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A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

�̃�𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 
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The preconditioned iterative integration-exponential method is an innovative iterative regularization technique 
designed to solve ill-conditioned linear problems. However, the preconditioned iterative integration-exponential 
method has been primarily applied to symmetric positive definite problems, and a notable limitation is its 
inability to adaptively determine the optimal number of iterations. To overcome this limitation, the present 
study demonstrates that the preconditioned iterative integration-exponential method can also be effectively 
applied to nonsymmetric positive definite linear systems. Furthermore, an improved preconditioned iterative 
integration-exponential method is proposed by combining the iterative refinement algorithm with the original 
approach. Addressing the challenge of adaptively determining the optimal number of iterations and Krylov 
subspace can solve the problem of low computational efficiency of the improved preconditioned iterative 
integration-exponential method in dealing with large-scale and sparse problems. Numerical results show that 
the newly proposed method is more robust than the original one.

1. Introduction

In recent years, ill-conditioned problems have attracted more 
and more attention and have been widely used in engineering and 
mathematics fields, such as geodesy (Yu et al., 2023), geophysical 
exploration (Li et al., 2024), and signal and processing (Wu, 2012; Yang 
and Deng, 2017). The solution methods of ill-conditioned equations 
have research significance.

The ill-conditioned system can be expressed as:
Ax b= (1)

where A� �
R
n n  is an ill-conditioned matrix, x  is the solution, and b

is the observation. For an ill-conditioned system, a small disturbance 
in b  or A  can result in a significantly larger change in the solution x .  
This phenomenon presents considerable challenges when attempting 
to solve the system (1) numerically. Consequently, the application 
of conventional numerical methods for solving such systems (1) may 
prove ineffective. To address this issue, several iterative regularization 
methods have been developed and widely used, including Tikhonov 
regularization (Benning and Burger, 2018; Chang et al., 2024; W. Wang 
et al., 2024) (TR), Landweber iteration (Mittal and Giri, 2021), and direct 
regularization methods like truncated singular value decomposition (Xu 
et al., 2024; Xu, 1998) (TSVD), truncated generalized singular value 
decomposition (Chen and Chan, 2017), and truncated randomized 
singular value decomposition (Bai et al., 2021; Huang et al., 2022). 
A notable characteristic of these regularization methods is that their 
performance depends on various regularization parameters, such as the 
truncation order in TSVD, the Tikhonov regularization parameter, and 
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the number of iterations in iterative regularization methods. In recent 
years, iterative regularization methods for ill-conditioned equations 
that are based on the numerical solutions of dynamic systems have 
garnered attention (Dmytryshyn et al., 2022; Edvardsson et al., 2015).

The exploration of the connections between iterative numerical 
methods and continuous dynamical systems often deepens the 
understanding of iterative numerical techniques. Additionally, this 
investigation aids in the advancement of enhanced iterative numerical 
methods by utilizing numerical approaches for ordinary differential 
equations and continuous dynamical systems (Chu, 1988; Miyatake 
et al., 2018). For solving ill-conditioned linear systems, Ramm (2004) 
developed the dynamical systems method. Wu (2002) analyzed the 
relationship between Wilkinson iteration method and Euler method 
and proposed a new iterative improved solution method to solve the 
problem of ill-conditioned linear equations. Enlightened by Wu’s work, 
Salkuyeh et al. (2011) proposed a new two-step iterative method. Beik 
et al. (2018) presented a generalized two-step iterative method. For 
symmetric positive definite linear ill-conditioned systems, Hoang and 
Ramm (2010) proposed a gradient algorithm for dynamic systems 
based on SVD decomposition, Wu (2023) introduced an exponential 
approximation method.

The precise integration method, proposed by Zhong (2004), is 
designed to calculate the matrix exponential. It is known for its high 
efficiency and precision, often yielding results nearly equivalent to exact 
solutions on a computer. As a result, it is widely used in solving various 
dynamic systems (J. Wang et al., 2024; Yang et al., 2021; Zhu et al., 
2023, 2021). Fu and Zhang (2011) introduced a precise integration 
method for solving positive definite ill-conditioned linear systems and 
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proposed an iterative integration-exponential (IIE) method. Huang 
et al. (2021) gave rigorous proof of the convergence of the IIE method 
and discovered that: (1) the IIE method is an iterative regularization 
method similar to the TR method; (2) the Landweber iterative algorithm 
can be seen as a special form of the IIE method; (3) The number of 
iterations can be equivalent to the regularization parameter of the IIE 
method. In order to improve the precision of calculation and reduce 
the number of iterations, a preconditioned IIE (PIIE) method (Fu and 
Li, 2018) was proposed. The PIIE method has demonstrated effective 
results in addressing ill-conditioned systems, particularly in geoscience 
(Kailiang et al., 2023). However, determining the optimal number of 
iterations is an area requiring further research.

To solve this problem, this paper proposes an improved 
preconditioned precise integration iterative (IPIIE) method. The new 
method uses the residual error to correct the error of the solution of 
the original PIIE method, which avoids the selection of the optimal 
iteration termination parameter.

2. A brief review of the PIIE method

2.1 The IIE method

Multiply the transpose of the matrix Aon both sides of Eq. (1).

A Ax A b
T T= (2)

Consider the following linear dynamical systems 

d t

dt

T Tx
A Ax A b

x x

( )

( )

� � �

�0 0

(3)

Hoang and Ramm (2010) transformed solving linear eqs. (2) into 
solving linear dynamical system (3). The solution of a linear dynamical 
system (3) can be expressed as

x A A x A A A b( ) exp( ) exp( ( ))t t t d
T T

t
T� � � � ��0

0
� � (4)

Here, the A AT  is a symmetric positive definite matrix. When t  
approaches infinity and x0  is zero vector, x( )t  can be expressed as

lim ( ) lim exp( )

lim ( )

( )

t t

T
t

T

t

T

T

t t dt

t

�� ��

��
�

� �

�

�

�x A A A b

F A b

A A b

0

1

(5)

where F A A( )t tdt
T

t

� ��0 , Let � � 0  be small enough and set t k� �2 1�

exp( )

exp( ) exp( )

�

� � � �

�

�

�
�

A A

A A A A

T

T T

t dt

t dt t dt

k

k

k

k

0

2

0

2

2

2

1

1

�

�

�

�

��
� �� � � � �exp( ) exp( ) exp( )A A A A A AT T k T

t dt t dt

k k

0

2

0

2
2

� �
�

(6)

then the F( )t  can be written in the following iterative form:

F F A A F( ) ( ) exp( ) ( )2 2 2 21k k T k k� � � �� � � � (7)

To take this further, set

x F A b
k k T� ( )2 � (8)

and by combining Eqs. (7) and (8), an iterative formula can be derived 
as follows.

x F A A F A b

x A A x

k k T k k T

k T k k

� � � �

� � �

1 2 2 2

2

( ( ) exp( ) ( ))

exp( )

� � �

�
(9)

In the IIE method, the matrix exponential exp( ( ) )� A AT k2 �  in Eq. 
(9) is computed through precise integration. By Taylor expansion, it is 
obtained that

exp( ( ) ) ( ) ( )� � � � �A A A AB I
T T

p� � � �

                                      
( )

!
( )

( )

!

A A A A
T T

p
p p

p

2 2

2
1

� �
� � �

(10)

F A A I A A

A A B

A A

F

I

( ) ( ) ( exp( ( )))

( ) ( ( ))( )

(

�

� �

�

� � �

�

�

� �

�

�

�

T T

T
p

T

p I

1

1

))

!

( )

!
( )

( )

!

� � �2 2 3 1

2 3
1

4
� � � �

�
A A A A
T T

p
p p



(11)

here, p  denotes the truncation order of Taylor expansion, and I  
denotes the identity matrix. Consequently, exp( ( ) )� A AT k2 �  in Eq. (7) 
can be calculated using the following formula:

T B I

T T T T

p p

p
i

p
i

p
i

p
i

for i

( )

( ) ( ) ( ) ( )

( )0

1 1 1

1

2

� �

�

� �� � �

�

  k

      



eend

k
p
k

T I T
( ) ( )� �

(12)

where T( )k  is the approximate value of exp( ( ) )� A AT k2 � . By combining 
Eq. (5), (7) and (12), the IIE method for solving linear equations can be 
expressed in the following form:

x x T x

T T T T

k k
p
k k

p
k

p
k

p
k

p
k

�

�

� �

� �

�
�
�

��

1

1

2

2

( )

( ) ( ) ( ) ( )
(13)

where the initial value is x F A b
0 � p

T( )� . For IIE method, the iteration 
number k is considered as the regularization parameter.

2.2 The PIIE method and termination iteration condition

In order to accelerate the convergence speed of IIE, the PIIE method 
uses 1-norm normalization to reduce the condition number of the 
coefficient matrix.

Multiplying the preconditioned matrix Q  on both sides of the Eq. 
(2)

QA Ax QA b
T T= (14)

The definition of the matrix Q  is as follows:

Q �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�
�

Q

Q

Q

Q

a
n

n

ij

j

n

1

2

1

0 0

0 0

0 0

1

�
�

� � � �
�

      (15)

where aij  is the element of the matrix A AT  .
Fu et al. (2018) proposed an iterative termination condition for the 

PIIE algorithm. The error of the iteration is defined as 

err
k

k k
( ) � � �x x 1

(16)

and define the following function:

P k
err err

err err

q P k

k k

k k

n

k

k n

( )
/

/

( )

�
�

�

�

�

�

�

�
�
�

��

�

1 1

0 1

1

1

(17)

The parameter n∈[ , ]2 10  is an integer. When qn = 1, the iteration 
ends. 
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Algorithm 1: The PIIE algorithm

1: Compute the preconditioned matrix Q , A QA b Qb= =, .
2: Compute Tp

( )( )0 τ  and F( )τ .
3: Compute the initial value x F b0 � �( )�

4: while satisfying termination conditions;
5:  x x T x

k k
p
k k� � �1 2 ( )( )�

6:  T T T
p
k

p
k

p
k( ) ( ) ( )� � �1 22

7: end

2.3 The PIIE method for nonsymmetric positive definite linear system

The PIIE method is suitable for symmetric positive definite matrix 
linear systems (Huang et al., 2021). In this section, we extend the 
proof to demonstrate that the PIIE method is also applicable to solving 
nonsymmetric positive definite linear systems. Consider the following 
linear system

Ax b= (18)

where A  is a nonsymmetric positive real definite matrix.

Theorem 1. Let A� �
R
n n  be a nonsymmetric positive definite 

matrix, t  be a positive real number

x A x A b( ) exp( ) exp( ( ))t t t d
t

� � � � ��0
0

� � (19)

we have 

lim ( ) exp( ( ))
t

t t d
��

�
�� � � � ��x A b A b� �

0

1 (20)

The following two lemmas are used to prove Theorem 1.

Lemma 1. Let A� �
R
n n  be a nonsymmetric positive definite matrix, 

t  be a positive real number

lim exp( )
t

t
�

�
0

A I (21)

Proof: According to the definition of matrix exponential, exp( )At
can be written as:

exp( )
( )

A I A
At t t

� � �
2

2
(22)

it is easy to find lim exp( )
t

t
�

�
0

A I .

Lemma 2. Let A� �
R
n n  be a nonsymmetric positive definite matrix, 

t  be a positive real number

lim exp( )
t

t
��

�A O (23)

where O  is zero matrix.

Proof: Consider the following linear dynamic systems of equations

d t

dt
t t

x
Ax

x x

( )
( )

( )

� � �

�

  0

0 0

(24)

where x0 ∈ R
n  is an arbitrarily preassigned vector, and A R� �n n  is a 

positive definite matrix. The exact solution of a dynamic system (24) 
can be expressed as:

x A x( ) exp( )t t� � 0 (25)

The proof investigates two aspects regarding the existence of both 
repeated and non-repeated eigenvalues within the matrix.

(1) Assume A  has n  different eigenvalues λ λ1 n  and v v1 n  is the 
eigenvector corresponding to the eigenvalue. 
The solution (Boyce and DiPrima, 1986) of linear dynamic system 
(24) can also be written as follows

x v v( ) exp( ) exp( )t c t c t
n n n

� � �1 1 1� � (26)

where cn  is a constant, determined by the initial value x0  . Because 
A  is a positive definite matrix, the eigenvalues of −A  are less than 
0. When t  approaches infinity, we can have lim ( )

t
t

��
�x 0 .

(2) Assume the A  has m  different eigenvalues λ λ1 m  , v v1 m  are the 
eigenvector corresponding to the eigenvalues, where m n< .
It means that there are repeated eigenvalues. In this case, the number 
of corresponding linearly independent eigenvectors is smaller than 
the algebraic multiplicity of the eigenvalue. Assume the maximum 
algebraic multiplicity to be k N k n� �*, . The solution (Boyce and 
DiPrima, 1986) of a linear dynamic system (24) can be written as 
follows

x C v C v( ) exp( ) exp( )t t t
m m m

� � �� �
1 1 1

 (27)

Where Cm  is a polynomial matrix, its degree is no more than k − 1
. Because A  is a positive definite matrix, the eigenvalues λ  of 
−A  are less than 0. When t  approaches infinity, it is easy to get 
lim exp( )
t

k
t t

��
� �� 1 0 , so lim ( )

t
t

��
�x 0 .

Based on the discussion above, we can get

lim ( ) exp( )
t

t t
��

� � �x A x 00 (28)

Since x0 ∈ R
n  is an arbitrarily preassigned vector, we can get 

lim exp( )
t

t
��

� �A O .

According to Lemma 1, we can get 

lim ( ) lim exp( ) lim exp( ( ))

lim

t t t

t

t

t t x t d
�� �� ��

�

� � � � �

�

�x A A b0
0

� �

��
� �� exp( ( ))A bt d

t

� �
0

(29)

Let s t� �� , then

lim exp( ( )) lim exp( ( ))

lim exp(

t

t

t t

t

t d s ds
�� ��

��

� � � � �

� �

� �A A� �
0

0

AA( ))s ds
t

0�
(30)

According to Lemma 2, we can get 

lim ( ) lim exp( ( ))

lim exp( )

t t

t

t

t s ds

t

�� ��

�
��

� �

� � ��
�
�

�
�
�

�x A

A I A

0

1
bb

A b� �1

(31)

The PIIE method is appropriate for asymmetric positive definite  
linear systems, as demonstrated by the aforementioned proof.

3. The IPIIE method

The termination iteration condition proposed by Fu et al. (2018) 
facilitates the selection of the optimal number of termination iterations 
for the PIIE method. The optimal iteration termination parameter can 
be regarded as an alternative form of the PIIE regularization parameter. 
This section initially demonstrates, through a straightforward 
example, that for a given coefficient matrix, the observed values have 
a significant impact on the optimal termination iteration parameter. 
To enhance the computational accuracy of the PIIE method and to 
enable adaptive selection of parameters for iteration termination, this 
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section introduces an improved algorithm that integrates the PIIE 
with the Iterative Refinement Method. This innovative combination of 
algorithms significantly enhances both the accuracy and robustness of 
the PIIE method.

3.1 The optimal termination iteration parameters

Considering the typical ill-conditioned linear nonsymmetric positive 
definite system with m m×  Hilbert matrices Hm ij m mh� �( ) , where 

h
i j

i j mij � � �
�

1

1
1 2, , , , ,

H x bm = (32)

In this experiment, m is 300, the condition number of Hm  is 
3.93e+19. Assume that the two exact solutions of the Eq. (32) are

x x y

x x y

� � �

� �
1

2
3

0 02sin( . )
(33)

with y = [ , , , ]1 2 200  T . And the two observations are b H x1 1= m
and b H x2 2= m . Fig. 1 illustrates that when the iteration termination 
parameter n is set to 2, the PIIE method yields satisfactory results with, 
x x= 2 . However, when the termination parameter n = 2  is unchanged, 
a noticeable deviation arises between the PIIE method's results and 
the exact solution with x x= 1. Fig. 2 further demonstrates that as the 
parameter n increases, the solution from the PIIE method gradually 
converges to the exact solution, achieving satisfactory results when 
n = 5 .

This numerical experiment demonstrates that, for a given coefficient 
matrix, the observed value has a substantial impact on the optimal 
termination iteration parameter, denoted as n.

3.2 The theory IPIIE method

Iterative refinement is a significant numerical technique used to 
improve the accuracy of initial solutions in various computational 
problems, especially in the context of solving linear systems and 
conducting numerical computations (Cui et al., 2023; Pan et al., 2021). 
The core principle of iterative refinement involves starting with an 

approximate solution and iteratively adjusting it based on the residuals 
or errors observed from the initial solution.

Let A and x  be as in Eq. (18). Then, the iterative refinement 
algorithm defines the solution to Eq. (18) iteratively by, 

A x x b Ax( )k k k� � �� �1 1 (34)

with x 0
0 =  as initial model. The solution of Eq. (34) is ck−1 , then

x x c
k k k� �� �1 1 (35)

This iterative process continues until a desired level of accuracy or 
convergence is achieved, thereby improving the overall precision of the 
solution obtained.

Inspired by the Iterative Refinement method, the integration of this 
method with the PIIE algorithm can enhance the accuracy of numerical 
solutions. The steps for the calculation are outlined as follows:

(1) The Algorithm 1 is used to calculate the initial value, and the 
iteration termination parameter n is 2.

(2) Calculation of the residual vector rk :

r b Ax
k k� � (36)

(3) If the residual satisfies the threshold, stop the calculation. Otherwise, 
use the PIIE approach to solve the Eq. (37):

Ac r
k k= (37)

(4) Correcting the calculation results:

x x c
k k k� � �1 (38)

Repeat steps 2 to 4 until the residual is sufficiently small or a 
predetermined number of iterations is reached.

Algorithm 2: The IPIIE algorithm 

1: Compute the preconditioned matrix Q , A QA b Qb= =, .
2: x A b

0 = PIIE( , )

3: Compute r b Ax
k k� �

4: while until r  satisfy termination conditions.

5: c A r
k k

PIIE= ( , )

6: x x c
k k k� � �1

7: end

3.3 Convergence analysis

The Algorithm 2 is a combination algorithm. As long as the PIIE 
convergence is guaranteed, IPIIE can be guaranteed to be convergent. 
Huang et al. (2021) studied the above problems in detail.

The PIIE method uses row normalization to preprocess the matrix. 
According to the Gershgorin Circle Theorem (Bell, 1965), the ρ( )QA A

T  
in Eq. (14) is less than or equal to 1.

If p ≥ 1, � � 0 , � �( ( ))Bp � 1  with Bp( )τ  defined in Eqs. (10) and 
�( )�  denote the spectral radius of a matrix. For the PIIE method 

I T I T I T B� � � � � ��
p
k

p
k

p

k k( ) ( )( ) ( ) ( ( ))1
0

2 22
� (39)

x I B x

I B x

k
p

k

p
k

s

k

k

s

� �

� ��
�
� �

�
�

�

�

�
�
�

�

�

�
�
�

� �

�

�

�

�

( ( ) )

( )

�

�

2 1

1
2

0

1
0

1

�� � � ��

��
�

��

� �

� �
I B B B F QAb

I B

p p p p

p

j

k

( ) ( ( )) ( ( )) ( )

( ( ))

� � � �

�

2 2 1

2



((( ) )QA A QA b
T T�1

(40)

When k tends to infinity, PIIE will converge with (( ) )QA Qb
−1 .

Fig. 1. The numerical results of the PIIE method. The termination iteration 
parameter n is 2. (a) x x= 1  (b) x x= 2

Fig. 2. The numerical results of the PIIE method with x x= 1. The parameter of the 
termination iteration parameter n takes different values (a) n=4 (b) n=5.
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3.4 The validation of the IPIIE algorithm

This section still uses the Hilbert matrix model in subsection 3.1 
to test the robustness of the IPIIE algorithm. Assume that the exact 
solution of the Eq.(32) are

x x y� � �1 0 02sin( . ) (41)

with y = [ , , , ]1 2 300  T .The value of x1 is the same as that of the in 
subsection 3.1. The relative error (RE) is

RE
reg true

true

�
�x x

x
(42)

where xreg is numerical solution and xtrue  is a true solution.
According to subsection 3.1 the optimal termination iteration 

parameter n  is 5. The relative error of PIIE algorithm is 1.26e-2, and 
the relative error of IPIIE is 2.06e-3. According to Fig. 3 and the relative 
error of the two algorithms, it can be concluded that the IPIIE algorithm 
is better than that of the optimal solution of the PIIE algorithm.

Numerical tests indicate that the IPIIE method consistently 
outperforms the PIIE method. IPIIE delivers accurate results without 
requiring adjustments to the termination iteration parameter n, 
effectively reducing the sensitivity of termination iteration parameters 
to observations compared to PIIE.

4. Numerical experiments

All numerical experiments in this subsection were carried out using 
MATLAB R2024b on a laptop computer with an Intel Core i7-12700H 
CPU and 64 GB of RAM.

4.1 Ill-conditioned problems in one space-dimension

Considering the test problems (Hansen, 2007) heat and gravity , are 
linear discrete ill-posed problems. These examples originate from the 
discretization of Fredholm integral equations of the first kind, which 
have the general form:

k s t x t dt b s
a

b

( , ) ( ) ( )�� (43)

where b s( )  is observable, k s t( , ) is a known kernel function. The Eq. 
(43) is transformed into Eq. (44) by discretizing x t( )  into N points,

Kx b= (44)

where K  is N N×  matrix, usually an ill-conditioned matrix.

Examples 1
In this example, k s t( , ) 

k s t
s t

s t

( , )
( )

exp
( )

�
�

�

�

�
�

�

�

�
�

�
�

�

�
�
�

�

�
�
�

�3

2

2
2

1

4
� �

�

(45)

where t ∈[ , ]0 1  . The three desired solutions x ∈ RN are shown in Fig. 4. 
In this example, N is 1000, and the condition number of K  is 2.33e+232.

When x x= 1, the optimal regularization parameter for the TR 
method is 1e-10, the optimal number of truncated singular values for the 
TSVD method is 813, and the optimal termination iteration parameter 
for the PIIE method is 4. The relative errors for the numerical results 
of PIIE, IPIIE, TR, and TSVD are 3.10e-03,2.95e-03, 3.62e-03, and 
7.10e-02, respectively. Fig. 5 demonstrates close agreement between 
the results of PIIE, IPIIE, and TR, while the TSVD method exhibited 
substantially larger errors in detail.

Examples 2
In geological exploration, the location, shape, and some parameters 

of geological anomalies occurring in the interior of the earth are usually 
determined according to the data measured on the surface of the 
earth. Assuming that the vertical component of the gravity field g s( )  
is measured on the surface, the mass distribution is located at depth 
x t( ) . This inverse problem can be expressed as the Fredholm integral 
equation of the first kind, and its kernel function is

k s t h h s t( , ) ( )
/

� � ��
�
� �

�
�
�

2 2
3 2

  (46)

where t ∈[ , ]0 1 , s∈[ , ]0 1  and h  is 0.5. The two desired solutions x1 and 
x2  are shown in Fig. 6

Fig. 3. The numerical results of the PIIE and IPIIE methods with x x= 1.  
The parameter of the termination iteration parameter n of PIIE is 5. (a) Original 

drawing and (b) Drawings of partial enlargement.

Fig. 4. The desired solution.

Fig. 5. The numerical results and absolute errors of the PIIE, IPIIE, TR and TSVD 
methods.

Fig. 6. The two desired solutions x .
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When x x= 1, the optimal regularization parameter for the TR 
method is 1e-11, the optimal number of truncated singular values 
for the TSVD method are 22, and the optimal termination iteration 
parameter for the PIIE method is 2. Fig. 7 illustrates that all four 
methods yield satisfactory computational results. However, the 
relative errors for the numerical results of PIIE, IPIIE, TR, and TSVD 
are 1.23e-06,1.22e-06, 3.24e-04 and 1.62e-06, respectively. From 
these results, it is evident that the computational accuracy of PIIE, 
IPIIE, and TSVD is comparable, while the TR method exhibits the 
lowest accuracy.

When x x= 2 , the optimal regularization parameter for the TR 
method is determined to be 1e-12, while the optimal number of 
truncated singular values for the TSVD method is identified as 24. 
In addition, the optimal termination iteration parameter of the PIIE 
method is 3. Fig. 8 shows that there is a certain deviation between the 
numerical results of the four methods and the exact solution. However, 
the relative errors associated with the numerical results of PIIE, 
IPIIE, TR, and TSVD are 1.93e-02, 4.93e-03,1.13e-02, and 6.21e-03, 
respectively. These findings indicate that the computational accuracy of 
IPIIE and TSVD is comparable, whereas TR and PIIE exhibit the lowest 
levels of accuracy.

4.2 Ill-conditioned problems in two space-dimensions

The test problem blurs that it is a linear discrete ill-posed problem. The 
blurring of the image is caused by a blurring function with parameters 
� � 3 and band = 6 . This blurring function can be determined using 
the regularization tool package (Hansen, 2007). In this example, the 
image size is 50 50× , as shown in Fig. 9. The PIIE, TR and TSVD 

Fig. 7. When x x= 1, the numerical results and absolute errors of the PIIE, IPIIE, TR 
and TSVD methods.

methods are compared. The optimal regularization parameter for the 
TR method has been determined to be 1e-12, while the optimal number 
of truncated singular values for the TSVD method is identified as 1441. 
Furthermore, the optimal termination iteration parameter for the PIIE 
method is established as 3. The numerical results are shown in Fig. 10. 
The relative errors associated with the numerical results of the PIIE, 
IPIIE, TR, and TSVD methods are 3.98e-01, 5.07e-02, 5.11e-02, and 
1.55e-01, respectively. These findings suggest that the computational 
accuracy of the IPIIE and TR methods is comparable, whereas the TSVD 
and PIIE methods demonstrate the lowest levels of accuracy.

In summary, compared with the PIIE, TR, and TSVD methods, the 
IPIIE method does not require the selection of optimal normalization 
parameters. Furthermore, the IPIIE method demonstrates enhanced 
applicability in addressing complex problems.

5. Discussion

The PIIE and IPIIE algorithms use precise integration to calculate the 
matrix exponential exp( )�A2k�  in Eq. (9). T T T Tp

k
p
k

p
k

p
k( ) ( ) ( ) ( )� � �1 2  

in the Eq. (13) results in high computational complexity. If Tp
k( )  is 

the sparse matrix, it can quickly densify the matrix during iteration, 
significantly increasing computational complexity and memory 
requirements. Consequently, when addressing large-scale, sparse, and 
ill-posed problems, the memory requirements for the PIIE and IPIIE 
methods increase significantly with a greater number of iterations. 
Fortunately, in the field of numerical solutions for differential 
equations, researchers have addressed similar limitations by proposing 
an exponential matrix calculation method that utilizes Krylov 
subspace techniques (Bergamaschi and Vianello, 2000; Botchev and 
Knizhnerman, 2020; Druskin and Simoncini, 2011; Fung and Chen, 
2006; Suman and Kumar, 2022).

The Krylov subspace method transforms the original matrix 
exponential-vector product, as presented in the Eq. (9), into an m-
dimensional matrix-vector product. The construction of the Krylov 
subspace basis through the Arnoldi process necessitates only matrix-
vector product calculations. Furthermore, the dimension of the Krylov 
subspace is generally much smaller than the scale of the original 
problem. Consequently, this method can substantially decrease both 
computational complexity and memory requirements. For clarity, the 
PIIE and IPIIE based on the Krylov subspace are referred to as PIIE-K 
and IPIIE-K, respectively.

Considering the typical simple positive definite system with 
tridiagonal matrix Am ij m ma� �( ) .

Am �

�

�

�
�
�
�
�

2 1 0 0 0 0

1 2 1 0 0 0

0 1 2 1 0 0

0 0 0 2 1 0

0 0 0 1 2 1

0 0 0 0 1 2

�
�
�

� � � � � �
�
�
�

��
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�

(47)

A x bm = (48)

In this case, m is 5000. Assume that the exact solution of the Eq. 
(32) are

x y� �sin( . )0 02 (49)

with y = [ , , , ]1 2 5000  T .
It can be seen from Fig. 11 that the number of non-zero elements 

in matrices Tp
( )0  and Tp

( )10  is 44,980 and 657,444, respectively. The 
memory consumption of matrices Tp

( )0  and Tp
( )10  in MATLAB is 1.258 

MB and 178.100 MB, respectively. After 10 iterations, the number of 
non-zero elements in matrix Tp

( )10  increases by approximately 146 
times, while the memory usage increases by approximately 141 times.

Fig. 9. (a) Original test image, (b) The deblurred image.

Fig. 8. When x x= 2 , the numerical results and absolute errors of the PIIE, IPIIE, TR 
and TSVD methods.

(a) (b)
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Fig. 10. The calculation results of different methods. (a) PIIE, (b) TR, (c) TSVD and 
(d) IPIIE.

Fig. 11. A visual illustration of the number of non-zero elements in Tp
k( ) , the 

superscript k denotes the number of iterations. nz  is the number of non-zero elements, 
k is iteration times.

Table 1.  
The time of solving the Eq. (48) by PIIE, PIIE-K, IPIIE and IPIIE-K with differ-
ent order Am  is taken. The m is the order of matrix A  and the dimension of 
Krylov-subspace is 30, n is terminating iteration parameters.

Method m=2000 m=5000

RE Time RE Time

PIIE(n=2) 2.000e-01 7.223s 2.000e-01 14.041s
PIIE-K(n=2) 1.126e-02 0.057s 1.126e-02 0.304s
IPIIE 4.298e-07 9.184s 4.012e-07 20.520s
IPIIE-K 2.319e-07 0.303s 1.728e-07 1.683s

(a)

(c)

(b)

(d)

As illustrated in Table 1, when the termination iteration parameter n 
is set to 2, the computational time for the IPIIE method is significantly 
greater than that of the IPIIR-K method. Specifically, for m = 2000, 
the computation time for IPIIE is approximately 30 times longer than 
that of IPIIR-K, whereas for m = 5000, the computation time for IPIIE 
is about 12 times that of IPIIR-K. In terms of computational accuracy, 
at m = 2000, the relative errors for the PIIE and PIIE-K methods are 
0.200 and 0.01126, respectively, while the relative errors for the IPIIE 
and IPIIE-K methods are 4.298e-07 and 2.319e-07, respectively. For m 
= 5000, the relative errors for the PIIE and PIIE-K methods remain at 
0.200 and 0.01126, while the relative errors for the IPIIE and IPIIE-K 
methods are 4.012e-07 and 1.728e-07, respectively.

6. Conclusions

This paper presents the IPIIE algorithms, which combine the iterative 
refinement method with the PIIE algorithms. Based on numerical 
experiments, the following conclusions have been drawn:

1. The PIIE is not only applicable to symmetric positive definite linear 
systems but also to asymmetric positive definite linear systems.

2. The IPIIE algorithm effectively alleviates the influence of 
observations on the optimal termination iteration parameters in the 
PIIE algorithm. An advantage of IPIIE is its avoidance of the need 
for selecting regularization parameters compared with TR and TSVD 
method.

3. The IPIIE-K method effectively reduces the high complexity and 
large memory consumption inherent in the PIIE method when 
solving large-scale, sparse problems, demonstrating significant 
advantages.

Additionally, the second-order dynamic system method for solving 
linear equations is ultimately reduced to solving a first-order dynamic 
system. Therefore, the application of the IPIIE algorithm within 
the second-order dynamic system method is further examined and 
discussed.
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