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In this study, an efficient method is presented for solving nonlinear two-dimensional Vol-
terra integral equations of the second kind. Using block by block method, nonlinear two-dimen-
sional Volterra integral equations reduce to a algebraic equations. Also a theorem is proved for
convergence analysis. Numerical examples are presented and results are compared with the analyt-
ical solution to demonstrate the validity and applicability of the method.
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1. Introduction
Many problems in applied mathematics and physics give rise to

nonlinear two-dimensional Volterra integral equations the sec-
ond kind (Hanson and Phillips, 1978; Mckee et al., 2000)

ux.y) = v + [ /  k(opos.tuls, O)deds; (x,)
eD, )
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where f(x, y) and k(x, y, s, 1, u) are given continuous functions de-
fined, respectively on D =[0,5] x [0,b], E=D x D x (—oc0,
~+o0) and u(x, y) is unknown on D. While several numerical meth-
ods for approximating the solution of one-dimensional Volterra
integral equations are known, for two-dimensional only a few
are discussed in the literature. The numerical solution of equa-
tions of the type of (1) seems to have first been considered by
Bel’ tyukov and Kuznechikhina (1976) where they proposed an
explicit Rung—Kutta type method of order 3 without any conver-
gence analysis. A bivariate cubic spline functions method of full
continuity was obtained by Singh (1979). Brunner and Kauthen
(1989) introduced collocation and iterated collocation methods
for two-dimensional linear Volterra integral equations. An
asymptotic error expansion of the iterated collocation solution
for two-dimensional linear and nonlinear Volterra integral equa-
tions was obtained by Han and Zhang (1994) and Guoqiang et al.
(2000), respectively. More recently, Hadizadeh and Moatamedi
(2007) have investigated a differential transformation approach
for nonlinear two-dimensional Volterra integral equations.

In the present paper, we apply block by block method (Katani
and Shahmorad, 2010; Saberi-Nadjafi and Heidari, 2007), to solve
the nonlinear two-dimensional Volterra integral equations (1).
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2. Development block by block method for solving nonlinear two-
dimensional Volterra integral equations

The basic region D = [0,b] x [0,b] is divided into steps of
width and Length h, such as x; = ih,
yi=jh; i,j=0,1,2,...,n and nh = b. In what follows, we
denote by U;; approximation of u(x,y) at the mesh point
(x,») = (x;,¥;) and Uyy = £(0,0). We let the of blocks to be
2. From Eq. (1) we have

X2m+1
u(XZm-H 7y2m+1 ) :.f(x2m+1 7y2m+1) + /
0
Yom+1
X / k(x2m+17y2n1+l7s7t7u(s7t))dtds
0

Xom Vom
:,f('x2m+1 7y2m+1) +/ /

Xk(’(z,,1+17y2m+|75 t, M(S t dldS+/

Xom

Xom+1 Yom

Xom Vom+1
X k(x2m+17y2m+l )8, 1 M(S t dtd9+/
Yom
Xom+1 Vom+1
Xk (Xomst, Vo1, 8, u(s, 1)) dlds+/
X2m Yam
Xk (Xomit, Vo1, t,u(s, t))dtds. (2)

Now, integration over [0, x,,] and [0, y,,,] can be accomplished
by Simpson’s rule and the integral over [xa,,Xa,+1] and
[Vams Yams1] are computed by using fourth degree two-dimen-
sional Lagrange interpolation of the integrand at the points
Xom) x2m+%7 Xom+1 and Voms y2m+%7y2m+] . Hence

2

. h
U1 2m1 :f(-x2m+l7y2m+l) + g [k(x2m+17J’2m+1 5 X05 V05 Uo,o)

+4k(x2m+17y2m+17x17y07 UI.O) +...

+ k(x2m+l ) y2m+1 s Xom, y()y UZmA,O)]
2

+ 7 [k(x2m+l7y2m+l » X0, V15 UO.I)

+ 4k(x2m+17y2m+17x17y15 Ul,l) +

+ k(x2m+l ay2m+lax2may15 U2m.1)] +...
2

h
+ 6 [k(x2m+17y2m+l y X05 Voo UO,Zm)

+ 4k(x2m+1 ) y2m+] s X15 YVoms U1,2m) +
+ k(x2m+l ) y2m+1 s Xoms Voms UZm.Zm)]
2

18

+ 4k(x2m+1 y YVom+15 x2m+%7 Yos U2m+%,0)

+ k(x2m+l ) y2m+l s Xom+1 7y()> UZerI,O)}
2

4h
+ ﬁ [k(x2m+l ) y2m+l s Xoms Vs UZm,l)

+ 4k(x2m+1 » Vo1 Xomtdr Vi U2m+%,1 )

+ k(x2m+l y Voma 15 Xom415 V1 U2m+1,1 )} +...
2

Jr —
18

+ 4k(x2m+1 s Vom+1s x2m+%7 Yoms U2m+%,2m)
+ k(x2m+l ay2m+1 y Xom+15 Yoo U2m+],2m)]
2
18

+ 4k(x2m+1 y y2m+] s X1y Vo UI,Zm) +
+ k(-x2m+l ) y2m+1 s Xoms Voms UZm.Zm)]

[k(x2m+1 7y2m+1 ) )”7mvy()» U2m 0)

[k(x2m+1 7y2m+1 s Xoms Vom» UZm.Zm)

[k(x2m+1 7y2m+1 s X05 Voms UO 2)71)

2
+ K [k(x2m+1 ) y2m+l » X0, y2m+%7 U072m+%)

+ 4k(x2m+1 2 Vome15 X1 Vol U1,2m+%) + ..

+ k(x2m+l s Vomg1s X2m y2m+%7 U2m,2m+%)]

2
e
+ 18 [k(x2m+l ) y2m+1 , X0, y2m+l ) U0‘2n1+l )

+ 4k(x2m+l7y2m+] ) x17y2m+]7 U1.2m+1) + ...
+ k(x2m+1 ) y2m+] s X2m, y2m+1 ) U2m-2m+1)}

2

h

+ % [k(x2m+1 s Voma1s X2m * Voo UZM‘ZM)
+ 4k(x2m+1 ) y2m+] ) x2m+%7 Yoms U2m+%.2m)

+ k(x2m+l 9 y2m+1 s Xom+1 1y2m’ U2m+l ,2'11)}

2
+ 36 [k(x2m+l7y2m+17x2mvy2m+%7 U2m,2m+%)

+ 4k(x2m+l s Vom+1s x2m+%7 y2m+%a U2m+%,2m+%)

+ k(x2m+1 s Vomg1s Xom+1s y2m+%7 U2m+1,2m+%)]

hZ
+ % [k(x2m+1 ) y2m+] y X2m,s y2m+l ) U2m.2m+l)

+ 4k(x2m+1 y Vom+15 x2m+%7 Yom+1 U2m+%.2m+1)

+ k(x2m+1 ) y2m+1 s X2om+1, y2m+l ) U2n1+172m+1 )]7

where

9 9 3
U2m+%.2m+% = a U2m,2m + ﬁ UZm,Zerl - a UZm,2m+2

9 9

+ i U2m+1,2m + T() U2m+l,2m+l
3 3

- ﬁ U2m+1,2m+2 + a U2n1+2‘2m

3 1
- ﬁ U2m+2.2m+l + a U2m+2.2m+27

9 9 3
U2m+%‘2m+l = g U2m,2m - g U2m,2m+1 + g U2m,2m+2
9 9
4 Usns1,0m — 4 Usnsr1ome1 + Z Using1,2m+2
3
8 U2m+2 2m + < 8 U2m+2 2m+1 — § U2m+2,2m+27
3 3 1
U2m+1_2m+% 8 U2m+l om + 4 U2m+l 2m+1 — § U2m+1 2m+25
3 3 1
U2m+%,2m+2 = g 2m om2 + 4 U2m+|,2n7+2 - g U2m+2,2m+2a
3 3 1
U2m+272m+5 - 8 U2m+2 om + 4 U2n1+2.2m+1 - § U2m+2.2m+2a
3 3 1
U2m+— m T g U2m,2);1 + - U2m+1.2m - U2m+2 2m
8 4 8
3 3 1
U2m,2m+% = g UZm,2117 + Z U2m‘2m+l - 8 U2m 2m+2-

In a similar manner we obtain



The block by block method for the numerical solution of the nonlinear two-dimensional Volterra integral equations 193
Usmiaomiz = fXomi2s Yomsa) ’
e Wvl’ézmz t‘mg + %k(xbnﬂ s Voma1s X2ms Vo1 UZM,ZWH)
+ / / k(x2M+2ay2m+27s7 [,M(S, t))dtds 2/’!2
0 0
/’12 + K k(x2m+1 s Vom+1s x2m+%7 YVom+1s U2n1+%.2m+l)
= f(Xomi2: Vomsa) + 9 [k (2042, Vamy2: X0, Yo, Uoo) 2
+ 4k(X2m+2>y2m+27 X150 Ul«,O) + + 36 k(x2m+l ’ y2m+| y X2om+15 y2m+l ) U2m+1.2m+1)

+ k(x2m+2 ) y2m+27 Xom+25 V0 U2m+2,0)]
2

4
+ T [k(x2m+27y2m+27 X0, V1 UO,I)

+ 4k(x2m+27y2m+27 X1,)15 Ulﬁl) +

+ k(x2m+27y2m+27 Xom+25 V1 U2m+2,1 )] + ...
2

+ 6 [k(-x2m+2 y Voms25 X05 Vomy2s U0,2m+2)

+ 4k(X2m+2>y2m+27 X1 >y2m+27 U1.2m+2) +...
+ k(x2m+2 ) y2m+27 Xom+2, y2m+27 U2m+2.,2m+2)} .

(11)

From Eqgs. (3)-(11) we have a nonlinear equations system for
m=1,2,.... For sufficiently small / there exists unique solu-
tion which can be obtained by iteration such as modified New-
ton—Raphson method.

3. Convergence analysis

Theorem 3.1. The approximate block by block method given by
the system (3) and (11) is convergent and its order of
convergence is at least four.

Proof. Let
|82m+1<2m+|‘ = |U2m+l 2m41 U(X7m+la)’zm+1)‘
2m  2m
= g § W[Jk x2m+l7y2m+1’xl7y/7 Ull)
i=0 j=0
2 2m

+ E Z ij(x2m+1 7y2m+1 y X2m;s yja UZmi/')
=0

2 2m
+ 2 W/ x2m+| 7y2m+l ’ x2m+27 y]? U2m+2,/)
Jj=0

2 2m
+§ § W/‘k(x2m+l7y2m+17x2m+17yj7 U2m+|,/‘)
J=0

2 2m

_8 § wik(-x2m+l 7y2m+1 s Xiy y2m7 Ui72m)
i=0

2
36 k(x2m+1 ) .}2m+l s X2my }2»17 U2m 2m)
2
2h
+ 18 k(-x2m+] ,y2m+1 ’ x2m+%7 Yoms U2m+%.2m)
2
+ % k(x2m+l ) J/zm+1 s Xom+1, y2m7 U2m+l‘2m)
2 2m
+ _9 g wik(-x2m+l sy Vomt1 Xiy y2m+%7
i=0
2
+ 18 k(X2"1+1 >y2m+1 5y X2m,s y2m+%7 U2m.2m+%)
2
4h

9 k(x2m+1 s Vom+1s x2m+%v y2m+%7 U2m+%,2m+%)

25

k(x2m+1 >y2m+1 s Xom+1, yZm+%7 U2n1+l.,2m+%)

i.2m+%)

+

J’_

k(x2m+l ) y2m+l y X1, y2m+l ) Ui‘2m+1)

2m+1 2m+1
—/ / k(xzm+l7y2m+l757 l‘,u(s, Z))dtds s
0 JO

using the Lipschitz condition (Deimling, 1985) it can be written

as
2m  2m 2m 2m
|52m+1‘2m+1| h c Z Z |bL/‘ + h2 IZ |52m,/ + h c Z |62m+1 /‘
i=0 j=0
2m 2m

+ hzcl Z |E2I11+2/| + hz d Z |8i,2m| + hZCH

j=0 i=0
2m 2m
X Z |&i2m+1] + n" Z |&i2msa| + thm|82m+|4,2m|
i=0 i=0
+ hzcm|82m,2m+l ‘ + hzc/”|52m+2<2m| + thW‘£2m,2m+2|

+ thW|82m+1,2m+2| + 172C//,|82m+2,2m+1‘
+ hZCW|82m+2,2m+2| + hZCW|82m+1,2m+| |

+ |R2m+l.2m+1 |7

where Ry,i1m+1 18 the error of integration rule. Without
diminish of universality, we assume that

max max
ij=2m2m+1,2m+2

el = leijl = lezmir.aml;

then let R = max{Ryu112m+1}, hence

2m  2m
el < ¢33 e
i=0 j=0
2m
+ 1 Z(‘82’77:f| + |eamr1 | + |e2mrayl)
J=0
2m
+ W Z(|gi‘2m| + |8,~12m+|| + |3i,2m+2D
=0
+ 8" ey i12mi1| + R,
and
e 2, & "
el <+ 30 D el + T Z(um,f + leame|
h i=0 j=0 h J
hzc,/ 2m
+ |32m+2,1’|) +72 Z( g )
1 —8hc" ‘=

R
+—,
1—8h°c”
then from Gronwall inequality (Mckee et al., 2000), we have :
R
1—8h*c”
Hence we deduce that |l¢;;|| — 0 as # — 0 and for function
k(x,y,s,t,u) and u(x,y) with at least fourth order derivatives,

we have R = O(h*) hence, ||&;;|| = O(h*) and this completes the
proof.

el < TR,
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4. Numerical results

In this section, we applied the method presented in this paper
for solving linear and nonlinear two-dimensional Volterra inte-
gral equations (1) and solved two examples.

Example 1. Consider the following linear two-dimensional
Volterra integral equation (Bongsoo, 2009):

o=t [ [ St

e?[

e 051 0.5}

where

Slx,y) =sin(x + y)(e"™ + 1) —sin(p)e™ — e*sin(x),

the exact solution is u(x,y) = sin(x + y).

The comparisons between the approximation U(x,y) and
the exact solution u(x, y) = sin(x + ) at the given test points
(x,y) are presented in the Tables 1 and 2.

Example 2. Consider the following nonlinear two-dimensional
Volterra integral equation (Tari et al., 2009):

u(x, f(x,y) //s—i—e” W (s, O)deds;  (x,)
€ [0, 1] x [0, 1],

Table 1 Numerical results of example 1 with block by block method and /4 = 0.1.

Presented method

Error presented method

Nodes (x,y) Exact solution
(0,0) 0

(0.1,0.1) 0.19866933079506
0.2,0.2) 0.38941834230865
(0.3,0.3) 0.56464247339504
(0.4,0.4) 0.71735609089952
(0.5,0.5) 0.84147098480790

0

0.198668890723798
0.389408629516421
0.564600658978419
0.717250180986031
0.841262440010650

0

4.40071263596575 e-007
9.71279222977683 e-006
4.18144166166590 e-005
1.05909913491353 ¢-004
2.08544797246857 e-004

Table 2 Numerical results of example 1 with block by block method and /2 = 0.05.

Presented method

Error presented method

Nodes (x,y) Exact solution
(0,0) 0

(0.1,0.1) 0.19866933079506
0.2,0.2) 0.38941834230865
(0.3,0.3) 0.56464247339504
(0.4,0.4) 0.71735609089952
(0.5,0.5) 0.84147098480790

0

0.19866900757444
0.38941468262463
0.56462949769581
0.71732543492286
0.84141258725745

0

3.23220622433507 e-007
3.65968401649930 e-006
1.29756992223174 ¢-005
3.06559766636294 e-005
5.83975504512280 e-005

Table 3 Numerical results of example 2 with block by block method and /# = 0.1.

Presented method

Error presented method

Nodes (x,y) Exact solution
(0,0) 0

(0.1,0.1) 0.01105170918076
0.2,0.2) 0.04885611032641
(0.3,0.3) 0.12588434261122
0.4,0.4) 0.23869195162260
(0.5,0.5) 0.41218031767503
(0.6,0.6) 0.65596276814058
(0.7,0.7) 0.98673882666053
(0.8,0.8) 1.42434619423518
(0.9,0.9) 1.99227852003713
(1,1) 2.71828182845905

0

0.01105170915948
0.04885611113270
0.12588405050312
0.23869101718841
0.41218375273070
0.65585320373805
0.98673517185294
1.42344690409411
1.99233157037561
2.71807931245121

0

2.12735003224385¢—011
8.06287279997431e—010
2.92108099361754e—007
9.34434194438394e—007
3.43505567068636e—006
9.56440252886104e—006
3.65480758712788e—006
9.00709858926874e—004
5.30503384754688e—004
2.02516007826947¢—004

Table 4 Numerical results of example 2 with block by block method and /# = 0.05.

Presented method

Error presented method

Nodes (x,y) Exact solution
(0,0) 0

(0.1,0.1) 0.01105170918076
(0.2,0.2) 0.04885611032641
(0.3,0.3) 0.12588434261122
0.4,0.4) 0.23869195162260
(0.5,0.5) 0.41218031767503
(0.6,0.6) 0.65596276814058
(0.7,0.7) 0.98673882666053
(0.8,0.8) 1.42434619423518
(0.9,0.9) 1.99227852003713

(O]

2.71828182845905

0

0.01105170918224
0.04885611086382
0.12588430490061
0.23868966522708
0.41218149485421
0.65586574533429
0.98630507018100
1.42483300433444
1.99226440132187
2.70829208944238

0

1.47911023706814¢—012
2.68872021869093e—010
3.77105729143512e—008
2.86395521797989¢—007
1.17717917974547¢—006
2.97719370179195¢—006
3.65480758712789e—006
4.86810099263435¢—004
1.41187152615796e—005
5.10260983333843e—004
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where

1 1
7 2y T T2y TS
flx,y) =x%e +14x e —sxy,
the exact solution is u(x,y) = x%¢’.
The comparisons between the approximation U(x,y) and
the exact solution u(x,y) = x¢” at the given test points (x, y)
are presented in the Tables 3 and 4.

5. Conclusion

In this paper, we have investigated the application of block by
block method for solving the nonlinear two-dimensional Vol-
terra integral equations. This technique is very simple. A sim-
ilar manner is used for 4, 6 block. By increasing number of
blocks for 4 and 6, and quadrature rules (Newton—Cotes quad-
rature rule) the order of convergence increases such that is
would be at least O(h°) and O(h*), respectively. Also we can
expand this method to higher dimensional problems. Note that
the find system extracted from the nonlinear equations will be
nonlinear and a proper technique such Newton—Raphson
method could be applied.
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