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The structural diversity of systems and the resource limitations, and the need to improve system relia-
bility give birth to several optimization techniques and analyses. Recently, the significance of reliability
and maintainability concepts has been increasing attention. Several optimization concepts exist in the
reliability literature. However, less concern has been given to the bi-level programming concept, espe-
cially in the selective maintenance allocation problem. Hence, the present study is motivated and focuses
on bridging the existing literature gap. This paper aims to transform a problem of reliability into a Bi-
Level Programming Problem (BLPP). The objective functions are non-linear, and the constraints are linear.
The current paper demonstrates the reliability optimization problem as a BLPP and applies the Kuhn-
Tucker approach to solving the formulated BLPP. A section for estimating the reliability parameters are
discussed, and a numerical example has been provided to illustrate the solution procedure.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, engineers design highly complex systems to func-
tion reasonably without failure for some time and meet their func-
tional requirements. The absence of complete failure of the system
components during its mission cannot be guaranteed. However, its
reliability can be measured and ascertain based on the operational
lifetime. The reliability of a system component is its failure-free
probability during the operational face up to a specific period
under certain conditions. Recently, this area is receiving attention
from several researchers because of its importance in all real-life
operational systems such as manufacturing, transportation, power,
telecommunication, and exploration Rausand (2014) and Muhuri
et al. (2019).
Several systems have different configurations, and maximizing
their overall performance requires Reliability Optimization (RO).
The RO problems are of three categories (i) ‘‘redundancy allocation
problem (RAP)”, (ii) ‘‘reliability allocation problem”, and (iii)
‘‘Reliability-Redundancy Allocation Problem (RRAP)” Modibbo
et al. (2021).The RO has a different view regarding the system
structure, which could be series, parallel, series–parallel, k-out-of
n system, etc. The Reliability Block Diagram (RBD) of some system
structures is shown in Fig. 1.

The importance of reliability and maintenance theory is signif-
icantly increasing in recent times. Engineers, scientists, researchers
and industrial managers realized the importance of this topic now
more than anytime in history, especially with the advent of
advanced technology and soft-computing power. A reliable system
optimizes cost and guarantees a design for high-quality products.
As a result, it optimizes profit, increases product durability and
market acceptability.

Most of the researches in RO concentrate on single optimization
of the system reliability; however, there is no significant attention
to Bi-level Optimization (BO) of the problem, and the problem can
perfectly fit bi-level optimization. Motivated by this fact, this study
seeks to present a BO in addressing the selective maintenance allo-
cation problem in RO using bi-level programming. There are many
real-life situations where decision-making takes place at levels. In
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(a) Series system structural configuartion

(b) Parallel system structural configuartion

(c) Series-parallel system

Fig. 1. Some systems structural configuration.
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BO, it involves only two levels-the upper and lower. Each level may
have a different objective function with decision space in part of
the other levels.

Additionally, one level‘s decision may influence the decisions at
the other levels; as a result, the objective function of the other level
improves. For instance, allocating resources or selective mainte-
nance of some lower components of a system may directly confer
benefits on the other levels of the system. The common feature of
these systems is that they have an interactive decision-making unit
within their structure hierarchically. Each lower-level subsystem
executes its function after and following the upper-level subsys-
tem actions. Each subsystem optimizes its reliability indepen-
dently with other subsystems but may be affected by the
performance of those subsystems. The decision-makers problem‘s
external effect reflects both the objective function and the feasible
solution sets. These processes and procedures are well-explained
in Section 3.1. The related literature is reviewed in the following
section, and the research gap is established.

1.1. Paper organization

This article’s organization is as follows: In Section 1, the intro-
duction, background and motivation of this research are presented
for easy understanding. Section 2 reviewed the related literature
and established the gap necessitating this research. Section 3 pre-
sents the methodology of the paper discussing the bi-level pro-
gramming, the K-T optimality conditions and the mathematical
formulations. Section 4 discusses the concept of the bi-level selec-
tive maintenance allocation problem in reliability optimization
and presents its mathematical formulation. The concept is illus-
trated with a numerical example in Section 5. The results of the
illustrations are discussed, and the article is concluded in Section 6
suggesting managerial implications and further scope for
investigation.

2. Literature review and research gap

Several studies use the concept of bi-level programming in
different sectors. For instance, Sadati et al. (2013) uses BLPP to
2

optimize the random portfolio under a fuzzy environment based
on possibility and necessity models. They used newly generated
stock market information to calculate the objective function’s
upper bound (level) while the lower level is calculated based on
historical data. Kornai et al. (1965) applied the concept as a two-
level planning problem in game-theoritical model involving two
players’ team. Similarly, Bialas et al. (1984) formulated BLPP to
decentralized planning as a decision-making process with geomet-
ric characteristics and algorithms. Nath et al. (2017), Muhuri et al.
(2019) and Sinha et al. (2014) studied a reliability redundancy allo-
cation problem of a series–parallel system and formates a mixed-
integer non-linear model based on the bi-level programming
concept-the solution to the optimization problem obtained with
the help of an evolutionary algorithm using quadratic approxima-
tions. In the study, they considered two objective functions as reli-
ability weight and cost.

Nath et al. (2019) conducted similar research to study the effect
of ‘‘BrainStorm Optimization Algorithm (BSOA) and ”Brainstorm
Optimization algorithm in Objective Space (BSOA-OS)”. The study
compares these algorithms with ”genetic algorithm (GA) and
self-organizing migrating algorithm (SOMA)” and concluded that
BSO-OS converges faster. Most recently, Ghasemi et al. (2021) for-
mulated a bi-level mathematical model in response to the COVID-
19 pandemic for logistic management considering the evolutionary
game with environmental feedback. Similarly, Li et al. (2021) pro-
posed a stochastic bi-level model for the facility location and pro-
tection problem having a probabilistic interdiction strategy.
Candler et al. (1982) formulated a Stackelberg game as a linear
two-level programming problem where the first player optimizes
his objective function. However, the constraints are under the con-
trol of the second player. The study uses a necessary condition to
show that a local optimum exists in the game. Sakawa et al.
(2012) extended the Stackelberg solution to consider decision-
makers fuzzy goals in a randomized fashion and solve the problem
via maximizing the probability with possibility.Gupta et al. (2018)
also applied a bi-level concept in studying supply chain network
order allocation problem under fuzziness. The authors formulated
the problem as multi-objective bi-level optimization. Fortuny-
Amat et al. (1981) presented an economic interpretation of a



Fig. 2. Overview of bi-level optimization.
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two-level programming problem in which the Khun-Tucker condi-
tions replace the lower level problem and transformed using
mixed-integer quadratic programming problem exploring and
demonstrating the complementary slackness conditions. Sakawa
et al. (2002) formulated decentralized BLPP using an interactive
fuzzy programming approach. Similarly, Wen et al. (1990) formu-
lated BLPP in which the yes or no high-level decision-makers con-
trol combined with the real-valued lower-level decision control as
a mixed-integer programming problem. The study provides both
exact and heuristics algorithms for solving such models.

Christiansen et al. (2001) developed a bi-level stochastic model
to optimize the cost of a structural topology design problem. The
study considered a trust topology under unilateral frictionless con-
tact and when the load conditions data are uncertain. The scenario
is one in which structural failure can only lead to reconstruction
cost and not loss of life. Casas-Ramírez et al. (2018) applied the
bi-level programming concept in facility location problem. The
model comprises minimizing the facility cost of location and distri-
bution by the company, which serve as the upper-level problem
and maximize the facility preference by customers, which serve
as the lower level problem. The cross-entropy method and the ran-
domized greedy algorithm are used to solve the model. Wen et al.
(1991) presents a comprehensive review of the BLPP applied to
government policies, agriculture, economic system, financial
model and transportation; however, it does not consider reliability
areas. The study also analysed the geometric properties of the lin-
ear BLPP and outlined the approaches used in solving BLPP, such as
vertex enumeration and its variants and the Khun-Tucker
approach.

Recently, Kamal et al. (2021) studied a selective maintenance
problem under a neutrosophic condition, where the authors for-
mulated the model with fuzzy parameters. They considered a
replaceable and repairable component of the system and opti-
mized the reliability. Of all the literature on BLPP, only very few
applied in reliability optimization. None of them uses the Khun-
Tucker optimality conditions in maximizing the reliability of a ser-
ies–parallel system. Hence, this paper aims to bridge the existing
gap by demonstrating the applicability of BLPP using the Khun-
Tucker approach. Therefore, the research contributes to the bank
of reliability literature concerning the methodologies and
techniques.
3. Methodology

This section presents an overview of the philosophy, concepts,
origin and mathematical model of BLPP. It also discusses the con-
cept of the Khun-Tucker optimality conditions as a solution
approach to a BLPP. The following section discusses the BLPP.
Fig. 3. Constraint diagram for inequality optimization problems.
3.1. Bi-level programming problem

The BLPP is a two-person non-zero-sum game in which the first
player can influence but not control the action of the second. The
BLPP is a model for a leader–follower game in which the two play-
ers try to maximize (or minimize) their objective functions. The
BLPP has been developed and studied by many authors including
Bialas et al. (1982), Bialas et al. (1984); Candler et al. (1982),
Wen et al. (1990), Wen et al. (1991), Bard (1984) and Bard
(1983). According to Nath et al. (2019), the concept is divided into
two optimization levels- upper-level decision making (ULDM) and
lower-level decision making (LLDM) [see Fig. 2]. At each level, deci-
sions are taken independently; however, actions and inactions of
LLDM may affect the decision-making process as a result of dissat-
isfaction with the ULDM outcomes. In other words, LLDM obtained
its optimal solutions which satisfy its constraints as a result, create
3

a feasible region for the ULDM who eventually make decision with
its own characteristics variables with the feasible solution space
created by the LLDM units.

Outline required to construct the BLPP.

1. There exist interacting decision-making units within a predom-
inantly hierarchical structure.

2. The execution of decisions is sequential from higher to lower
levels. The lower level decision maker executes its policies after
and based on the decision of the higher levels.

3. Each decision-making unit optimizes its objective function
independently of other units but is affected by the actions and
reactions of other units.

4. The external effect on a decision-makers problem can be
reflected in both his objective function and his set of feasible
decisions. see Fig. 3.

Further, assume that there are two levels in a hierarchy with
higher and lower level decision-makers. Let a vector of decision
variables x; yð Þ 2 Rn be partitioned among the two planners. The
higher-level decision maker has control over the vector Rn1 , and
the lower-level decision-maker has control over the vector
Rn2 ; n1 þ n2 ¼ n. Furthermore, assuming that

F; f : Rn1 � Rn2 2 Rn
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are convex and bounded, the non-linear BLPP can mathematically
be stated as follows:

P1 : maxxF x; yð Þ; where y solves
P2 : maxyf x; yð Þ;
subject to :

Axþ By 6 r

ð1Þ

Where x 2 Rn1 is a vector of leader’s problem variables, y 2 Rn2

vector of follower’s problem, r 2 Rm;A is a m� n1 matrix, B is a
m� n2 matrix, and F x; yð Þ and f x; yð Þ are convex functions. Let S
denotes the problem constraint region

S ¼ x; yð ÞjAxþ Byf g ð2Þ
Hence for each value of x, the lower level will react with a cor-

responding value of y. This induces a functional relationship
between the decisions of the leader and the reactions of the fol-
lower. For a given x, let Y xð Þ denote the set of the optimal solution
to the inner problem P2,

maxy2Q xð Þef yð Þ ¼ dy; where Q xð Þ ¼ yjBy 6 b� Axf g ð3Þ
And Wf Sð Þ represent the higher-level decision-makers solution

space or the set of the rationale of the f over S, as

Wf Sð Þ ¼ x; yð Þj x; yð Þ 2 S; y 2 Y xð Þf g ð4Þ
We assume that S is closed, bounded and non-empty with Q xð Þ

as bounded and non-empty and a unique solution exists for P2 for
any feasible x. The definitions of feasibility and optimality for the
BNLPP are then given by the following:

Definition 1. A point x; yð Þ is called feasible if x; yð Þ 2 Wf Sð Þ.
Definition 2. A feasible point x�; y�ð Þ is called optimal if F� x; yð Þ is
unique for all y� 2 Y x�ð Þ and F� x; yð ÞP F x; yð Þ for all feasible pairs
x; yð Þ 2 Wf Sð Þ.

Thus the BLPP can mathematically be formulated as:

P1 : maxxF x; yð Þ; where y solves
P2 : maxyf x; yð Þ;
subject to :

Axþ By 6 r
x; y P 0

ð5Þ
3.2. The Karush Kuhn Tucker (K-T) optimality conditions

An optimization problem can be linear or nonlinear in mathe-
matical programming, and a solution can be optimal, sub-
optimal, or non-optimal. For any case to happen, there are some
conditions known as necessary and sufficient conditions. In a non-
linear programming problem, a solution must satisfy the first-
order necessary condition alongside some regularity conditions
for it to be optimal. These conditions are known as the Karush Kuhn
Tucker (KKT) conditions or simply the Kuhn Tucker (KT) conditions.
The conditions are named after Harold W. Kuhn and Albert W.
Tucker and originated from the work published by Kuhn and
Tucker (1951). These conditions later traced to the masters deser-
tation of Karush (1939) in the study conducted by Kjeldsen (2000).

The KKT theorem in a nonlinear programming problem is a gen-
eralization of the Lagrange multipliers. The latter allows only con-
straints of equality nature, whereas the former takes care of the
inequality constraints. The KT conditions are similar to the saddle
point theorem as it spreads its global optima over the choice vari-
ables and the multipliers like Langrangean function Tabak et al.
(1971).
4

Theorem 1. Suppose f : Rn�!R and gi : R
n�!R; hj : R

n�!R are
differentiable continously at a point x� 2 R. If x� is a local optima
and the problem satisfy the conditions given in Eqns. (6)–(10) [see
Fig.], then, there exists a constant li i ¼ 1;2; . . . ;mð Þ and
kj j ¼ 1;2; . . . ; lð Þ, called the KKT multipliers, such that the following
conditions hold:

(a). Stationary Condition for minimization case
f xð Þ : rf x�ð Þ þ
Xm
i¼1

lirgi x
�ð Þ þ

Xl

j¼1
kjrhj x�ð Þ ¼ 0 ð6Þ

(b). Stationary Condition for maximization case

f xð Þ : �rf x�ð Þ þ
Xm
i¼1

lirgi x
�ð Þ þ

Xl

j¼1
kjrhj x�ð Þ ¼ 0 ð7Þ

(c). Feasibility Condition for a primal case

gi x
�ð Þ 6 0; for i ¼ 1;2; . . . ;m;

hj x�ð Þ ¼ 0; for j ¼ 1;2; . . . ; l;
ð8Þ

(d). Feasibility Condition for a dual case

li P 0; for i ¼ 1;2; . . . ;m; ð9Þ
(e). Complimentary slackness conditionXm

i¼1
ligi x

�ð Þ ¼ 0 ð10Þ

3.3. Stochastic Process

Some parameters, such as subsystem components, are worn out
or failed in engineering systems after a successful action period.
The designs are generally overhauled after some period of active
action to avoid failure. However, the loss is unavoidable due to
many reasons such as component lifetime, machine operators inef-
ficiency, and overall uncertainty in the operational process. The
failure rates of these parts usually follow or can be approximated
to certain lifetime distributions. In the absence of data, this can
be estimated using some established techniques and procedures.

Since there are several system configurations, we have different
events such as the number of subsystems failures, component esti-
mation, failure rates, and so on that can be determined concerning
a particular system.

Suppose one observes random events occurring in series and
assumes these events are system unit failures in time. Naturally,
two central assumptions must be satisfied as follows:

1. The failures which occur disjointly in the time interval must be
independent statistically.

2. The rate of these failures (average failures number per unit
time) is constant and independent of any examined time
interval.

For instance, any process satisfying the two conditions above is
a Poisson process with a failure rate k. The significant essential
properties of the process are:

1. The failures number Y in an interval of time length t has a Pois-
son distribution having a mean kt, therefore
Pr Y ¼ kf g ¼ ktð Þke�kt=k!; k P 0; ð11Þ

2. the times occuring between successive failures in the process is

an independent random vatriables with an exponential density
having a parameter k, therefore
Pr Failuretime > xf g ¼ e�kx; 0 < x <1 ð12Þ
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Here, the MTBF is k�1.

Several estimations of the lifetime distributions for which most
reliability parameters follows has been studied and reported
recently. For more details refer to Modibbo et al. (2021).

3.4. Parameter Estimation

Suppose an engineering study is to be conducted on the reliabil-
ity optimization problem. Be it a system allocation problem where
the objective is to allocate resources such as components in the
system optimally, replace the wear-out parts, or maximize subsys-
tem component reliability, the parameters like failure rates (MTBF,
MTTF, e.t.c.) must be computed or known. If these parameters are
not entirely understood, but their information or behaviour are
known, then it can be estimated using statistical methods estab-
lished in the literature of the subject. Most recently, Modibbo
et al. (2021) proposed two estimating procedures for the reliability
functions based on the Maximum Likelihood Estimators (MLEs)
and Uniformly Minimum Variance Unbiased Estimators (UMVUEs).
According to the authors, the system and component reliability
function can be determined using formulas as follows.

The reliability function of subsystem ri tð Þ based on MLE can be
estimated as

r̂iML ¼ 1� G tð Þ½ �ĥiML
; i ¼ 1;2; . . . ; k: ð13Þ

and that of the system reliability bRML
s as

bRML
s ¼

Yk
i¼1

1� 1� r̂iML tð Þ� �nih i
: ð14Þ

where, G tð Þ is the baseline distribution and ĥi are the respective
unknown parameters which can be estimated. For more details
see Modibbo et al. (2021).

After obtaining the failure rates, it can be fit to observe which
life distribution it follows based on that, the parameters are esti-
mated. Two well-known approaches can be employed to ascertain
the distribution suitability in such cases. They are the Akaike’s
information criterion (AIC) and Bayesian information criterion
(BIC) given as:

AIC ¼ 2k� 2 log lik

BIC ¼ k logn� 2 log lik
ð15Þ

Where log lik is the likelihood function maximized value, n is
the sample size, and k is the number of parameters in the model
under consideration. The model with minimum AIC and BIC values
are regarded as the best-fitted distribution for the data set.

4. Bi-level Selective Maintenance Allocation Problem

Now, suppose we encounter a reliability problem of a system
consisting of subsystems where it is given that a certain subsystem
must be given priority over other subsystems and has control over
a particular repairable component. In that case, the problem can be
solved using BLPP.

Let us consider a reliability problem of a system consisting of
two subsystems where the reliability of one subsystem is given
priority over the other and controls specific repairable compo-
nents. This way, the reliability problem can be solved by a bi-
level programming problem of which two cases can be formed:

R1is the reliability of first subsystem.
R2is the reliability of second subsystem.
d1is the first repairable component and.
d2is the second repairable component.
5

Case 1: Here R1 is given priority over R2.
R1 is the reliability of the first subsystem that is considered as
the leader’s problem where d2 solves.

max
d1

R1 ¼ 1� 1� r1ð Þn1�a1þd1
n o

where d2 solves

max
d2

R2 ¼ 1� 1� r2ð Þn2�a2þd2
n o

subject to :Xm
i¼1

tidi 6 To

Xm
i¼1

cidi 6 Co

and0 6 di 6 ai; i ¼ 1;2; and integers:

ð16Þ

Case 2: Here R2 is given priority over R1.
R2 is the reliability of the second subsystem that is considered
as the leader’s problem where d1 solves.

max
d2

R2 ¼ 1� 1� r2ð Þn2�a2þd2
n o

where d1 solves

max
d1

R1 ¼ 1� 1� r1ð Þn1�a1þd1
n o

subject to :Xm
i¼1

tidi 6 To

Xm
i¼1

cidi 6 Co

and0 6 di 6 ai; i ¼ 1;2; and integers:

ð17Þ

Procedure In the Kuhn-Tucker approach, the rational reaction

set of the follower is replaced by Kuhn-Tucker optimality condi-
tions. The leader takes into account the follower’s optimality
conditions while solving its own problem. Thus, by taking the
Kuhn-Tucker transformation to the inner problem, we get the
resulting equivalent problem. Consider non-linear bi-level pro-
gramming problem Eq. (16), and apply the K-T conditions on
the inner problem
max
d2

R2 ¼ 1� 1� r2ð Þn2�a2þd2
n o
subject to the same set of constarints. Here the objective is nonlin-
ear whereas the constarints are linear. The necessary and sufficient
K-T conditions for the above problem can be obtain as:
/ d;kð Þ¼ 1� 1� r2ð Þn2�a2þd2
n o

þ
k1 To� t1d1� t2d2ð Þþ
k2 Co�c1d1�c2d2ð Þþk3 a1�d1ð Þþk4 a2�d2ð Þ
rd/ d;kð Þ¼
�k1t1�k2c1�k3
� log 1� r2ð Þ 1� r2ð Þn2�a2þd2 �k1t2�k2c2�k4

� �
60

d0rd/ d;kð Þ¼ d1 �k1t1�k2c1�k3ð Þþ
d2 � log 1� r2ð Þ 1� r2ð Þn2�a2þd2 �k1t2�k2c2�k4
� �

¼0

rk/ d;kð Þ¼

To� t1d1� t2d2

Co�c1d1�c2d2

a1�d1

a2�d2Þ

26664
37775P0

k0rk/ d;kð Þ¼ k1 To� t1d1� t2d2ð Þþ
k2 Co�c1d1�c2d2ð Þþk3 a1�d1ð Þþ
k4 a2�d2ð Þ¼0
dP0; k

 
P0:

ð18Þ
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Now using slack and surplus variables in the above Eq. (18), we get
the KT conditions in light of Eqs. (6)–(10).
�k1t1 � k2c1 � k3 þ u1 ¼ 0

or u1 ¼ k1t1 þ k2c1 þ k3 ¼ �rd1/ d; kð Þ
or d1u1 ¼ � rd1/ d; kð Þ� 	 ¼ 0

� log 1� r2ð Þ 1� r2ð Þn2�a2þd2

�k1t2 � k2c2 � k4 þ u2 ¼ 0

or d2u2 ¼ � rd2/ d; kð Þ� 	 ¼ 0

To � t1d1 � t2d2 � s1 ¼ 0 or t1d1 þ t2d2 þ s1 ¼ To

or s1 ¼ To � t1d1 � t2d2 or s1 ¼ rk1/ d; kð Þ� 	
or k01s1 ¼ k01 rk1/ d; kð Þ� 	 ¼ 0

Co � c1d1 � c2d2 � s2 ¼ 0 or c1d1 þ c2d2 þ s2 ¼ Co

or k02s2 ¼ k02 rk2/ d; kð Þ� 	 ¼ 0

a1 � d1 � s3 ¼ 0 or d1 þ s3 ¼ a1

or k03s3 ¼ k03 rk3/ d; kð Þ� 	 ¼ 0

a2 � d2 � s4 ¼ 0 or d2 þ s4 ¼ a2

or k04s4 ¼ k04 rk4/ d; kð Þ� 	 ¼ 0

d; k;u; s;P 0
Now the non-linear BLPP is converted into a single non-linear opti-
mization problem is:
max
d1

R1 ¼ 1� 1� r1ð Þn1�a1þd1
n o

subject to :

�k1t1 � k2c1 � k3 þ u1 ¼ 0

� log 1� r2ð Þ 1� r2ð Þn2�a2þd2
�k1t2 � k2c2 � k4 þ u2 ¼ 0

t1d1 þ t2d2 þ s1 ¼ To

c1d1 þ c2d2 þ s2 ¼ Co

d1 þ s3 ¼ a1

d2 þ s4 ¼ a2

d; k;u; s;P 0

d01u¼d
0
2u2 ¼ 0

k01s1 ¼ k02s2 ¼ k03s3 ¼ k04s4 ¼ 0

ð19Þ
Table 1
. The parameters for the numerical
example.

Subsystem 1 2

ni 7 10
ri 0.90 .85
ai 5 7
ci 8 7
ti 3 4
It is clear that Eq. (19) comprises of the linear equations, the non-
negativity restriction, and the complementary slackness condition
of KKT, while the objective function is non-linear. Now, this result-
ing NLPP can be solved with a variety of techniques.

5. Numerical Example

Consider a system consisting of two subsystems. The available
time between two production runs for repairing and replacing back
the components is 30-time units. Let the given maintenance cost of
the system be 50 units. The other parameters for the various sub-
systems are given in Table 1. These parameters can be estimated
using the process described in Section 3.3.

To solve the above NLPP example, two cases of the problem for-
mulated as follows:

Case 1: Here R1 is given priority over R2.
R1 is the reliability of the first subsystem that is considered as
the leader’s problem where d2 solves.
6

max
d1

R1 ¼ 1� 0:1ð Þ2þd1
n o

where d2 solves

max
d2

R2 ¼ 1� 0:15ð Þ3þd2
n o

subject to :

3d1 þ 4d2 6 30

8d1 þ 7d2 6 50

d1 6 5

d2 6 7

andd1;d2 P 0; and integers:

ð20Þ
Now non-linear BLPP Eq. (20) can be solved by the procedure
discussed above as follows:

Consider the lower level problem as:

max
d2

R2 ¼ 1� 0:15ð Þ3þd2
n o

subject to :

3d1 þ 4d2 6 30

8d1 þ 7d2 6 50

d1 6 5

d2 6 7

andd1;d2 P 0; and integers:

ð21Þ

Now, applying the K-T conditions in Eq. (21), we get

/ d; kð Þ ¼ 1� 0:15ð Þ3þd2
n o

þ
k1 30� 3d1 � 4d2ð Þ þ k2 50� 8d1 � 7d2ð Þþ
k3 5� d1ð Þ þ k4 7� d2ð Þ

rd/ d; kð Þ ¼
�3k1 � 8k2 � k3

� log 0:15ð Þ 0:15ð Þ3þd2 � 4k1 � 7k2 � k4

264
375

6 0

d0rd/ d; kð Þ ¼ d1 �3k1 � 8k2 � k3ð Þþ
d2 � log 0:15ð Þ 0:15ð Þ3þd2 � 4k1 � 7k2 � k4
� �

¼ 0

rk/ d; kð Þ ¼ 30� 3d1 � 4d2; 50� 8d1 � 7d2

5� d1; 7� d2

" #
P 0

k0rk/ d; kð Þ ¼ k1 30� 3d1 � 4d2ð Þ þ k2 50� 8d1 � 7d2ð Þ
þk3 5� d1ð Þ þ k4 7� d2ð Þ ¼ 0

d P 0; k
 P0:

ð22Þ

Now using slack and surplus variables in the above Eq. (22), we
get the KT conditions in light of Eqs. (6)–(10).
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�3k1 � 8k2 � k3 þ u1 ¼ 0; or u1 ¼ 3k1 þ 8k2 þ k3

¼ �rd1/ d; kð Þ
or d01u1 ¼ � d01rd1/ d; kð Þ� 	 ¼ 0

� log 0:15ð Þ 0:15ð Þ3þd2 � 4k1 � 7k2 � k4 þ u2 ¼ 0

or u2 ¼ log 0:15ð Þ 0:15ð Þ3þd2 þ 4k1 þ 7k2 þ k4

¼ �rd1/ d; kð Þ
or d02u2 ¼ � d02rd2/ d; kð Þ� 	 ¼ 0

30� 3d1 � 4d2 � s1 ¼ 0; or 3d1 þ 4d2 þ s1 ¼ 30

or s1 ¼ 30� 3d1 � 4d2 ¼ rk1/ d; kð Þ� 	
or k01s1 ¼ k01 rk1/ d; kð Þ� 	 ¼ 0

50� 8d1 � 7d2 � s2 ¼ 0; or 8d1 þ 7d2 þ s2 ¼ 50

s2 ¼ 50� 8d1 � 7d2 ¼ rk2/ d; kð Þ� 	
or k02s2 ¼ k02 rk2/ d; kð Þ� 	 ¼ 0

5� d1 � s3 ¼ 0; or d1 þ s3 ¼ 5

or k03s3 ¼ k03 rk3/ d; kð Þ� 	 ¼ 0

7� d2 � s4 ¼ 0; or d2 þ s4 ¼ 7

or k04s4 ¼ k04 rk4/ d; kð Þ� 	 ¼ 0

d; k;u; s;P 0

Now we get the resulting single-level optimization problem as

max
d1

R1 ¼ 1� 0:1ð Þ2þd1
n o

subject to :

�3k1 � 8k2 � k3 þ u1 ¼ 0

� log 0:15ð Þ 0:15ð Þ3þd2 � 4k1
�7k2 � k4 þ u2 ¼ 0

9>=>;other2022TheAuthor sð Þ

2522022

3d1 þ 4d2 þ s1 ¼ 30

8d1 þ 7d2 þ s2 ¼ 50

d1 þ s3 ¼ 5

d2 þ s4 ¼ 7

9>>>>=>>>>;
d; k;u&s P 0;

k01s1 ¼ k02s2 ¼ k03s3 ¼ k04s4 ¼ 0

d01u¼d
0
2u2 ¼ 0

)

ð23Þ

Where I-II are the linear equations, III is the non-negativity
restriction, IV is a complementary slackness condition, and the
objective function is non-linear. Now, this resulting NLPP can be
solved with a variety of techniques. We solve this problem with
the help of a software called LINGO and get the optimal solution
as max R1 ¼ 0:99999; d1 ¼ 5; and d2 ¼ 1.

Case 2: Here R2 is given priority over R1.
R2 is the reliability of the second subsystem that is considered
as the leader’s problem where d1 solves.
max
d2

R2 ¼ 1� 0:15ð Þ3þd2
n o

where d1 solves

max
d1

R1 ¼ 1� 0:1ð Þ2þd1
n o

subject to :

3d1 þ 4d2 6 30
8d1 þ 7d2 6 50
d1 6 5
d2 6 7
andd1;d2 P 0; and integers:

ð24Þ
7

Now non-linear BLPP (24) can be solved by the procedure dis-
cussed above as follows: Consider the lower level problem as:

max
d1

R1 ¼ 1� 0:1ð Þ2þd1
n o

subject to :

3d1 þ 4d2 6 30
8d1 þ 7d2 6 50
d1 6 5
d2 6 7
andd1;d2 P 0; and integers:

ð25Þ

Now, applying the K-T conditions in Eq. (25), we get

/ d; kð Þ ¼max
d1

R1 ¼ 1� 0:1ð Þ2þd1
n o

þ

k1 30� 3d1 � 4d2ð Þ þ k2 50� 8d1 � 7d2ð Þþ
k3 5� d1ð Þ þ k4 7� d2ð Þ

rd/ d; kð Þ ¼ � log 0:1ð Þ 0:1ð Þ2þd1 � 3k1 � 8k2 � k3

�4k1 � 7k2 � k4

" #
6 0

d0rd/ d; kð Þ ¼ d1 � log 0:1ð Þ 0:1ð Þ2þd1 � 3k1 � 8k2 � k3
� �

þd2 �4k1 � 7k2 � k4ð Þ ¼ 0

rk/ d; kð Þ ¼

30� 3d1 � 4d2

50� 8d1 � 7d2

5� d1

7� d2

266664
377775 P 0

k0rk/ d; kð Þ ¼ k1 30� 3d1 � 4d2ð Þþ
k2 50� 8d1 � 7d2ð Þ þ k3 5� d1ð Þ þ k4 7� d2ð Þ ¼ 0

d P 0; k
 
P 0:

ð26Þ

Now using slack and surplus variables in the above Eq. (26), we
get

� log 0:1ð Þ 0:1ð Þ2þd1 � 3k1 � 8k2 � k3 þ u1 ¼ 0

or u1 ¼ log 0:15ð Þ 0:15ð Þ2þd1 þ 3k1 þ 8k2 þ k3

¼ �rd1/ d; kð Þ
or d01u1 ¼ � d01rd1/ d; kð Þ� 	 ¼ 0

�4k1 � 7k2 � k4 þ u2 ¼ 0

or u2 ¼ 4k1 þ 7k2 þ k4 ¼ �rd2/ d; kð Þ
or d02u2 ¼ � d02rd2/ d; kð Þ� 	 ¼ 0

30� 3d1 � 4d2 � s1 ¼ 0 or 3d1 þ 4d2 þ s1 ¼ 30

or s1 ¼ 30� 3d1 � 4d2 ¼ rk1/ d; kð Þ� 	
or k01s1 ¼ k01 rk1/ d; kð Þ� 	 ¼ 0

50� 8d1 � 7d2 � s2 ¼ 0; or 8d1 þ 7d2 þ s2 ¼ 50

s2 ¼ 50� 8d1 � 7d2 ¼ rk2/ d; kð Þ� 	
or k02s1 ¼ k02 rk2/ d; kð Þ� 	 ¼ 0

5� d1 � s3 ¼ 0; or d1 þ s3 ¼ 5

or k03s3 ¼ k03 rk3/ d; kð Þ� 	 ¼ 0

7� d2 � s4 ¼ 0; or d2 þ s4 ¼ 7

or k04s4 ¼ k04 rk4/ d; kð Þ� 	 ¼ 0

d; k;u; s;P 0
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Now we get the resulting single-level optimization problem as

max
d2

R2 ¼ 1� 0:15ð Þ3þd2
n o

subject to :

� log 0:1ð Þ 0:1ð Þ2þd1 � 3k1 � 8k2 � k3 þ u1 ¼ 0
�4k1 � 7k2 � k4 þ u2 ¼ 0

)
3d1 þ 4d2 þ s1 ¼ 30
8d1 þ 7d2 þ s2 ¼ 50
d1 þ s3 ¼ 5
d2 þ s4 ¼ 7

9>>>=>>>;
d; k;u&s P 0;

k01s1 ¼ k02s2 ¼ k03s3 ¼ k04s4 ¼ 0
d01u¼d

0
2u2 ¼ 0

)

ð27Þ

Now, the resulting Eq. (27) is nonlinear and can be solved with a
variety of techniques. We solve this problem with the help of a
software called LINGO and get the optimal solution as
max R2 ¼ 1; d1 ¼ 5; and d2 ¼ 7.

6. Conclusion

Reliability optimization is necessary for the satisfactory perfor-
mance of engineering systems. The significance of system mainte-
nance cannot be over-emphasized. Different techniques and
approaches are available for achieving the maintainability objec-
tive. This paper demonstrates the application of KKT conditions
in optimizing the reliability of a system using the bi-level program-
ming concept. The BLPP concepts have not been given much atten-
tion in the reliability study of a selective maintenance allocation
problem. The KKT conditions have been derived for the BLPP in this
research. Also, the necessary and sufficient conditions for the glo-
bal and local optima have been obtained. The approach is then
demonstrated with a numeric example under the system mainte-
nance allocation problem. This research is novel and contributes
to the bank of literature regarding bi-level optimization in reliabil-
ity studies. The concept can be extended to solve using soft-
computing techniques such as nature-inspired algorithms in
future.
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