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Objectives: This study aims to model data that contain two correlated responses, multicollinearity in pre-
dictors, and has a pattern that does not follow a parametric form.
Methods: We propose the use of principal component analysis of truncated splines in a biresponse model.
The use of principal components to overcome correlations between predictors, and biresponse to over-
come correlations between responses by involving weighted estimates from the covariance matrix. In
the PCA spline contains the optimal knot points which control the accuracy of the regression curve.
The knot point chosen is the point which has the smallest GCV value among all knot points. In addition,
we also consider the value of MSE in showing the model’s ability.
Results: We demonstrated the ability of this method through simulation studies and obtained smaller
GCV and MSE values compared to parametric regression and PCA. Furthermore, the data for type 2 dia-
betes mellitus, obtained two main components with different patterns of change. Based on the analysis, it
was found that LDL cholesterol, total cholesterol, and triglycerides had a greater effect on changes in the
pattern of fasting blood sugar and HbA1C.
Conclusions: The small errors of the simulation data indicate the accurate capabilities of the biresponse
spline PCA model. The diabetes data analysis, it shows that patients need to pay attention to their choles-
terol and triglyceride levels within normal limits.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

At this time, we have entered the era of big data on the number
of samples, responses, and predictor variables. What concerns us
here is that the larger the data, the greater the likelihood of
assumptions for error correlation and multicollinearity in the pre-
dictors. One popular statistical approach to addressing this prob-
lem is principal component analysis (PCA). Several researchers
who have studied PCA include Jolliffe and Cadima (2016) have
developed PCA, which can reduce predictor variables through
eigenvalues so that the components are mutually independent.
The ability of PCA has been demonstrated by Bouwmans and
Zahzah (2014) in image data analysis. Ghasemi et al. (2013) have
classified the mineral composition of water samples, Vichi and
Saporta (2009) have classified economic problems, and Hannachi
et al. (2006) on climate issues. All of these PCA studies used a para-
metric approach that was limited to constructing the major com-
ponents for a single response.

Another problem that can occur is that there are multicollinear-
ity data that have an irregular pattern or do not follow a parametric
pattern so that it is difficult to model it with the PCA parametric
regression approach. Therefore, researchers developed nonpara-
metric regression research, including Durand (1993) who has
worked on instrumental variables with spline transformations.
Wang et al. (2016) used PCA local polynomials and Shiokawa
et al. (2018) with the PCA kernel. The use of another estimator
by Lavado and Calapez (2011) have developed PCA with M Spline.
For the spline estimator, there is a spline that contains a penalty
function in its estimation criteria that can be used to overcome
multicollinearity, namely spline smoothing by Lestari et al.
(2010) and spline penalized by Islamiyati et al. (2020a). However,
there is also another spline estimator that does not contain a pen-
alty function, namely the truncated spline which cannot overcome
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the multicollinearity of the predictor. Therefore, in this article, we
are developing a study on spline truncated PCA for two responses.

On a larger response dimension in nonparametric regression
studies, Soo and Bates (1996) have developed a multi-response
spline estimator using the Generalized Gauss-Newton algorithm.
Wang, et al. (2000) have analyzed the bivariate data with the
smoothing spline estimator. Furthermore, Chamidah et al. (2012)
examined the use of local polynomial estimators in nonparametric
regression. Zahra and Mhlawy (2013) made a numerical study on
an exponential spline. Khan and Shahna (2019) used a quadratic
spline. Tohari and Chamidah (2020) used a negative bi-response
binomial regression with a linear local estimator. Furthermore,
Islamiyati et al. (2018) developed a penalized spline estimator in
the longitudinal biresponse case. However, all these studies have
not considered the multicollinearity cases that can occur in large
predictor data dimensions. They only consider the correlations that
occur in responses that are overcome by weight in the estimation
criteria, such as using weight in the variance–covariance matrix.

We demonstrated the capabilities of the method through simu-
lation data and compared it with the parametric regression model
approach, PCA, and the nonparametric spline regression model.
Next, we applied it to real data, namely data on type 2 diabetes
mellitus that we obtained from the Hasanuddin University Teach-
ing Hospital. Islamiyati et al. (2020b) has examined the effect of
treatment time on blood sugar through a longitudinal penalized
spline. Islamiyati et al. (2020c) examined the pattern of changes
in blood sugar based on the diet of diabetic patients through a bire-
sponse approach Islamiyati et al. (2020c); Zahra and Mhlawy
(2013). Furthermore, Islamiyati (2022) obtained several segments
of changes in blood sugar based on lifestyle factors of diabetic
patients. All of them indicate that the blood sugar fits the spline
approach because there are changes at certain intervals.

2. Spline truncated function in the PCA

Given the pairs of observation data ti1; ti2; . . . tip; y1:i; y2:i
� �

, the
predictor variable t as many as p and the response variable y as
many as two which follow the nonparametric pattern in
i ¼ 1;2; . . . ;n. If it is assumed that the predictor variables are
strongly correlated, then multicollinearity occurs and must first
be resolved. In a statistical approach, one method of handling mul-
ticollinearity is principal component analysis (PCA) which has been
widely used in many applications. Jolliffe and Cadima (2016)
explain that PCA reduces a group of predictor variables into a
group of new variables as much as predictors called principal com-
ponent. It is a linear combination of predictor variables in which
the number of principal components formed is as many as predic-
tors. The assumption is that the components are orthogonal so that
they are not correlated and it is believed that the information pro-
vided does not overlap.

It is known that R is the variance matrix of the predictor vari-
able t1; t2; . . . ; tp which is used as the basis for selecting the number
of main components. If c is the main component, then the equation
for each component can be stated as follows:

c1i ¼ c11t1i þ c12t2i þ . . .þ c1ptpi
c2i ¼ c21t1i þ c22t2i þ . . .þ c2ptpi

..

.

cpi ¼ cp1t1i þ cp2t2i þ . . .þ cpptpi

9>>>>>=
>>>>>;

ð1Þ

Eq. (1) can also be expressed in vector form, namely:

c�1
¼ T c�1

; c�2
¼ T c�2

; . . . ; c�p
¼ T c�p
2

where c1; c2; . . . ; cp is called the principal component 1, 2,. . ., p and
each has a variance of k1; k2; . . . ; kp, T is the predictor matrix and
c� is the principal component coefficient vector. The order of the

main components is taken based on the large variety so that the lar-
gest variance is in the 1st component and the smallest variance is in

the p-component with c�1
¼ c1:1; c1:2; . . . ; c1:p
� �T

and c�
T

1
c�1

¼ 1. Sup-

pose k1 P k2 P � � � P kp is the characteristic root corresponding to
the feature vector c�1

; c�2
; . . . ; c�p

of the matrix R and c�
T

1
c�1

¼ 1 for

j ¼ 1;2; . . . ;p, then c�1
¼ T c�1

; c�2
¼ T c�2

; . . . ; c�p
¼ T c�p

is the 1st,

2nd,. . ., pth principal component of t. For data applications, the num-
ber of principal components is selected based on the cumulative
variance described by the components.

In many multivariate studies, the principal component problem
only comes to Eq. (1), which describes the principal components
that are formed based on their total variety. However, the problem
is different when our data is nonparametric. To model the data, the
principal components obtained in Eq. (1) are then connected to the
predictors through an estimator function in nonparametric regres-
sion, namely the truncated spline.

If the principal component selected is m from p component and
is symbolized by cj; j ¼ 1;2; . . . ;m; . . . ; p for m 6 p, then the princi-
pal component function of the truncated spline based on the pre-
dictor can be stated as follows:

c1 ¼ f 1 t1ð Þ þ f 1 t2ð Þ þ . . .þ f 1 tp
� �þ n1

c2 ¼ f 2 t1ð Þ þ f 2 t2ð Þ þ . . .þ f 2 tp
� �þ n2

..

.

cm ¼ f m t1ð Þ þ f m t2ð Þ þ . . .þ f m tp
� �þ nm

..

.

cp ¼ f p t1ð Þ þ f p t2ð Þ þ . . .þ f p tp
� �þ np

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2Þ

where c1; c2; . . . ; cm; . . . ; cp is called the 1st, 2nd,. . ., mth,. . ., pth prin-
cipal component, f j t1ð Þ; f j t2ð Þ; . . . ; f j tp

� �� �
is the spline function in

the predictors t1, t2, . . .tp and n1; n2; . . . ; nm; . . . ; np is the error in
the spline function truncated by the 1st, 2nd,. . .,mth,. . ., pth principal
component.

The function of each predictor f j t1ð Þ; f j t2ð Þ; . . . ; f j tp
� �� �

in (2) is a
vector of the spline function of unknown shape for j ¼ 1;2; . . . ;m. It
is estimated with a truncated spline in the order q and the point of
knots K. The spline function in each predictor for each jth compo-
nent can be described as follows:

f j t1ð Þ ¼ Pq1
u1¼0

bj:u1 t
u1
1 þ Pd1

v1¼1
bj:ðq1þv1Þ1 t1 � Kj:v1

� �q1
þ

f j t2ð Þ ¼ Pq2
u2¼0

bj:u2 t
u2
2 þ Pd2

v2¼1
bj:ðq2þv2Þ2 t2 � Kj:v2

� �q2
þ

..

.

f j tp
� � ¼ Pqp

up¼0
bj:up t

up
p þ Pdp

vp¼1
bj:ðqpþvpÞp tp � Kj:vp

� �qp
þ

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð3Þ

where q is the degree of spline, b is the feature vector that corre-
sponds to the root of the feature, K is the knot point, and v is the
number of knot point. The truncated elements are shown as
follows:

tj � Kj:v j

� �qj
þ
¼ tj � Kj:v j

� �
; tj > Kj:v j

0 ; tj 6 Kj:v j

8<
:

Eq. (3) can be expressed in vector form, which is as follows:
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f j t1ð Þ þ f j t2ð Þ þ . . .þ f j tp
� � ¼ Xj b�j

where X is the predictor matrix containing the knots point and

b�j
¼ b�1

; b�2
; . . . ; b�p

 !T

is the feature vector for each predictor.

Furthermore, the spline function of the first principal compo-
nent can be stated as follows:

c�1
¼ X1 b�1

þ n�1

where b�1
¼ b1:1;b1:2; . . . ; b1:p

� �T .
Furthermore, the spline function of the second main compo-

nent, up to p, can be stated as follows:

c�2
¼ X2 b�2

þ n�2
; . . . ; c�p

¼ Xp b�p
þ n�p
Fig. 2. Scree plot of simulation data.
3. Biresponse nonparametric regression model with spline PCA

The biresponse nonparametric regression model on PCA is a
nonparametric regression model that contains two response vari-
ables (yr) with r ¼ 1;2 and several main component variables (cj).
Suppose that the number of main components selected is m, then
the observation data pair ci1; ci2; . . . cim; y1:i; y2:ið Þ, with i ¼ 1;2; . . . ;n,
satisfies the biresponse nonparametric regression model as
follows:

y�i
¼ f� ci1; ci2; . . . ; cimð Þ þ e�i

; i ¼ 1;2; . . . ;n ð4Þ

The model in (4) can be stated as:

y� ¼ f� c1ð Þ þ f� c2ð Þ þ . . .þ f� cmð Þ þ e� ð5Þ

where y� is the response vector which contains the 1st response

vector and the 2nd response, namely y� ¼ y�1
; y�2

� �T

. Vector e� is

the random error vector, namely e� ¼ e�1
; e�2

� �T

with E e�
� �

¼ 0�
and Var e�

� �
¼ V : The vector e�i

¼ e1:i; e2:ið ÞT is assumed that:

E e1;i
� � ¼ E e2;i

� � ¼ 0; E e21;i
� �

¼ r2
1;i;E e22;i
� �

¼ r2
2;i ð6Þ
Fig. 1. Plot of data between p

3

with r12:i ¼ r21:i. The assumption in (6) shows that there is a corre-
lation error between the 1st response with the 2nd response on the
same i, but the error is not correlated for every i that is different in
the response. Therefore, the model involves the weights obtained

from the estimation of the covariance matrix, namely ĥ
�1

as follows:

ĥ ¼ R̂1 R̂12

R̂21 R̂2

" #

where R̂1 is the estimate of the variance matrix in the 1st responses,
R̂12 ¼ R̂21 is the estimate of the covariance matrix of the 1st and 2nd
responses, and R̂2 is the estimate of the variance matrix in the 2nd
response.

Eq. (5) can also be written in matrix form, namely:
redictors and responses.
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y� ¼ X a�þ e� ð7Þ

Furthermore, the Eq. (7) as a biresponse nonparametric regres-
sion model in PCA spline, it was estimated using weighted least
square (WLS). The WLS estimator symbolized by P is as follows:

P ¼ e�
T ĥ

�1
e�

Further obtained:

â� ¼ XT
ĥ
�1
X

� ��1
XT

ĥg�1 y� ð8Þ

Based on the estimation results of the regression parameters in
(8), we get an estimate of the biresponse nonparametric regression
model on PCA through a truncated spline estimator as in Eq. (9).

ŷ� ¼ X â� ¼ X XT ĥ
�1�1

X
� ��1

XT ĥ
�1

y� ð9Þ
Fig. 3. The estimation results of the PCA spline regression curve at sever

4

4. Simulation data

We make different experimental functions on the predictors,
namely f ti1ð Þ is in the form of polynomial while f ti2ð Þ and f ti3ð Þ is
in the form of trigonometry. The number of subjects tested was
n = 10, 30, 50, 100, 150 with correlation between predictors
between 0.7 and 0.8. In this study, we choose a positive correlation
because it is related to the condition variable to the real data. Sim-
ulations are being performed on a single response to demonstrate
the ability of the PCA spline to model multicollinearity nonpara-
metric data. The nonparametric regression model follows
yi ¼ f ti1; ti2; ti3ð Þ þ ei with i ¼ 1;2; . . . ;n. The functions of the 1st
predictor, 2nd predictor, and 3rd predictor are indicated by
f ti1ð Þ ¼ 0:6t2i þ 2ti1 þ 3, f ti2ð Þ ¼ 3� sin 2pti2ð Þ, and f ti3ð Þ ¼ 5þ
2sin pti3ð Þ.

In this section, we present a data plot for a sample size of
n = 150 as shown in Fig. 1 for the 1st, 2nd, and 3rd predictors,
respectively. The results of the correlation test between the predic-
tors showed that there was multicollinearity in the data where
al knots for (a) the first component and (b) the second component.



Fig. 4. Boxplot MSE of linear regression, PCA and PCA spline.
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there was a strong correlation between t1 and t2 of 0.86, t1 and t3 of
0.82, t2 and t3 of 0.71. In this article, the predictors are reduced to
independent components via PCA with 3 principal components
that correspond to the number of predictors. Based on the value
of the cumulative proportion which can also be seen through the
scree plot in Fig. 2, we take two principal components to be ana-
lyzed because the proportion of variance that can be explained
has reached 97%. Furthermore, the predictor variables entered into
each component are shown through the loading factor. The first
component contains the three predictors, namely t1, t2, and t3,
while the second component contains only two predictors, namely
t2 and t3. This indicates that the simulation data can be made into
two independent components with each influencing predictor.
There are two different conditions in the data, one is that there is
a group of data that is influenced by all the predictors and there
is another group that is only affected by two predictors. However,
in the data, it is not only multicollinearity that occurs, but the data
also has plots that do not follow a parametric pattern. The use of
PCA alone has not been able to solve the problems that occur in
the data. Therefore, in this study, we estimated the principal com-
ponent based on the predictor through the truncated spline.
Through the loading factor in PCA, it is shown the factors that sig-
nificantly influence each main component. Significant predictors
were then estimated from PC values through the nonparametric
regression model of spline truncated PCA.

Fig. 3a shows the first component contains the significant pre-
dictors, t1, t2 and t3 and shows an ascending linear pattern. The sec-
ond component contains the t2 and t3 predictors shown in Fig. 3b.
Furthermore, the two main components were modeled based on
significant predictors through truncated spline PCA. We model it
using knot points of 1 to 11 knots. Based on the truncated spline
PCA, we obtain a spline regression curve with several optimal knot
points. There is a different regression curve for each selected knot
point, both for the first and second components. Therefore, we
need to select the optimal knot point for each major component
through the minimum GCV and MSE values as in Table 1 which
corresponds to the knot points in Table 2. The minimum GCV
and MSE values obtained at c1 for t1, t2, and t3 are 11, 8 and 10
Table 1
GCV and MSE values at each knot point.

GCV

c1 c2

t1 t2 t3 t2 t3

1 knot 3.4219 5.0511 5.9059 4.1088 4.203
2 knots 3.0961 4.8394 5.7727 4.0977 4.102
3 knots 3.0955 4.8389 5.9038 4.0558 4.095
4 knots 3.0963 4.8305 5.5025 4.0181 4.005
5 knots 3.0947 4.8301 5.4450 3.9925 3.976
6 knots 3.0910 4.8389 5.5012 3.9807 3.932
7 knots 3.0946 4.8390 5.1106 3.9228 3.958
8 knots 3.0921 4.8202 5.1097 3.9414 3.957
9 knots 3.0926 4.8413 5.1022 3.9121 3.955
10 knots 3.0911 4.8388 5.0461 3.9304 3.902
11 knots 3.0905 4.8381 5.0837 3.8012 3.810

Bold numbers indicate the minimum GCV and MSE values.

Table 2
Optimal knot points.

K1 K2 K3 K4 K5

c1 t1 0.104 0.185 0.266 0.347 0.428
t2 0.241 0.403 0.565 0.728 0.890
t3 0.241 0.375 0.508 0.642 0.775

c2 t2 0.200 0.322 0.444 0.565 0.687
t3 0.230 0.352 0.475 0.597 0.719

5

knots, respectively. The minimum GCV and MSE values at c2 for
t2 and t3 is 11 knots. These results indicate that the minimum
GCV and MSE values is obtained at different knot points for each
component. Where the knot point is the starting point for a pattern
change in the main component.

Furthermore, Fig. 4 shows a box plot of the MSE value which
aims to compare the estimated results of the PCA spline with the
multiple linear regression model and PCA. The use of the MSE value
in the plot is because the model we used as a comparison with the
estimated results of the PCA spline is a parametric model. The
results in Fig. 4 shows that the PCA spline provides a much smaller
MSE value compared to the parametric linear regression and PCA
models. Therefore, the Spline PCA nonparametric regression model
is very suitable to be used to model data between predictors with
responses that do not follow a parametric pattern and correlated
variables.
MSE

c1 c2

t1 t2 t3 t2 t3

5 0.0221 0.0331 0.0341 0.0283 0.0295
8 0.0216 0.0328 0.0340 0.0279 0.0282
2 0.0215 0.0327 0.0341 0.0277 0.0281
1 0.0216 0.0325 0.0339 0.0275 0.0274
2 0.0214 0.0325 0.0338 0.0269 0.0265
1 0.0211 0.0327 0.0339 0.0268 0.0258
8 0.0214 0.0328 0.0336 0.0261 0.0261
9 0.0213 0.0321 0.0335 0.0263 0.0261
4 0.0214 0.0329 0.0334 0.0258 0.0261
1 0.0212 0.0327 0.0331 0.0263 0.0258
7 0.0203 0.0327 0.0333 0.0250 0.0253

K6 K7 K8 K9 K10 K11

0.509 0.590 0.670 0.751 0.832 0.913
1.052 1.214 1.377
0.909 1.042 1.176 1.309 1.443
0.809 0.931 1.052 1.174 1.295 1.417
0.842 0.965 1.087 1.209 1.332 1.454
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5. Application on type 2 diabetes mellitus data

The ability of the PCA spline method to be more accurate in the
simulation data in the previous section has provided assurance
that this method can be applied to diabetes data. The variables
studied were fasting blood sugar and HbA1C as the first and second
responses, respectively. The factors of age, weight, height, HDL
cholesterol, LDL cholesterol, total cholesterol, and triglycerides
were the first, second, third, fourth, fifth, sixth, and seventh predic-
tors, respectively. Data plots of fasting blood sugar levels are
shown in Fig. 5 and HbA1C in Fig. 6. All figures show that the data
plots between fasting blood sugar factors and HbA1C with LDL
cholesterol, HDL cholesterol, total cholesterol, and triglyceride fac-
tors do not show a parametric plot. Therefore, we use a truncated
spline as one of the estimators for non-parametric patterned data.
This estimator is able to explain some pattern segmentation that
occurs in the data through knot points. The patient’s blood sugar
is always changing in a fast time can be interpreted well by spline
truncated through the knot point. Next, the correlation
ry1 :y2 ¼ 0:780, rt2 :t3 ¼ 0:856 and rt3 :t4 ¼ 0:586. This shows a correla-
tion between responses and multicollinearity in the predictor vari-
ables. To overcome these two types of correlation, we used a PCA
biresponse model with a truncated spline estimator.

Based on the Scree plot, we can take two main components of
the seven main components, because it can explain the variance
of 85.7%. Furthermore, we found that the significant predictor vari-
ables in the first and second components were the same, namely
the variables LDL cholesterol, total cholesterol and triglycerides.
These results indicate that the two groups of diabetic patients
Fig. 5. The plot of fasting blood su

6

can be modeled and we only need to consider three factors from
the seven factors studied, namely LDL cholesterol, total cholesterol,
and triglycerides. From the value of the principal component that
corresponds to the predictor, we can model the main component
through the spline function truncated with a certain knot point.

The estimation results of the PCA spline regression curve
between the first and second components with predictors are
shown in Fig. 7. Based on Fig. 7a and b, the spline curve estima-
tion of each component looks different from one another. In the
cholesterol factor, namely LDL and total cholesterol, there is an
upward trend in the first and second components, but the
increase is different from one another. For triglyceride factors,
there is an uptrend in the first component and a downtrend in
the second component. The trend is indicated by optimal knot
points where the points are selected based on the GCV value. In
this data, we get 3 knot points which give the minimum GCV
value, namely for LDL cholesterol factors are 105.5, 173, and
240.5, for total cholesterol factors are 164, 252, 340, and for
triglyceride factors are 133, 219, 305.

The spline equation is truncated on each component corre-
sponding to the knot point are as follows:

c1 ¼ 547:147þ 247:493t5 þ 323:661 t5 � 105:5ð Þþ þ 463:159 t5 � 173ð Þþ þ 532:79 t5 � 240:5ð Þþþ
229:765t6 þ 344:662 t6 � 164ð Þþ þ 545:372 t6 � 252ð Þþ þ 598:609 t6 � 340ð Þþ þ 236:209t7þ

351:961 t7 � 133ð Þþ þ 430 t7 � 219ð Þþ þ 478:244 t7 � 305ð Þþ
c2 ¼ 59:437þ 43:86t5 þ 92:908 t5 � 105:5ð Þþ þ 131:477 t5 � 173ð Þþ � 103:674 t5 � 240:5ð Þþþ

39:642t6 þ 88:338 t6 � 164ð Þþ � 77:957 t6 � 252ð Þþ þ 101:394 t6 � 340ð Þþ � 48:583t7þ
43:911 t7 � 133ð Þþ � 2:963 t7 � 219ð Þþ � 76:364 t7 � 305ð Þþ

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð10Þ
gar (y1) based on predictors.



Fig. 6. The plot of HbA1C (y2) data based on predictors.
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Eq. (10) corresponds to Fig. 8 which shows the estimation
results of the spline truncated curve for each principal component.

Furthermore, the biresponse PCA spline regression model
obtained between the response and the main components of the
diabetes data is as follows:

y1 ¼ �37:905þ 0:184c1 þ 0:445c2
y2 ¼ 1:885þ 0:005c1 þ 0:016c2

Based on the equation of the principal components in (10), the
PCA biresponse spline regression model can be expressed as
follows:

ŷ1 ¼ 89:219þ f45:538t5 þ 59:553 t5 � 105:5ð Þþ þ 85:221 t5 � 173ð Þþ þ 90:033 t5 � 240:5ð Þþþ
42:276t6 þ 63:417 t6 � 164ð Þþ þ 100:348 t6 � 252ð Þþ þ 110:144 t6 � 340ð Þþ þ 43:462t7þ

64:761 t7 � 133ð Þþ þ 79:12 t7 � 219ð Þþ þ 87:996 t7 � 305ð Þþg þ f19:517t5 þ 41:344 t5 � 105:5ð Þþþ
58:507 t5 � 173ð Þþ � 46:134 t5 � 240:5ð Þþ þ 17:641t6 þ 39:310 t6 � 164ð Þþ � 34:690 t6 � 252ð Þþþ
45:123 t6 � 340ð Þþ � 21:619t7 þ 19:540 t7 � 133ð Þþ � 1:318 t7 � 219ð Þþ � 33:982 t7 � 305ð Þþg
ŷ2 ¼ 5:571þ f1:237t5 þ 1:618 t5 � 105:5ð Þþ þ 2:315 t5 � 173ð Þþ þ 2:663 t5 � 240:5ð Þþþ

1:148t6 þ 1:723 t6 � 164ð Þþ þ 2:726 t6 � 252ð Þþ þ 2:993 t6 � 340ð Þþ þ 1:181t7þ
1:759 t7 � 133ð Þþ þ 2:15 t7 � 219ð Þþ þ 2:391 t7 � 305ð Þþg þ f0:701t5 þ 1:486 t5 � 105:5ð Þþþ
2:103 t5 � 173ð Þþ � 1:658 t5 � 240:5ð Þþ þ 0:634t6 þ 1:413 t6 � 164ð Þþ � 1:247 t6 � 252ð Þþþ
1:622 t6 � 340ð Þþ � 0:777t7 þ 0:702 t7 � 133ð Þþ � 0:047 t7 � 219ð Þþ � 1:221 t7 � 305ð Þþg

ð11Þ
7

The results of the analysis of the biresponse PCA spline model
showed a pattern of changes in fasting blood sugar and HbA1C
levels, which were mostly influenced by LDL cholesterol, total
cholesterol, and triglycerides. In the first component, fasting blood
sugar and HbA1C tend to rise along with the increase in cholesterol
and triglycerides. However, the increment varies at certain value
intervals. Furthermore, for the second component, fasting blood
sugar and HbA1C increased and decreased based on the patient’s
cholesterol and triglyceride levels in certain intervals. This shows
that through spline truncated PCA biresponse, we can identify
two conditions that can occur in patients with type 2 diabetes
mellitus.
6. Conclusion

A bi-response truncated PCA spline model was developed for
data containing multi-dimensional variables in which responses
are correlated as well as predictors. The multicollinearity problem
in predictors was solved by using PCA spline. The principal compo-
nent that is formed is modeled with a predictor through a trun-



Fig. 7. The estimation results of the truncated spline curve are based on the factors of LDL cholesterol, total cholesterol, and triglycerides on (a) the first component and (b)
the second component.
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cated spline estimator which considers the knot point. The ability
of the method has been demonstrated through simulation data
and MSE values were obtained that were smaller than the para-
metric regression and PCA approaches as shown in Fig. 4. This
method is also applied to data on type 2 diabetes mellitus patients.
Based on the results of the analysis of the biresponse spline PCA
model, it was found that there were two main components which
indicated that there were two different groups of type 2 diabetes
mellitus patients. The two principal components are equally
affected by LDL cholesterol, total cholesterol and triglycerides.
What distinguishes these components is the pattern of changes
in fasting blood sugar and HbA1C based on these three factors.
The pattern can be seen in Fig. 8, and then modeled as in Eq.
(10). The condition of the type 2 diabetes mellitus patients
described in this article shows that the important factors that the
patient should pay attention to are the regulation of LDL choles-
terol, total cholesterol, and triglycerides. The shape of their influ-
ence on the patient is described in terms of two components.
Also, the effect of these three factors shows that there are several
8

patterns of change at certain intervals corresponding to the knot
point. This result is one of the advantages of this method that can-
not be explained through a parametric approach.
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Fig. 8. The estimation results of the spline truncated PCA curve for biresponse to (a) the fasting blood sugar factor and (b) the HbA1C factor.
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