model.

Proposition 4. The second order sensitivities of an European call
option with underlying asset S ¼ ðStÞt2½0;T�, strike K and maturity T, at

time t 2 ½0; T�, are respectively given by
Vanna ¼ @2C
@S@r

¼ a
r2

St � Ke�rs

Ke�rT þ a
r

C� dat;2e
�

ðda
t;1

Þ2

2

r
ffiffiffiffiffiffiffi
2p

p : ð3:1Þ

Volga ¼ @2C
@r2 ¼ �2a

r3 ert Uðdat;2Þ �Uðdat;1Þ
� �

þ a
r2 e

rt e�
ðda
t;2

Þ2

2ffiffiffiffiffiffiffi
2p

p @dat;2
@r � e�

ðda
t;1

Þ2

2ffiffiffiffiffiffiffi
2p

p @dat;1
@r

0
B@

1
CA

þ
ffiffiffi
s

pffiffiffiffiffiffiffi
2p

p e�
ðda
t;1

Þ2

2 1� dat;1 St þ a
r
ert

� � @dat;1
@r

" #
: ð3:2Þ

Vegableed ¼ @2C
@T@r

¼ a
r2 e

rt e�
ðda
t;2

Þ2

2ffiffiffiffiffiffiffi
2p

p @dat;2
@s

� e�
ðda
t;1

Þ2

2ffiffiffiffiffiffiffi
2p

p @dat;1
@s

0
B@

1
CA

þ
ffiffiffi
s

pffiffiffiffiffiffiffi
2p

p e�
ðda
t;1

Þ2

2 St þ a
r
ert

� � 1
2s

� dat;1
@dat;1
@s

" #
: ð3:3Þ

With

@dat;2
@r

¼ �dt;1

r
þ a
r3

ffiffiffi
s

p ert
1

Ke�rs þ a
r e

rt

St � Ke�rs

St þ a
r e

rt

" #
; ð3:4Þ

@dat;2
@r

¼ @dat;1
@r

� ffiffiffi
s

p
; ð3:5Þ

and

@dat;2
@s

¼ @dat;1
@s

� r
2
ffiffiffi
s

p ;

where

@dat;1
@s

¼ 1
2rs

ffiffiffi
s

p ln
St þ a

r e
rt

K þ a
r e

rT

� �
þ r þ r2

2

� �
s

� �

þ 1
2rs

ffiffiffi
s

p r þ r2

2

� �
: ð3:6Þ
Proof. The first order price sensitivities stated in Proposition 3 are
used. Then, Vanna can be computed by differentiating Vega ¼ m
expressed in Proposition 3 with respect to S the underlying asset
price, as follows

Vanna¼ @2C
@S@r¼ @m

@St
¼
@ a

r2 ertðU dat;2
� �

�Uðdat;1ÞÞþ e�
ðda
t;1

Þ2

2ffiffiffiffi
2p

p St þ a
re

rt
� � ffiffiffiffiffiffiffiffiffiffi

T� t
p

2
4

3
5

@St

¼ a
r2 e

rt @

@St
Uðdat;2Þ�Uðdat;1Þ
� �

þ
ffiffiffiffiffiffiffiffiffiffi
T� t

p
ffiffiffiffiffiffiffi
2p

p e�
ðda
t;1

Þ2

2
@

@St
St þa

rert
� �

�
ffiffiffiffiffiffiffiffiffiffi
T� t

p
ffiffiffiffiffiffiffi
2p

p St þa
r
ert

� � @

@St
e�

ðda
t;1

Þ2

2

 !

¼ a
r2

ert
@

@St
Uðdat;2Þ�

@

@St
Uðdat;1Þ

� �
þ

ffiffiffiffiffiffiffiffiffiffi
T� t

p
e�

ðda
t;1

Þ2

2ffiffiffiffiffiffiffi
2p

p

� 1�dat;1 St þa
re

rt
� �@dat;1

@St

" #
:

But notice that since D ¼ Uðdat;1Þ then

@Uðdat;1Þ
@St

¼ @D
@St

¼ C ð3:7Þ
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@dat;1
@St

¼
@ 1

r
ffiffiffiffiffiffi
T�t

p ln Stþa
re

rt

Kþa
re

rT

� �
þ ðr þ r2

2 ÞðT � tÞ
� �h i

@St

¼ 1
r
ffiffiffi
s

p ðSt þ a
r e

rtÞ :
ð3:8Þ

On the other hand, the partial derivative of Uðdat;2Þ with respect
to St can be obtained using the chain rule as follows

@Uðdat;2Þ
@St

¼ @Uðdat;2Þ
@dat;2

@dat;2
@dat;1

@dat;1
@St

¼ @Uðdat;2Þ
@dat;2

@dat;1
@St

¼ e�
ðda
t;1

�r ffiffisp Þ2

2ffiffiffiffiffiffiffi
2p

p @dat;1
@St

¼ e�
ðda
t;1

Þ2

2 �r2s
2 þdat;1r

ffiffi
s

p

ffiffiffiffiffiffiffi
2p

p @dat;1
@St

¼ @Uðdat;1Þ
@dat;1

@dat;1
@St

St þ a
r e

rt

Ke�rs þ a
r e

rt
¼ @Uðdat;1Þ

@St

St þ a
r e

rt

Ke�rs þ a
r e

rt

¼C St þ a
r e

rt

Ke�rs þ a
r e

rt
;

where s :¼ T � t is the time to maturity and we have used (3.7) and
(3.8). Thus,

Vanna ¼ @2C
@S@r

¼ @m
@St

¼ a
r2 e

rtC
St � Ke�rs

Ke�rs þ a
r e

rt
þ

ffiffiffi
s

pffiffiffiffiffiffiffi
2p

p e�
ðda
t;1

Þ2

2

� 1� dat;1 St þ a
r
ert

� � 1
r
ffiffiffi
s

p ðSt þ a
r e

rtÞ

" #

¼ a
r2 e

rtC
St � Ke�rs

Ke�rs þ a
r e

rt
þ e�

ðda
t;1

Þ2

2

r
ffiffiffiffiffiffiffi
2p

p r
ffiffiffi
s

p � dat;1
� �

;

which gives (3.1). Similarly, Volga can be computed as follows:

Volga¼@2C

@2r
¼ @m
@r

¼
@ a

r2 ertðUðdat;2Þ�Uðdat;1ÞÞþ e�
ðda
t;1

Þ2

2ffiffiffiffi
2p

p St þ a
re

rt
� � ffiffiffiffiffiffiffiffiffiffi

T� t
p

2
4

3
5

@r

¼�2a
r3 ert Uðdat;2Þ�Uðdat;1Þ

� �
þ a
r2 e

rt @

@r Uðdat;2Þ�Uðdat;1Þ
� �

þ
ffiffiffi
s

pffiffiffiffiffiffiffi
2p

p e�
ðda
t;1

Þ2

2 1�dat;1 St þa
rert

� �@dat;1
@r

" #
;

and

@

@r
Uðdat;2Þ �Uðdat;1Þ
� �

¼ @Uðdat;2Þ
@r

� @Uðdat;1Þ
@r

¼ @Uðdat;2Þ
@dat;2

@dat;2
@r

� @Uðdat;1Þ
@dat;1

@dat;1
@r

¼ e�
ðda
t;2

Þ2

2ffiffiffiffiffiffiffi
2p

p @dat;2
@r

� e�
ðda
t;1

Þ2

2ffiffiffiffiffiffiffi
2p

p @dat;1
@r

;

with

@dat;2
@r

¼�dt;1

r
þ a
r3

ffiffiffi
s

p ert
1

Ke�rs þ a
r e

rt

St � Ke�rs

St þ a
r e

rt

" #
;

@dat;2
@r

¼ @dat;1
@r

� ffiffiffi
s

p
:

The Vega Bleed is the change of the Vega when there is a time
change. The Vega Bleed is calculated as follows:
Vegableed¼ @2C
@s@r

¼ @m
@s

¼
@ a

r2 ertðUðdat;2Þ�Uðdat;1ÞÞþ e�
ðda
t;1

Þ2

2ffiffiffiffi
2p

p St þ a
re

rt
� � ffiffiffi

s
p

2
4

3
5

@s

¼ a
r2 e

rt e�
ðda
t;2

Þ2

2ffiffiffiffiffiffiffi
2p

p @dat;2
@s �e�

ðda
t;1

Þ2

2ffiffiffiffiffiffiffi
2p

p @dat;1
@s

0
B@

1
CAþ

ffiffiffi
s

pffiffiffiffiffiffiffi
2p

p e�
ðda
t;1

Þ2

2 St þa
rert

� �

� 1
2s�dat;1

@dat;1
@s

" #
:

Notice that

@dat;2
@s

¼ @dat;1
@s

� r
2
ffiffiffi
s

p

and

@dat;1
@s

¼ 1
2rs

ffiffiffi
s

p ln
St þ a

r e
rt

K þ a
r e

rT

� �
þ r þ r2

2

� �
s

� �
þ 1
2rs

ffiffiffi
s

p r þ r2

2

� �
:

which ends the proof. h
Remark 1. The suggested formulas are a generalization of the for-
mulas of the original Black–Scholes model for normal situations.
The effect of the crisis is captured by the a parameter. If a ¼ 0, then
the original model can be obtained.
3.1. An application of Vanna

In this subsection, an application is provided to show how the
obtained formulas can improve on the precision of hedging strate-
gies -namely compared to the standard Black and Scholes
approach- for offsetting financial risk. For the sake of consistency,
the same values for a call option contract on a financial asset that
was used by El-Khatib and Hatemi-J (2017) for calculating premi-
ums and first order price sensitivities are considered here to esti-
mate the Vanna. These values are: r ¼ 0:2; r ¼ 0:05; T ¼ 0:5;
S ¼ 1200;K ¼ 1250 and a ¼ 0:8. The Vanna is computed twice
using Excel, first based on Eq. (3.1) and second based on the orig-
inal Black-Shcoles formula, which can be obtained via (3.1) if a ¼ 0.
Below are the estimated values for the two cases:

� Vanna for the model suggested in this paper is 0.186930317,
� Vanna for the Black and Scholes model is 0.155724683.

One can notice that the Vanna of the crisis model is estimated to
be higher than the Vanna of Black and Scholes model. This means
the need for hedging is bigger based on the suggested method
compared to the standard one.
4. Conclusions

Price sensitivities are regularly used by financial institutions
and investors in order to deal with different sources of financial
risk. Recently, the literature has put forward formulas for price
sensitivities for markets that are characterized by a crisis. This is
an important issue because it is exactly during the crisis that the
need for successful tools that can neutralize or at least reduce risk
is urgent. Another strand of literature has contributed to the intro-
duction of the second order price sensitivities. To the best knowl-
edge, the second order price sensitivities have not been
developed for a market with a crisis, a gap that this paper attempt
to fill. The formulas that are proposed in this paper are expected to
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make the hedging against the financial risk more precise. This
might be specially the case during the crises.
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