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In this paper, we use the Adomian decomposition Sumudu transform method with the Pade approximant
(ADST - PA method) to obtain closed form solutions of nonlinear integro-differential equations, and per-
form a comparative study between the present method and three different numerical methods, namely;
the Adomian decomposition Sumudu transform method (ADSTM)), the homotopy perturbation method
(HPM), and the variational iteration method (VIM). Our results show that in comparison with other exist-
ing methods, the (ADST - PA method) gives a better approximation for solving a large number of nonlin-
ear integro-differential equations than existing methods.
© 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ever since long time, integro differential equations have played
an important part in all facets of science applications such as ice-
shaping operation, heat transformer, neutron diffusion, and biolog-
ical species coexisting together with increasing and falling rates of
generating and diffusion process in general. In addition, it also can
be found in applied mathematics, physics, and engineering appli-
cations, as well as this in models dealing with advanced integral
equations such as (Golberg, 1979; Jerri, 1971; Kanwal, 1971;
Miller, 1967).

The homotopy perturbation method (HPM) was a consequence
of some pioneering ideas beginning in 1999 by His (He, 1999).
Since then it has evolved into a fully -fledged theory, which was
the contribution from many researchers. The HPM method was
found to be an uncomplicated and accurate method to resolve a
great number of nonlinear problems.
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Many sources for different cases have obtained some exact and
numerical solutions of the integro-differential equation (see
Avudainayagam and Vani, 2000; Bahugna et al., 2009; Abu Arqub
and Al-samdi, 2013; Abu Arqub and Al-samdi, 2014; Momani
et al.,, 2014; El-ajou et al., 2012; Eltayeb et al., 2014; Ahmed and
Elzaki, 2013).

In the present study, we consider the nonlinear integro- differ-
ential equation of the following type:

Vi = o) + [ Kt o), v (0)d, (1)

with the initial condition;
v(0) =a, 0<x<1; (2)

where f(x) is known as the source term and K(t, »(t), v'(t)) is a lin-
ear or nonlinear function depending on the problem discussed.

The main objective of this paper is to introduce a comparative
study to solve integro-differential equation (1) by using four of
the most recently developed methods, namely, the Adomian
decomposition Sumudu transform method (ADSTM), the homo-
topy perturbation method (HPM), the variational iteration method
(VIM) and the Adomian decomposition Sumudu transform method
with Pade approximant (ADSTM-PA).

This paper is orderly as follows. in Section 2, we show all the
numerical methods in short. Two numerical experiences are intro-
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duced in Section 3 for demonstrating the complete research. Con-
cluding remarks are given in the last section.

2. Analysis of numerical methods
2.1. The Adomian decomposition Sumudu transform method (ADSTM)

In this section, Adomian decomposition Sumudu transform
method (Kumar et al., 2012) is applied to the following classes of
non-linear integro-differential equation (1).

The method depends of first applying the Sumudu transforma-
tion to both sides of Eq. (1);

S[v' ()] = SIfx)] + 5[/0 K(t, v(t), v'(t))dt]. 3)
Using the formulas of the Sumudu transform, we get:
u™' S[p)] - uv(0) = S[f(x)]
+ SU'XK(t, u(t), Z/’(t))dt}. (4)
Jo
Using the initial condition (2), we have:

Slvx)] = o + uS[f(x)] + uS[/XK(t; u(t), v’(t))dt} (5)
0

If we apply the inverse operator S~ ' to both sides of the Eq. (5),
we obtain:

v(x) = o + S uS[FE))]
+ s*wonxK(t, v(t), v’(t))dt} ). (6)

In the Adomian decomposition Sumudu transform method we
assume the solution as an infinite series, given as follows:

v = ivm (7)
n=0

where the terms v, are to be recursively computed. Also, the
nonlinear term K(t, v(t), 2/(t)) is decomposed as an infinite series
of Adomian polynomials (see Adomian, 1990, 1984, 1986):

0

K(t, v(t), v'(t)) = > A, (8)
n=0
where A, = Ay(vq, 15, U3, ..., vy) are determined by the follow-

ing recursive relation:

00

w0 ©

i=0

Using (7) and (8), we rewrite (6) as:

X

iyn(x) = o 4+ SuS[Fx)]] +S"1{u5{ f‘/\ndt” (10)

0 h-o
Applying the linearity of the Sumudu transform, we have:
OO X OO
> nx) = o + ST uSFE) + S5 {u U S{ZAH} d ] } (11)
n=0 0 n=0
Now we define the following iterative algorithm:

v = o+ S S, (12)

vy = S’l{u {/:S[Ao]dt} } (13)

In general,

Visr = S’l{u[/oXS[Ak]dt” k> 1. (14)

As the result, the components (v1, v>, vs, ..., vp) are identified
and the series solution is thus entirely determined.

However, in many cases the exact solution in the closed form
may also be obtained.

2.2. The Pade approximant

Here we will investigate the construction of the Pade approxi-
mates for the functions studied. The main advantage of the Pade
approximation gives a better approximation of the function than
truncating its Taylor series. The Pade approximation of a function
is given by the ratio of two polynomials. The coefficients of the
polynomial in both the numerator and the denominator are deter-
mined by using the coefficients in the Taylor series expansion of
the function.

The Pade approximation of a function, symbolized by [m/n], is a
rational function defined by;

o + Q1X 4+ A3 X% + ... + Ay X™

m/n = X T b o T B

(15)

where we considered by, = 1, and numerator, denominator have
no common factors.

In The (ADSTM-PA) we use the method of the Pade approxima-
tion as an after - treatment method to the solution obtained by the
(ADSTM). This after - treatment method improves the accuracy of
the proposed method.

2.3. Basic idea of the (HPM)

To explain (HPM), we consider (1) as:

L(v) = V(%) — f(x) — /OXK(r, w(t), v'(6)dt = 0, (16)

with solution f(x). Now, we can define homotopy H(v, p) by,
H(v,0) = F(v) , H(v,1) = L(v), (17)

where F(v) is a functional operator with a solution r,, obtained
easily. Now, we choose a convex homotopy from:

H(v,p) = (1 — p)F(v) + pL(v) = 0 (18)

and continuously trace an implicitly defined curve from a starting
point H(ro, 0) to a solution function H(f, 1). Here the parameter p
is monotonically increasing from zero to unit along - with the triv-
ial problem F(v) = 0 is continuously deformed to the original
problem L(v) = 0.

The (HPM) uses the homotopy parameter p as an expending
parameter to obtain (see Nayfeh, 1985),

v=ro+pri+ P +pins+. (19)
when p — 1, Eq. (17), becomes the approximate solution of (16), i.e.

f=limro+r+n+.. (20)
p—1

Series (20) is convergent for most cases, and the rate of conver-
gence depends on L(v).

2.4. Basic idea of the (VIM)

To clarify the basic ideas of (VIM) (Abassya et al., 2007), we con-
sider Eq. (1) as correction functional as follows;



86 S.A. Ahmed, T.M. Elzaki/Journal of King Saud University - Science 32 (2020) 84-89

D) = 0 + [ O - F©

) +
) 0
- /0g K(r, v(r), v'(r))dr)) d¢. (21)

where / is general Lagrange multiplier which can be identified opti-
mally via integrated by parts.we used here /. = —1 for first order
integro- differential equation, substituting this value of the
Lagrange multiplier into the functional (21), gives the iteration
formula:

v = 0a0) = [ (@40 -
- [ K o), v dnde, (22)
0
we can use the initial condition to select vy(x) = v(0) = o. Using

this selection into above the correction functional, gives the follow-
ing successive approximations:

vo(x) = v(0) = a, (23)

ma® = 0~ [ 040 - 10

0
— / K(r, v(r), v'(r))dr)d¢. (24)
0
Consequently, the exact solution may be obtained by using:
v(x) = lim v;. (25)
n—oo

3. Application

In this section, we demonstrate the analysis of all the numerical
methods by applying the methods to the following two integro-
differential equations. A comparison of all methods is also given
in the forms of graphs and tables, presented here.

Example 1: Consider the following integro- differential
equation:

VX)) = -1+ /xyz(t)dt, (26)
0

With the initial condition;
v0) =0, 0<x< 1. (27)

Solution: Taking the Sumudu transform on both the sides of
(26) gives:

u T S[pX)] - up0) = —1 +5va2(t)dr]. (28)
0

Using the initial condition (27) implies,
X
Slvx)] = —u + uS{/ vz(t)dt}. (29)
0

If we apply the inverse operator S~ ! to both sides of the Eq. (29),
we obtain:

v®) = Sl +s”{us[/oxu2(r)dr]}. (30)

By the assumption (7) and (8), we rewrite (30) as,

ivn(x) = S'[-u] +s1{us{/xiz‘\ndt]} (31)
0

n=0 n=0

where the nonlinear term K(t, v(t), v'(t)) = v? is decomposed in
terms of the Adomian polynomials as suggested in (8). Few terms
of the Adomian polynomials for v?are given as follows:

Ao = 13,

A =200,

Ay = 2090, + V3,
As =2v0v3 + 2011

And so on. Following the Adomian decomposition Sumudu
transform method, we define an iterative scheme,

vo = S'[-ul, (32)
Ugi1 = s—l{u V S[Ak}dt” k>0 (33)
J0
Consequently, we obtain:
vo=S'[-u = —x, (34)
o = s us| [ avde]] = X (35)
1 = /0 0 - 12°
1 XA d X7
v = 7 us| [ ]| = - 55, (36)
. X XlO
. X d XB

Similarly, we can also find other components. Finally, the solu-
tion takes the following form:

Z/(X) = UV + V1 + Uy +0U3 + .., (39)
Or,
X4 X7 X]O X13
V) = =X+ 15~ 953 T §048 ~ 157248 T (40)

Notes on (ADSTM):
From the previous analysis, we can observe that:

1. (ADSTM) can obtain a series solution, not converge, which must
be truncated. The truncated series solution is an inaccurate
solution in that region, which will greatly restrict the applica-
tion area of the method.

2. (ADSTM) needs some modification to overcome the Taylor ser-
ies does not converge.

To overcome these disadvantages of ADSTM, the following
ADSTM - PA method is suggested.

The [m/n] Pade approximant of the infinite series (40), with
m > 4 and n > 4, which gives the following rational fraction
approximation to the solution:

x4 2

Example 2: Consider the following integro- differential equa-
tion (Figs. 1 and 2):

V(X)) =1+ / rars (42)
0



S.A. Ahmed, T.M. Elzaki/Journal of King Saud University - Science 32 (2020) 84-89

combine between ADSTM ,HPM and ADST-PA

05

Exact solution
ADSTM and HPM
*  ADST-PA

approximate solutions by using the ADSTM ,HPM,ADST-PA and exact solution
o
T

0.5 1 1.5
X

Fig. 1. Comparison between (ADSTM), (HPM) and (ADST-PA), for Example 2.
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Fig. 2. Comparison between (ADST-PA) and (VIM), for Example 2.
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Table 1
Comparison between (ADSTM), (HPM) and (ADST - PA method), for Example 2.

Step Size Exact Sol. Error(ADSTM) Error (ADST-PA) Error (HPM)
0.0000 0.0000 0.0000 0.0000 0.0000
0.1250 0.1253 0.0000 0.0000 0.0000
0.2500 0.2526 0.0000 0.0000 0.0000
0.3750 0.3840 0.0000 0.0000 0.0000
0.5000 0.5219 0.0001 0.0000 0.0001
0.6250 0.6691 0.0003 0.0000 0.0003
0.7500 0.8292 0.0010 0.0000 0.0010
0.8750 1.0069 0.0030 0.0000 0.0030
1.0000 1.2085 0.0081 0.0000 0.0081
1.1250 1.4431 0.0198 0.0000 0.0198
1.2500 1.7243 0.0452 0.0000 0.0452
1.3750 2.0737 0.0979 0.0000 0.0979
1.5000 25275 0.2051 0.0001 0.2051
X X3
Table 2 v =5" {us{ / BodtH == (49)
Comparison between (ADST - PA method) and (VIM), for Example 2. 0 6
Step Size Exact Sol. Error (ADST-PA) Error (VIM) X 5
_ b%
0.0000 0.0000 0.0000 0.0000 v, =S 1{u5 { / B; dt“ = 39 (50)
0.1250 0.1253 0.0000 0.0000 0
0.2500 0.2526 0.0000 0.0000
0.3750 0.3840 0.0000 0.0000 » x 17x7
05000 05219 0.0000 0.0000 v3 =S |uS| | Bydt|| = 550" (31)
0.6250 0.6691 0.0000 0.0000 0
0.7500 0.8292 0.0000 0.0001 Similarly, we can also find other components, then the solution
0.8750 1.0069 0.0000 0.0002 takes the following form:
1.0000 1.2085 0.0000 0.0009 akes the toflowing torm,
1.1250 1.4431 0.0000 0.0029
v(X) = v v v v ey 52
1.2500 1.7243 0.0000 0.0087 ®) o+ V1 V2 AU A (52)
1.3750 2.0737 0.0000 0.0242 or
1.5000 25275 0.0001 0.0644
3 5 7
X X 17x
VX)) =X+ =+ =+ =5~ + - 53
®) 6 30 2520 (33)
The [m/n] Pade approximant of the infinite series (53), with
Given the initial condition; m > 4 and n > 4, which gives the following rational fraction
v0) =0, 0<x<. (43) approximation to the solution:
3
With the exact solution: X -5
VX)) = — 55 (54)
1 — 3x2 + x4
X 14 420
v(x) = V2 tan <—> (44) . . _
V2 Numerical outcomes shown in Tables 1 and 2 and Figs. 1 and 2

Solution: Proceeding as in Example 1, Eq. (42) becomes:

iv,,(x) = sfl[u] + sl{us{/xf:Bndt} } (45)
n=0 0 noo

where the nonlinear term K(t, v(t), v'(t)) = v(t)v'(t) is decom-
posed in terms of the Adomian polynomials as suggested in (8).
We have a few terms of the Adomian polynomials of (t)2'(t) which
are given by:

Bo = Vo Vy,,

By Vo V1, + V1 V,,

By = vovy, + i 01, + V20, ,

By = vouvs, + V30 + V1V + V04,

And so on. Following the Adomain decomposition Sumudu
transform method, we define an iterative scheme;

v = S'[u] (46)
X
Vioq = S*l{u { / S[Bk]dt” k>0 (47)
Jo
Now, we obtain the following components:
o= S '[ul = x (48)

illustrate the importance of (ADST - PA method) over other numer-
ical methods.

4. Concluding remarks

In this report, we have examined a few recent familiar numer-
ical methods for solving integro-differential equations. The numer-
ical studies showed that all the methods give highly accurate
solutions for given equations. The (ADSTM), the (HPM) and the
(VIM) are uncomplicated and comfortable. Despite this, they are
not converging to a closed form. Since the method of the (ADSTM)
is based on an approximation of the solution function in this study
by the truncating of approximation the solution, this kind of
approximation is an inaccurate solution, which will greatly restrict
the application area of the method. To get to the more dependable
of these demerits, we use the Pade approximations. This fact is
indicated in the second example.
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