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An efficient synthesis of Ni doped CuO nanoparticles were carried out by hydrothermal method. The pre-
pared material was subjected to X-ray diffraction (XRD), the morphological characteristics of the pre-
pared material system were studied by scanning electron microscope (SEM) technique. FTIR spectra
have confirmed the establishment of CuO nanoparticles. Optical absorption spectra of prepared nanopar-
ticles were measured using UV–vis spectroscopy and photoluminescence (PL) studies. A thorough exam-
ination of the frequency dependent dielectric constant reveals the unique impact of various polarizations.
According to the magnetic experiments, the produced nanoparticles had a maximal magnetic moment
value of 5.0 wt% for Ni doped CuO Nps. All the above analysis were studied the grain size were found
and calculated for pure CuO, Ni incorporated CuO respectively.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The research of nanostructures can deliver extraordinary under-
standing of materials and devices, nanostructures reveal novel and
significantly improved physicochemical properties, and processes
compared to their majority counterparts (Khan et al., 2013;
Kaviyarasu et al., 2012; Ahamed et al., 2014; Ghulam et al., 2013;
Kida et al., 2007). Nanoparticles seem to become increasingly sig-
nificant as they benefit an extensive choice of scientific disciplines
due to its light weight in nanometres (Kim et al., 2008; Anandan
and Yang, 2007; Zhang et al., 2014; Kaviyarasu et al., 2013). The
development, construction, and use of multiple functions having
at least one distinctive nanometer scale is referred to as nanotech-
nology (Suleiman et al., 2013; Kaviyarasu et al., 2016). The copper
oxide (CuO-NPs) nanoparticle is a useful metal oxide with several
uses in domains including such nanofluids, heat transmission,
and associated devices (Angel Ezhilarasi et al., 2018; Ramesh
et al., 2021; Manimaran et al., 2014). Nanomaterials have widely
differing qualities beyond what they exhibit at the macro or micro
sizes due to its unique features, and they will be widely employed
in several applications (Albadi et al., 2013; George et al., 2020).
CuO has the rare feature of acting as a semiconductor, semiconduc-
tor materials particularly attracted the attentions of researchers
due to its significant utility in electrical and optoelectronic proce-
dures such as electrochemical cells, gas sensors, magnetic storage
devices, and catalysts (Anand et al., 2021; George et al., 2022;
Nithiyavathi et al., 2021; Zhou et al., 2013; Joshua et al., 2014;
Panimalar et al., 2022; Darezereshki and Bakhtiari, 2011). The
CuO-NPs have been used in dye removal, nanoparticulate film pro-
duction, gas sensors, semiconductors, organic catalysis, solar
energy transformation, and several other applications (Yuan
et al., 2007; Saravanakkumar et al., 2019; Rathnakumar et al.,
2019; Kana et al., 2019). The CuO-NPs can also be used in heat
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exchange, the heat transfer of CuO-based nanofluid is 12.4 percent
greater than that of deionized water (Lim et al., 2012; Wang et al.,
2002; Poizot et al., 2000). The focus of the study was to synthesise
nanosized pure copper oxide and Ni doped CuO powder in a simple
and efficient manner, and to probe crystallite size, crystallinity,
shape, microstructure, morphology, and interactions seen among
lifeforms of CuO-NPs, the existence of metal dopants, and the
resemblance of pure and doped CuO NPs (Katti et al., 2003;
Panimalar et al., 2020; Carnes and Klabunde, 2003). CuO and
metal-incorporated CuO-NPs were produced in this work using a
hydrothermal technique, temperatures below the melting point
at temperatures of 600 �C (Volanti et al., 2008; Fan et al., 2004;
Yang et al., 2003). These have been observed that adding 4% CuO
to water enhances its thermal conductivity by 20%. CuO is a semi-
conductor with a small bandgap that is utilised in photoconductive
and photodynamic applications (Lee et al., 1999; Borgohain et al.,
2014; Rahmana et al., 2011; Liu et al., 2006). The Ni metal ion
incorporated CuO’s favourable bandgap (1.0 eV to 2.08 eV) renders
it helpful for photovoltaic devices and may be utilised to create
solar panel windows. In this paper, we used the efficient
hydrothermal procedure to make CuO nanoparticles. Powder
XRD, SEM with EDAX, FTIR, UV–vis, PL, Dielectrics, and VSM inves-
tigations have been carried out to characterise the produced
nanoparticles extensively.
2. Experimental procedure

2.1. Synthesis of pure and doped CuO nanoparticle

The pure and metal doped CuO nanoparticles were prepared by
a low temperature hydrothermal route. To prepare CuO, 0.5 M of
copper sulphate was dissolved in 50 ml doubly de-ionized water
and kept in vigorous mixing for 30 min. An appropriate amount
of sodium hydroxide solution (NaoH) was added drop by drop to
the prepared mixture to attain the 8.5 pH value of the mixture
solution and again stirred for 3 h to form homogeneous solution.
The prepared solution was transformed in Teflon lined stainless
steel autoclave and kept in heating furnace which is upheld at
180 �C for 12 h, then the mixer was allowed to cool, the dark brown
precipitate was extracted. The harvested precipitate was splashed
multiple times with distilled water and ethanol to remove contam-
inants and finally dried in hot air oven at 80 �C for 12 h to gain CuO
nanoparticles. For metal doped CuO, 5 wt% of Nickel sulphate was
added by impregeration method by using the above procedure for
Ni metal doped CuO nanoparticle.
Fig. 1. X-ray diffraction pattern of pure and Ni doped CuO nanoparticles.
2.2. Characterisations studies

Using an X-ray spectra were recorded, X-ray diffraction (XRD)
has been used to examine the phases to determine the crystalline
part of the materials. (XRD, Bruker D8 Advance, Germany) by a Cu-
Ka radioactive source of 0.15405 nm in the 2 range of 20� to 80�.
The XRD results were obtained with diffraction intensity versus 2
theta. Scanning electron microscopy was employed to determine
the surface topography of the samples (JEOL, JSM-7600F, Japan).
For elemental analysis, an energy dispersive X-ray (EDAX) study
was conducted using a JEOL JSM-7600F. The material was FTIR
spectroscopically examined in the 400–4000 cm�1 range (with Per-
kin Elmer 1650, USA) using a Thermo-Nicolet Avatar 370 model
FTIR to better comprehend the structural and chemical character-
istics of pure CuO and Ni doped CuO nanoparticles. The bandgap
was calculated after recording energy dispersive spectra using a
UV–visible spectrophotometer. Photoluminescence (PL) spectra
were obtained in the 400–800 nm region. As we added metal oxide
nanoparticles, we saw substantial improvements in the Hall Effect
2

and vibrating sample magnetometer (VSM), as well as a consider-
able improvement in dielectric characteristics.
3. Results and discussion

3.1. Powder X-ray analysis

Fig. 1 depicts the characterisation of X-ray diffraction peaks of
pure and doped materials of CuO nanoparticles with changing con-
centration of Ni doped CuO nanoparticles observed in the range of
2 between 20� and 80�. The powder XRD pattern was used to
describe the acquired materials, which were acquired using a Schi-
madzu model XRD 6000 with CuKa radiation (k = 1.5417 Å). The
crystallographic planes validated the material’s crystalline phase
and are very well aligned to specifications (JCPDS – card # 05 –
0661). The result shows the characteristics diffraction peaks
located at 2h = 22.75�, 28.31�, 35.65�, 38.59�, 41.14�, 46.32�,
52.55�, 61.49�, 66.37�, and 72.17�. There really is no discernible
shift in peak location, and the spikes are observed to be extremely
acute and powerful. The Debye Scherrer equation was used to com-
pute the regular crystalline sizes of pure CuO and Ni doped CuO.
The usual crystallite size rises somewhat as the quantity of doped
Ni concentration increase, ranged from 18 to 28 nm respectively.

3.2. Scanning electron microscopic (SEM) studies

The morphology of pure CuO nanoparticles and Ni doped CuO
nanoparticles was studied using scanning electron microscopy.
The nanoflower-like shape used in this study enables for more
results from a combination of reactant molecules to much more
active areas, improve the effectiveness of photocatalysis. As shown
in Fig. 2 pure CuO looks flower – like morphology nanostructure.
From Fig. 3 Ni doped CuO reveal the formation of nanoparticle with
size ranging from 19 to 28 nm. It is critical to notice that by chang-
ing the proportion of Ni iron inside the parental CuO, the morphol-
ogy shifts from nanoflowers to nanoplates and finally to
nanoparticles.

3.3. Energy dispersive X-ray (EDX) analysis

The resultant solution for pure CuO and Ni doped CuO samples
was examined utilizing energy dispersive X-ray analysis, as seen in
Fig. 3a and b. CuO nanoparticles were analysed by EDX at 10 keV.
The existence of copper (Cu) and oxygen (O) elements was discov-
ered in CuO NPs, with results suggested that the nanoparticles



Fig. 2. (a) SEM image pure CuO nanoparticle; (b) SEM image of Ni doped CuO nanoparticles.

Fig. 3. (a) EDX spectrum of pure CuO; (b) EDX spectrum of Ni doped CuO nanoparticles.
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remained almost stoichiometric. The mass percentage of copper
and oxide determined from EDX examination were Cu 61.4 wt%
percent (0.804 keV) and Cu 61.4 wt% percent (0.804 keV), corre-
spondingly, and no additional elemental impurities were found
as pure EDX spectrum. From Fig. 3b Ni-doped CuO NPs occurrence
of copper (cu), oxygen (O) and nickel sulphate (Ni) elements in CuO
NPs. The Ni doped CuO indicates the weight % are calculated from
EDX analysis were (nickel sulphate) Ni 1.1 wt% (0.4 keV) the values
are tabulated respectively. This finding validated the synthesis of
pure CuO nanoparticles.
Fig. 4. FTIR spectrum of pure and Ni doped CuO nanoparticles.
3.4. Fourier Transformation Infra-Red (FTIR) analysis

The Fig. 4 shows the FTIR spectra of pure and Ni doped CuO
nanoparticles. From the spectrum the peaks 3000 cm�1 to
3500 cm�1 are due to bending oscillations of OH groups which gen-
erally semi conducted nanostructure material absorbed in the sur-
face owing to its mesoporous arrangement (Kana et al., 2019;
Zheng and Liu, 2007). In the spectrum of CuO dual frequency crests
at 596 and 521 cm�1 relates to M–O band vibration frequency sup-
ports that the presence of monoclinic phases (Lim et al., 2012;
Mehedi Hassan et al., 2015). The vibrational characteristics of
CuO nanostructures were allocated to the low frequency range
400–700 cm�1 in the current study. Due to the sheer oxygen
stretching vibration frequencies, there really is no peaks between
1500 and 3300 cm�1. Peaks at 525 and 580 cm�1 in the FTIR spec-
tra of CuO-NPs have been observed and are very well aligned with
findings (Rathnakumar et al., 2019; Chandrasekar et al., 2021). As a
result, the metal–oxygen occurrences measured for pure and
doped CuO-NPs are quite identical to those described in the litera-
ture (Rehman et al., 2011; Poovendran et al., 2020; Jeyaram et al.,
2020; Senthil et al., 2020).
3

3.5. Photoluminescence studies

The morphological attributes of a materials may be easily spot-
ted by optical research, in which the prevalence of imperfections
and surface states vary based on the synthesizing circumstances,
types of dopant and concentrations, particle size and shape, and
so on (Jing et al., 2012). The apparent emissions of pure and Ni
doped CuO nanoparticles in the range 300–550 nm is referred to
the electron transfer driven by structural defects in the bandgap,
including oxygen - containing functional groups, based on the
spectrum (Fig. 5). Optoelectronic systems could benefit from



Fig. 5. Photoluminescence spectrum of pure and Ni doped CuO nanoparticles.
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visible emission. Particularly, profound donors in semiconductor
oxide cause the development of new energy state in the bandgap
found in produced pure and doped CuO nanostructures (Wang
et al., 2002). These bands at 410 and 630 nm fit correctly to the
previously defined emission bands of CuO NPs due to electron
interaction with holes contained in singularly ionised oxygen –
containing functional groups of Ni doped CuO.
3.6. UV–vis studies

The UV–vis spectroscopy is an essential quasi approach for
determining the energy deficit of semiconducting nanostructures,
and it was used to investigate the optical characteristics of pure
and Ni doped CuO NPs. Fig. 6 depicts the UV–visible spectrum of
produced pure and Ni doped CuO nanoparticles, as well as the
absorption of all samples in the frequency range of 200–800 nm.
The absorption spectrum edges have moved slightly towards
longer wavelength (1.45–1.20 eV) after doping Ni with CuO up to
5% wt mol. This assignment of absorbance is primarily determined
by factors such as particle diameter, oxygen deficit, lattice param-
eters and depth, and so on (Poizot et al., 2000; Katti et al., 2003;
Panimalar et al., 2020). As a result, the energy variance between
both the value band and the conduction band widens as concentra-
tion decreases. The pure CuO and Ni doped CuO NPs had wide
absorption peaks at 240 and 245 nm, as seen in the figure. There-
fore, we determined that proportion of Ni doped CuO NPs has
Fig. 6. UV–vis spectrum of pure and doped CuO nanoparticles.

4

superior optical properties when compared to pure CuO NPs (see
Fig. 7).

3.7. Dielectric studies

The dielectric properties of these materials are critical for
studying the crystalline movements of the material. Therefore
HIOKI 3532–50 LCR HITESTER was used to evaluate the dielectric
properties of pure CuO and doped Ni/CuO nanomaterials. To
achieve a satisfactory surface polish, the selected samples were
treated with fine-grade alumina powder. This formula is used to
determine the dielectric properties (see Fig. 8).

e ¼ cd
Ae0

ð1Þ

where C denotes capacitance, d denotes thickness, A is area, and 0 is
the pure permeability of empty space, which is 8.854 � 10�12 F/m.
To use the relationship, the imaginary dielectric constant1 was
determined.

e ¼ etand ð2Þ
Dielectric investigations give information on the dielectric con-

stant that results from the involvement of different polarizations,
such as electronic, ionic, atomic, space charge, and so on, that
emerge in a material when subjected to electric field changes.
The existence of charge density polarisation accounts for the high
dielectric constant at low frequencies. An examination of the
wavelength dependant dielectric constant reveals the unique
impact of various polarizations. The minimum level of electrical
resistivity at higher frequency indicates that the materials have
good magnetic properties with fewer defects, and this characteris-
tic is critical for magnetic applications of pure and Ni metal ions
doped CuO (Rao et al., 2007; Saravanakkumar et al., 2018;
Kaviyarasu et al., 2015).

3.8. VSM (Vibrational Sample Magnetometry)

Vibrating Sample Magnetometry was used to evaluate the mag-
netic characteristics of CuO and doped Ni/CuO at room tempera-
ture (VSM). At ambient temperature, the material exhibits good
nonlinear characteristics and a distinct ferromagnetic behaviour
with ferromagnetic order, as seen in the Fig. 9. It was discovered
in nanoparticles of copper oxide and nickel doped copper oxide.
Fig. 7. Dielectric constant vs log f of CuO nanoparticles.



Fig. 8. Dielectric Loss vs log f of CuO nanoparticles.

Fig. 9. M-H loops of pure and Ni doped CuO nanoparticles at room temperature.
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We understand that the magnetic characteristics of pure CuO are
governed by their dimension (Panimalar et al., 2020), and that it
performs like ferromagnetic materials (Carnes and Klabunde,
2003). The m(H) curves of pure CuO nanoparticles show the preva-
lence of ferromagnetic structure, with a instant intensity of
0.047 emu/g, which really is consistent with earlier studies. Fur-
thermore, as seen in the figure, that magnetic moment of the pro-
duced models surges with doped Ni. Because of the increased super
interchange relations of Ni-O-Cu couplings, the hysteresis beha-
viour of Ni doped samples is significantly improved. Nevertheless,
due to the nanoparticles Ni doped CuO, doping of Ni ions occurs,
resulting in a massive magnetic moment and ferromagnetism
(Kaviyarasu et al., 2015; Theophil Anand et al., 2019; Jayakumar
et al., 2022; Kayalvizhi et al., 2022). As a result, we may infer that
this structure permits ambient temperature ferromagnetism,
which could be explored for spin-based purposes.

4. Conclusions

The current experiment shows the effective production of pure
CuO and Ni doped CuO NPs using a hydrothermal technique that
5

uses less expensive materials and ease of operation. The refining
of X-ray diffraction patterns indicated the development of pure
CuO monoclinic phase in the occurrence of Ni doped content up
to 5.0 wt% percent replace ions. The crystalline size ranges from
19 to 28 nm. On pure and Ni doped CuO content, SEM examination
revealed the development of clear spherical-like flowers fashioned
with nanoparticles. EDX analysis verified the essential quantity
and stoichiometry ratio of CuO NPs. The existence of organic com-
pounds such as metal oxygen bonds was confirmed by the FTIR
spectra. The photoluminescence spectrum used to characterize
the samples show a characteristic peak at 450 nm, which would
be ascribed to the existence of charge transfer emission peaks in
several optical examinations. The conduction and concentration
of pure and metal ion inserted CuO are determined by the UV–vis-
ible spectral light. According to magnetic studies, the inclusion of
Ni ions increases the magnetic properties of the sample. The min-
imal concentration of dielectric loss at high frequencies indicates
the material’s good magnetic properties. The typical investigations
show that the produced candidate is a difficult one that is highly
appropriate for situations in opto-electric, sensor gas, optical,
LED, solar cells, and magnetic associated devices.
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