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The magnetohydrodynamic and thermophoretic effects on a vertical surface in a porous medium are
investigated. The fascinating aspects of thermo diffusion and diffusion-thermo impacts are given.
Mathematical modelling via Lie group method was applied. Thereafter, the infinitesimal generators of
governing equations are computed. Using suitable similarity variables the existing system which was
non-linear is converted into expressions having no dimensions. The resulting expressions were solved
numerically using shooting method and the characteristics of embedded parameters such as tempera-
ture, velocity, concentration profiles have been displayed graphically. We have compared our findings
with those of previous ones to assure the affirmity of our analysis. The change in Sherwood number
for progressive Dufour solutal values are also analyzed.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
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1. Introduction

Since last few decades’ fluid flow in porous media has been
intensively investigated by various mathematicians. In many of
these investigations, emphasis has been given to insulation sys-
tems - both granular as well as fibrous, which are used to contain
the movement of radio nuclides from nuclear waste material
deposits. Since then many papers were published on boundary-
layer flow past surfaces of diverse flow configuration models. For
some applications which require further theoretical and experi-
mental developments, see Nield and Bejan (2013), Vafai (2000),
Pop and Ingham (2001), and Ingham and Pop (1998).

Magnetohydrodynamic (MHD) is a momentous and riveting
region of science which delineates with the movement of electri-
cally conducting fluid. The paramount factuality on the backside
of MHD is to beget current due to applying magnetic field; the
impact of this process induces Lorentz force which significantly
impacts the fluid motion. The multifarious MHD fluids exist in nat-
ure as salt water, plasmas and electrolysis; see Ingham and Pop
(1998), Pai (1962). Lately, MHD is a content of intensive era of
study because of its numerous industrial applications like glass
manufacturing, MHD electrical generation process and procedure
for magnetic materials. Additionally, it has alluring characteristics
in the field of geophysics and astrophysics i.e. it is habituated in
energy extraction and radio propagation. Engineering products like
MHD fluid flow meters and MHD pumps which exploited the MHD
phenomenon. However, in view of such motivation, authors have
investigations in MHD flow for several geometries (see refs. Liuta
and Larachi, 2003; Chamkha et al., 2013; Rashad, 2008; EL-Kabeir
et al., 2010; Hayat et al., 2013).

Heat and mass transfer flows with Dufour and Soret impacts are
of substantial attraction among numerous authors owing to several
grown engineering applications like manufacture for rubber and
plastic sheets, Catalytic process, chemical production engineering,
geophysical procedures, compact heat insulation exchangers and
layout of nuclear reactor. A considerable amount of investigation
has been performed to demonstrate the significance of these two
impacts for various aspects – For instance, Dursunkaya and Worek
(1992) and Anghel et al. (2000) investigated for fluids, the effect on
convection flow of fluid over a stretchable surface porous medium
by Hayat et al. (2010), Makinde and Olanrewaju (2011) analyzed
the combined convective with Dufour and Soret impacts over a
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Nomenclature

x,y Coordinates along and normal to the surface (m)
u
�
;v
�

Velocity components in x and y directions (m/s)
Ts Temperature at the surface (k)
Cs Concentration at the surface (kg/m2)
T
�

Temperature (k)
C
�

Concentration (kg/m2)
Tam Ambient temperature (k)
Cam Ambient concentration (kg/m2)
K Permeability of the porous medium (m2)
q Fluid density (kg/m3)
l Viscosity of the base fluid (kg m�1 s�1)
H0 Magnetic field (T)
g Gravitational acceleration (m/s2)
v Kinematic viscosity (m2 s�1)
bT Volumetric thermal coefficient of the base fluid (1/k)
bc Solutal expansion coefficient of the base fluid (m2/kg)
Cp Specific heat due to constant pressure (J�kg�1�K�1)
a Thermal diffusivity (m2 s�1)
VT Thermophoretic velocity (m/s)
Κv The thermophoretic diffusivity (m�2 s�1)
kgkp Thermal conductivity of gas and diffused particles,

respectively (W m�1 k�1)

kn Knudsen number
Z1,Z2,Z3,Z4,Z5,Z6 Constants
Z7,Z8,Z9,Z10,k1,k2,k3,k4 Arbitrary constants
Ra Rayleigh number
L Characteristic length of the plate (m)
Pr Prandtl number
Le Lewis number
V(x) Transpiration velocity (m/s)
Df Dufour number
Sr Soret number
B The parameter of buoyancy
CT The parameter for thermophoresis
D Chemical molecular diffusivity
h Dimensionless temperature function
/ Dimensionless species concentration function
w Stream function (m2�s�1)
g Non-dimensional pseudo-similarity variable
F Dimensionless stream function
e Lie group parameter
F, H, U Arbitrary functions
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permeable surface roving through a mixture of fluid. And for more
details see Beg et al. (2009), Aziz (2008) and Chamkha and Rashad
(2014; Rashad and Chamkha, 2014).

Many mathematicians were illustrated and explained in their
research papers the importance of applying the group theory in
the field of fluid mechanics. See (Bakier et al., 2009; Nabwey
et al., 2017, 2015; EL-Kabeir et al., 2008)

The prime purpose of the current investigation is to analyse the
influence of Soret and Dufour effects on heat and mass transfer by
MHD flow through a vertical surface in a porous medium with
thermophoresis. The mathematical model which represent the
case study is transformed to couple non-linear ODEs by impose
the Lie group method. The system is solved numerically by shoot-
ing method. Finally, the effect of the associated physical fluid
dynamical parameters on the flow is exhibited and analyzed using
the graphical aid and tabular forms.

2. Analysis

Here we consider the flow of electrically conducting fluid over a
heated vertical surface passing through a porous medium. The sur-
face is maintained at constant temperature Ts and the concentra-
tion Cs , while their ambient values are denoted by Tamand Cam

respectively. From the above basic assumptions and following
Chiou (1998) and Chamkha, and Pop (2004) the governing equa-
tions for an unsteady flow are:

@ u
�

@x
þ @ v

�

@y
¼ 0 ð1Þ

u
�

1þ Krl2
eH

2
0

l

 !
¼ gK

m
bTðT

�
�TamÞ þ bc C

�
�Cam

� �� �
ð2Þ

u
� @ T

�

@x
þ v

� @ T
�

@y
¼ am

@2 T
�

@y2
þ Dmkt

z1cp

@2 C
�

@y2
ð3Þ

u
� @ C

�

@ x
þ v

� @ C
�

@y
þ @

@y
ðVT C

�
Þ ¼ Dm

@2 C
�

@y2
þ Dmkt

Tm

@2 T
�

@y2
ð4Þ
In this work, the boundary conditions were taken as:

at y ¼ 0 : T
�
¼ Ts; C

�
¼ Cs; v

� ¼ VðxÞ
as y ! 1 : T

�
! Tam;C

�
! Cam;u

� ! 0;
ð5Þ

where V (x) is the permeability of the porous surface (negative
sign refer to suction and a positive sign indicates injection). Since
the temperature gradient is higher along y-axis, the ther-
mophoretic velocity VT is considered along y-axis and is given by:

VT ¼ �jm

T
�

@ T
�

@y
ð6Þ

where j represent the thermophoretic coefficient and its range
from 0.2 to 1.2 (see Batchelor and Shen, 1985) and is defined by
(Talbot et al., 1980):

j ¼ 2z1ðkg=kp þ z2knÞ½1þ knðz3 þ z4e�z5=knÞ�
ð1þ 3z6knÞð1þ 2kg=kp þ 2z2knÞ ð7Þ

The next step is to define the dimensionless variables as:

X ¼ x
L
; Y ¼ Ra1=2

y
L

� �
; U

�
¼ u

�

Uc
; V

�
¼ Ra1=2

v
�

Uc

 !
Vt

¼ Ra1=2
v t

Uc

� �
; h ¼ T

�
�Tam

Ts � Tam
; / ¼ C

�
�Cam

Cs � Cam
ð8Þ

where,
Uc ¼ gbT K Ts�Tamð Þ

m represent the characteristic velocity

Ra ¼ gKbT Ts�Tamð ÞL
amm

represent the Rayleigh number,
L is a characteristic length of the plate.
From the above Eqs. (1)-(5) becomes:

@ U
�

@X
þ @ V

�

@Y
¼ 0 ð9Þ

U
�

1þMð Þ ¼ hþ B/ ð10Þ

U
� @h
@X

þ V
� @h
@Y

¼ 1
Pr

@2h

@Y2 þ Df
@2/

@Y2 ð11Þ
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U
� @/
@X

þ V
� @/
@Y

þ @

@Y
ðVT/Þ ¼ 1

Le
@2/

@Y2 þ Sr
@2h

@Y2 ð12Þ

VT ¼ � j Pr
ðCT þ hÞ

@h
@Y

ð13Þ

where CT is the parameter for thermophoresis while B being param-
eter of buoyancy. Dufour and Soret numbers respectively, are
defined as:

Pr ¼ m
am

; Le ¼ am

D
;M ¼ Krl2

eH
2
0

l
; CT ¼ Ts � Tamð Þ

Tam
;

B ¼ bc z1 � Camð Þ
bT Ts � Tamð Þ ;Df ¼

DmktðCs � CamÞ
z1cpamðTs � TamÞ ; Sr

¼ DmktðTs � TamÞ
z1cpamðCs � CamÞ ð14Þ

Then the new boundary conditions are:

atY ¼ 0 : V
�
¼ VðXÞ; h ¼ 1/ ¼ 1

asY ! 1 : U
�
! 0; h ! 0; / ! 0

ð15Þ

Using the standard definition of the stream function w x; yð Þ and put-

ting U
�
¼ @w

@Y ;V
�
¼ � @w

@X, into Eqs. (9)-(12), we have

1þMð Þ @w
@Y

¼ hþ B/ ð16Þ

@w
@Y

@h
@X

� @w
@X

@h
@Y

¼ @2h

@Y2 þ Df
@2/

@Y2 ð17Þ

@w
@Y

@/
@X

� @w
@X

@/
@Y

þ @

@Y
ðVT/Þ ¼ 1

Le
@2/

@Y2 þ Sr
@2h

@Y2 ð18Þ

And the boundary conditions (5) become:

at Y ¼ 0 : �wX ¼ VðXÞ; h ¼ 1; / ¼ 1
as Y ! 1 : wX ! 0; h ! 0; / ! 0

ð19Þ
3. Determination of the symmetry groups

3.1. Lie-point symmetries equations

For symmetry of a differential equations and some methods of
its calculations we refer to (Ovsiannikov, 1982; Olver, 1986;
Bluman and Kumei, 1989; Ibragimov, 1999; EL-Kabeir et al.,
2007, 2008; Nabwey et al., 2015, 2017); consider the one-
parameter Lie group of infinitesimal transformations in
X;Y ;w; h;/ð Þgiven by:

X� ¼ X þ en1 X;Y ;w; h;/ð Þ þ O e2
� �

Y� ¼ Y þ en2 X;Y ;w; h;/ð Þ þ O e2
� �

w� ¼ uþ el1 X;Y;w; h;/ð Þ þ O e2
� �

h� ¼ hþ el2 X;Y;w; h;/ð Þ þ O e2
� �

/� ¼ /þ el3 X;Y;w; h;/ð Þ þ O e2
� �

; ð20Þ
where e is the Lie group parameter. Since Eqs. (16)-(18) are not
affected by these transformations we get an over-determined, linear
system of equations for the infinitesimals n1ðX;Y ;w; h;/Þ,
n2ðX;Y;w; h;/Þ,l1ðX;Y;w; h;/Þ,l2ðX;Y;w; h;/Þ and l3ðX;Y;w; h;/Þ.
The associated lie algebra of these infinitesimal symmetries take
the form:

@ ¼ n1ðX;Y;w; h;/Þ @
@X þ n2ðX;Y;w; h;/Þ @

@Y þ
l1ðX;Y ;w; h;/Þ @

@w þ l2ðX;Y;w; h;/Þ @
@h þ l3ðX;Y;w; h;/Þ @

@/

ð21Þ

The action of @ is extended to all derivatives appearing in (16)-

(18) through the second prolongation @ 2ð Þ,

@ð2Þ ¼ @ þ l1
X

@
@wX

þ l1
Y

@
@wY

þ l2
X

@
@hX

þ l2
Y

@
@hY

þ
l3

X
@

@/X
þ l3

Y
@

@/Y
þ l2

YY
@

@hYY
þ l3

YY
@

@/YY

ð22Þ

where,

l1
X ¼ DX l1� �� wXDX n1

� �� wYDY n2
� �

l1
Y ¼ DY l1� �� wXDY n1

� �� wYDY n2
� �

l2
X ¼ DX l2� �� hXDX n1

� �� hYDX n2
� �

l2
Y ¼ DY l2� �� hXDY n1

� �� hYDY n2
� �

l3
X ¼ DX l3� �� /XDX n1

� �� /YDX n2
� �

l3
Y ¼ DY l3

� �� /XDY n1
� �� /YDY n2

� �
l2

YY ¼ DY l2
Y

� �� hXYDY n1
� �� hYYDY n2

� �
,

l3
YY ¼ DYY l3

Y

� �� /XYDY n1
� �� /YYDY n2

� �
: ð23Þ

and DX and DY are the of total differentiation operators w.r.t X and
Y, respectively. The operator @ by (21) is a point symmetry of (16)-
(18) if:

@ð1Þ 1þMð ÞwY � h� B/ð Þ ¼ 0 ð24Þ

@ð2Þ wYhX � wXhY � hYY � Df/00ð Þ ¼ 0 ð25Þ

@ð2Þ wY/X � wX/Y þ ðVT/ÞY � Le�1/YY � Le�1Srh00
� � ¼ 0 ð26Þ
Proper algebraic calculations gives the following infinitesimals:

n1 ¼ 2Z7 � Z8ð ÞX

n2 ¼ Z7Y þ Z9

l1 ¼ Z7w

l2 ¼ Z8h� BZ10

l3 ¼ Z7/þ Z10 ð27Þ
where Z7, Z8, Z9, Z10 arbitrary constants. In order that the data held
on the boundary surfaces must be invariant, we have:

@ 1ð Þ wY �W1 Xð Þ½ � ¼ 0 when wYðX; 0Þ ¼ W1 Xð Þ ¼ 0,

@ 1ð Þ �wX �W2 xð Þ½ � ¼ 0 when wX X;0ð Þ ¼ �W2 xð Þ ¼ VðXÞ,
@ 1ð Þ h� h0 Xð Þ½ � ¼ 0 whenh X;0ð Þ ¼ h0 Xð Þ ¼ 1,

@ 1ð Þ /� /0 Xð Þ½ � ¼ 0when/ X;0ð Þ ¼ /0 Xð Þ ¼ 1 ð28Þ
From the above we get:

ð2Z7 � Z8ÞXW0
1 � ðZ7 � Z8ÞW1 ¼ 0

ð2Z7 � Z8ÞXW0
2 þ ðZ7 � Z8ÞW2 ¼ 0

ð2Z7 � Z8ÞXh00 � Z8h0 ¼ �BZ10

ð2Z7 � Z8ÞX/0
0 � Z8/0 ¼ Z10 ð29Þ
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which gives the admissible form for w1, w2, w3, w3,hw as follows:

W1 xð Þ ¼ k1 Xj jðZ7�Z8Þ=ð2Z7�Z8Þ ¼ 0

W2 xð Þ ¼ k2 Xj j�ðZ7�Z8Þ=ð2Z7�Z8Þ ¼ VðXÞ

h0 Xð Þ ¼ k3 Xj jZ7=ð2Z7�Z8Þ þ BZ11 ¼ 1

/0 Xð Þ ¼ k4 Xj jZ8=ð2Z7�Z8Þ � Z11 ¼ 1: ð30Þ
where k1, k2, k3, k4 are arbitrary constants and Z11 = Z10/Z8.

Thus the boundary conditions complying with symmetries (19)
are given by

wY X; 0ð Þ ¼ k1 Xj jðZ7�Z8Þ=ð2Z7�Z8Þ; y ¼ 0

wX X; 0ð Þ ¼ �k2 Xj j�ðZ7�Z8Þ=ð2Z7�Z8Þ;X > 0

h X;0ð Þ ¼ k4 Xj jZ8=ð2Z7�Z8Þ þ BZ11

/ X;0ð Þ ¼ k4 Xj jZ8=ð2Z7�Z8Þ � Z11 ð31Þ
and

Y ! 1 : wY ! 0 : h ! 0 : / ! 0 ð32Þ
3.2. Proposition

The BVP given in Eqs. (16)-(18) and (19), have the following
multi-parameter group of symmetries:

X� ¼ X þ e ð2Z7 � Z8ÞXð Þ þ O e2
� �

Y� ¼ Y þ e Z7Y þ Z9ð Þ þ O e2
� �

w� ¼ wþ e Z7wð Þ þ O e2
� �

h� ¼ hþ e Z8h� BZ10ð Þ þ O e2
� �

/� ¼ /þ e Z7/þ Z10ð Þ þ O e2
� �

: ð33Þ
But Eq. (29) is the admissible form of data on the boundaries.

From (27), we can find the symmetry corresponding to those prob-
lems studied in (Nabwey et al., 2015, 2017). By neglecting the
parameters Z8; Z9 and Z10, the scaling group is parameterized by Z7.

4. Group-Invariant solutions

Here, we examine the group-invariant solutions of the symme-
try group gained in the last sections. For details on group-invariant
solutions see (Ovsiannikov, 1982; Olver, 1986). Suppose ðw; h;/Þis
solution of the problem (16)-(18). This solution will remain the
same under the transformation group in Eq. (33) if the following
hold:

n1 @w
@X þ n2 @w

@Y ¼ l1,n1 @h
@X þ n2 @h

@Y ¼ l2, and n1 @/
@X þ n2 @/

@Y ¼ l3,
Or

2Z7 � Z8ð ÞX @w
@X

þ Z7Y þ Z9ð Þ @w
@Y

¼ Z7w ð34:1Þ

2Z7 � Z8ð ÞX @h
@X

þ Z7Y þ Z9ð Þ @h
@Y

¼ Z7h� BZ10 ð34:2Þ

2Z7 � Z8ð ÞX @/
@X

þ Z7Y þ Z9ð Þ @/
@Y

¼ Z7/þ Z10 ð34:3Þ

The following system can be solved with the method of
characteristics.
w X;Yð Þ ¼ k1 Xj jZ7=ð2Z7�Z8ÞF gð Þ ð35:1Þ

h X;Yð Þ ¼ k2 Xj jZ7=ð2Z7�Z8ÞH gð Þ ð35:2Þ

/ X;Yð Þ ¼ k3 Xj jZ7=ð2Z7�Z8ÞU gð Þ ð35:3Þ
where F,H,U are arbitrary functions and g is the similarity variable
given by the relation:

g ¼ k4YX
�Z7= 2Z7�Z8ð Þ ð35:4Þ

The group-invariant solution of the system is given by Eqs.
(35.1)-(35.4). It can be observed that the IBVP have been trans-
formed into BVP of non-similar transient equations, which are
easily solvable and it is noted that our solution make a reduction
to the number of independent variables

5. Scaling symmetry

We restrict our study with regard to Scaling Symmetry and
accordingly we have chosen Z7 ¼ 1 and Z8 ¼ Z11 ¼ 0. We revisit
the problem presented in (Cheng and Mynkowycz, 1977; Bejan
and Khair, 1985) without considering the Dufour and Soret effects
with thermophoresis impact, whose transformation equations are
given by:

X� ¼ e2eX; Y� ¼ eeY; w� ¼ eew; h� ¼ h; /� ¼ / ð36Þ
With above parameters, the similarity solutions (35.1)-(35.4)

become:

w X;Yð Þ ¼ k1X
1=2F gð Þ h X;Yð Þ ¼ k2H gð Þ

/ X;Yð Þ ¼ k3U gð Þg ¼ k4YX
�1=2 ð37Þ

By Putting the value of (37) in Eqs. (16)-(18), we notice that the
number of independent variables get reduced by one and accord-
ingly, the transformed mathematical model is:

1þMð ÞF 0 ¼ Hþ BU

H00 þ 1
2 FH

0 þ DfU00 ¼ 0
1
LeU

00 þ 1
2 FH

0 þ j Pr
CTþH H0U0 þUH00 � H02U

HþCTð Þ

h i
þ SrH00 ¼ 0

ð38Þ

The new boundary conditions are:

atg ¼ 0 : F ¼ Fw;H ¼ 1U ¼ 1
asg ! 1 : F 0 ! 0;H ! 0; U ! 0

ð39Þ

where the derivatives in system (38) are done with respect to g.
Here the parameter Fw ¼ k1X

�1=2VðXÞ denotes the suction/injec-
tion, such that the permeability of the porous surface V(X) varies
inversely to square root of x, in order to make Fw independent of
x. Four new arbitary constants i.e., k1 ¼ ::: ¼ k4 ¼ 1 have been
introduced; so the coefficients in the above equations do not reflect
the fluid properties explicitly.

For j = 0 (absence of thermophoresis) and B = 0, we notice that
the Eqs. (38)-(39) reduce to the system represented by Cheng and
Minkowycz (Pai, 1962) while at B–0 the system reduce to the one
given by Bejan and Khair (EL-Kabeir et al., 2007) respectively.

6. Results and discussion

The convenient similarity transformations in (37) are applied to
gain identical ordinary differential equations from the flow, heat
and transfer arising governing equations (38) which are highly
nonlinear in nature. Shooting technique is accustomed along with
Runge-Kutta method to find the solution of these equations. The
impacts of various dimensionless quantities on velocity, tempera-



Fig. 3. Distribution of concentration.
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ture and concentration distributions are exhibited and analyzed
using the graphical aid (see Fig. 1–12]. Shooting technique is one
of the techniques that are used to solve the initial value problems.
The behavior of suction/injection parameter, Fw and magnetic
parameter M on velocity is exposed in Fig. 1. It is manifested that
velocity regime appears to be reduced with the decrease of the suc-
tion/injection parameter Fw and the magnetic parameter M. Figs. 2
and 3 portray the effect of suction/injection parameter, Fw on the
temperature and concentration distributions. It is illustrated that
for decreasing values of Fw temperature and concentration distri-
bution become more uniform and the thermal boundary layer
thickness increases. Figs. 4–6 is exhibited to visualize the behavior
of involved sundry such as Dufour and Soret numbers (Df and Sr)
on the of profiles velocity, temperature and concentration. It is per-
ceived that the velocity of the fluid declines as Df and Sr grow but
the temperature reduces (or concentration enhances) with the
incerment in Df and increase in Sr. Figs. 7–12 demonstrate the
effects of thermophroesis parameter and Schmidt number on
velocity, temperature, and concentration profiles. These graphs
clarify that the temperature declines as the thermophroesis
parameter and Schmidt number decrease, while the velocity and
concentration decrease as the thermophroesis parameter and Sch-
Fig. 1. Distribution of velocity.

Fig. 2. Distribution of temperature.

Fig. 4. Distribution of velocity.

Fig. 5. Distribution of temperature.



Fig. 6. Distribution of concentration.

Fig. 7. Distribution of velocity.

Fig. 8. Distribution of temperature.

Fig. 9. Distribution of concentration.

Fig. 10. Distribution of velocity.

Fig. 11. Distribution of temperature.
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Fig. 12. Distribution of concentration.

Table 1
Variation of dimensionless heat transfer and concentration rates with M, Df and Sr.

M Df Sr �h’(0) �/’(0)

0 0.05 0.2 0.6374 0.4991
1 0.05 0.2 0.4673 0.3765
2 0.05 0.2 0.3999 0.3301
0 0.075 0.8 0.6665 0.2896
1 0.075 0.8 0.4839 0.2447
2 0.075 0.8 0.4107 0.2351
0 0.6 0.1 0.4698 0.5831
1 0.6 0.1 0.3688 0.4253
2 0.6 0.1 0.3331 0.3631

Table 2
Variation of dimensionless heat transfer and concentration rates with, j Df and Sr.

j Df Sr �h’(0) �/’(0)

0.05 0.05 0.2 0.4620 0.4217
0.5 0.05 0.2 0.4673 0.3765
0.8 0.05 0.2 0.4709 0.3471
1.2 0.05 0.2 0.4756 0.3089
0.05 0.075 0.8 0.4773 0.2907
0.5 0.075 0.8 0.4839 0.2447
0.8 0.075 0.8 0.4883 0.2148
1.2 0.075 0.8 0.4941 0.1763
0.05 0.6 0.1 0.3461 0.4632
0.5 0.6 0.1 0.3688 0.4253
0.8 0.6 0.1 0.3856 0.3973
1.2 0.6 0.1 0.4100 0.3562
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midt number increase. The behaviors of magnetic parameter M,
Dufour and Soret numbers (Df and Sr) and thermophroesis param-
eter j on the rate of heat transfer �h0ð0Þand the rate of mass trans-
fer �u0ð0Þ are exposed in Tables 1–2. It is manifested that local
Nusselt numbers Nu and Sherwood number Sh reduce as M
increases. Furhertmore, From Table 2, It is engrossed that by
increasing the the thermophroesis parameter j increases, the rate
of heat transfer �h0ð0Þ increases whereas rate of mass transfer
�u0ð0Þdecreases.
7. Conclusion

In this study we analyze phenomenon of thermophoresis on a
vertical surface in a porous medium. The fascinating aspects of
thermo diffusion and diffusion-thermo impacts are accounted with
magnetic field and thermophoresis influence. In this communica-
tion, it can be seen that after incorporating these impacts and uti-
lizing Lie group method, the mathematical model has been
designed using PDE which are non-linear and subsequently trans-
forming into the system of ODE by using suitable similarity trans-
formations. The numerical solutions of the system have been
arrived and the following results are arrived:

� Velocity profiles are growing due to acceleration in the value of
suction/injection parameter and magnetic parameter but decli-
nation happens by increasing the Dufour and Soret numbers.

� Increase in the value of thermophroesis parameter results in
reduction of both velocity and concentration profiles and
enhancement of temperature profiles.

� Considerable reduction in local Nusselt and Sherwood numbers
is exhibited by promoting the values of magnetic parameter.

� Massive in reduction in local Nusselt number and declination in
Sherwood number for elevating the values of thermophroesis
parameter.

� Both Local Nusselt Number and Sherwood number varies inver-
sely with Soret Number but with Dufour number it is vice-
versa.
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