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Thepurpose of this paper is to suggest an approach for increasing the convergence speed ofHalley’smethod
to solveanon-linear equation. This approach is basedon the secondorder Taylor polynomial andonHalley’s
formula. By applying it a certain number of times,we obtain a new family ofmethods. The originality of this
family is manifested in the fact that all its sequences are generated from one exceptional formula that
depends on a natural integer parameter p. In addition, under certain conditions, the convergence speed
of its sequences increases with p. The convergence analysis shows that the order of convergence of all pro-
posedmethods is three. A study on their global convergence is carried out. To illustrate the performance of
this family, several numerical comparisons are made with other third and higher order methods.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction et al. (2008) Solaiman and Hashim (2019), Noor et al. (2007),
One of the most encountered problems in science and engineer-
ing is solving nonlinear equation

f xð Þ ¼ 0 ð1Þ
where f is a real analytic function. One of the best ways to approx-
imate a simple solution a of Eq. (1) is to use a fixed-point method.
In this method, we find another functionF, called an iteration func-
tion (I.F) for f , and from an initial value x0 (Traub, 1964), we define a
sequence

xnþ1 ¼ FðxnÞ for n ¼ 0;1;2 � � � ð2Þ
The second order Newton’s method (Traub, 1964) is also well

known. In order to increase the convergence speed, new algo-
rithms have been developed: Halley, super-Halley, Chebyshev,
Euler, Chun, Sharma (Sharma et al. (2012)) and Dubeau (2013)
have proposed some third order methods. Ghanbari (2011), Fang
Chun and Ham (2007), Kou and Li (2007), Wang and Zhang
(2014), proposed families of higher-order methods. Zhou and
Zhang (2020) have constructed some interesting algorithms with
variable convergence rate ((1 + 2p)-order). Zhang (2020) has
recently elaborated a fully derivative-free conjugate residual
method, using secant condition.

In this paper, based on Halley’s method and Taylor polynomial,
we construct an interesting family to find simple roots of nonlinear
equations with cubical convergence. The originality of this family
is manifested in its special formula which depends on a natural
integer parameter p, and in the augmentation of the convergence
speed of its sequences with the increase in p, if some hypotheses
are satisfied.

The rest of this article is organized as follow: Section 2 features
the family’s derivation of Halley’s method, Section 3 provides the
convergence study of the new methods, the advantages of the
new family of this article are presented in Section 4. The numerical
results of this work are provided in Section 5 while the last section
gives our conclusion.

2. Family’s derivation of Halley’s method

Among the famous third order methods, we quote Halley’s
methodB0, given by

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2020.101291&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksus.2020.101291
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:h.bennis@umi.ac.ma
https://doi.org/10.1016/j.jksus.2020.101291
http://www.sciencedirect.com/science/journal/10183647
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x0nþ1 ¼ xn � f xnð Þ
f
0
xnð ÞW0 Lnð Þ

W0 Lnð Þ ¼ 1
1�1

2Ln

Ln ¼ Lf xnð Þ ¼ f xnð Þf}ðxnÞ
f
0
xnð Þ2

8>>><
>>>:

ð3Þ

where Ln is the degree of logarithmic convexity of f at xn
(Hernández, 1991).

The second-order Taylor polynomial of f at xn is given by:

y xð Þ ¼ f xnð Þ þ f
0
xnð Þ x� xnð Þ þ f

0 0
xnð Þ
2

x� xnð Þ2

The goal is to find a point (xnþ1;0Þ, where the curve of y passes
through the x axis (Scavo and Thoo, 1995), which is the solution of

0 ¼ f xnð Þ þ xnþ1 � xnð Þðf 0
xnð Þ þ f

0 0
xnð Þ
2

xnþ1 � xnð ÞÞ

simplifying the above yields

xnþ1 ¼ xn � f xnð Þ
f
0
xnð Þ þ f

0 0
xnð Þ
2 xnþ1 � xnð Þ

for n ¼ 0;1;2 � � � ð4Þ

Eq. (4) is an implicit scheme because it does not allow to
directly explain xnþ1 as a function of xn. In order to make it explicit,
we replace xnþ1 placed on the right side of (4) by Halley’s method
B0 (3), we get the Super-Halley’s method B1:

x1nþ1 ¼ xn � f xnð Þ
f
0
xnð Þ þ f

0 0
xnð Þ
2 x0nþ1 � xn
� � ¼ xn � f xnð Þ

f
0
xnð Þ

W1 Lnð Þ; n 2 N

ð5Þ
where W1 Lnð Þ ¼ 1�1

2Ln
1�Ln

By repeating the above procedure p times and each time replace
xnþ1 � xnð Þ located on the right side of (4) with the last correction
found, we derive a following general family of Halley’s method
Bpf g:

xpnþ1 ¼ xn � f xnð Þ
f
0
xnð Þ þ f

0 0
xnð Þ
2 xp�1

nþ1 � xn
� � ð6Þ

where x0nþ1 is given by (3), and p is a non-zero natural integer
parameter.

Theorem 1. Let p be a natural integer parameter and f a real function
sufficiently smooth in some neighborhood of zero, a. The family of
Halley’s method Bpf g, defined by the sequences (6), can be expressed
in the following form:

xpnþ1 ¼ xn �WpðLnÞ f xnð Þ
f
0
xnð Þ

ð7Þ

where Ln ¼ f xnð Þf }ðxnÞ
f
0
xnð Þ2

and
WpðLnÞ ¼ TpðLnÞ

Tpþ1ðLnÞ
T0ðLnÞ ¼ 1 and T1ðLnÞ ¼ 1� Ln

2
Tpþ2ðLnÞ ¼ Tpþ1ðLnÞ � Ln

2 TpðLnÞ

8><
>: n 2 N

Proof. Let n 2 N; vp
� �

p2N and v 0
p

� �
p2N be defined by the sequences

xpnþ1

n o
given by (6) and (7) respectively. We will prove by induction

that, for all p 2 N, v 0
p ¼ vp.

Ifp ¼ 1, the formula (6) leads to the (5) one given by:

v1 ¼ x1nþ1=xn � f xnð Þ
f
0
xnð Þ

1�1
2Ln

1�Ln

� �
Furthermore, according to (7), we have
T1ðLnÞ ¼ 1� Ln

2 and T2ðLnÞ ¼ 1� Ln then

v 0
1 ¼ xn � f xnð Þ

f
0
xnð Þ

1� 1
2 Ln

1� Ln

 !
2

So

v 0
1 ¼ v1

Now, we assume that, for a given p, we have v 0
p ¼ vp, we will

show that v 0
pþ1 ¼ vpþ1.

From (7), we have:

v 0
pþ1 ¼ xpþ1

nþ1 ¼ xn � f xnð Þ
f
0
xnð Þ

Tpþ1ðLnÞ
Tpþ2ðLnÞ
� �

where

Tpþ2ðLnÞ ¼ Tpþ1ðLnÞ �
Ln
2
TpðLnÞ

and, from (6), we have:

vpþ1 ¼ xn � f xnð Þ
f
0
xnð Þ þ f

0 0
xnð Þ
2 xpnþ1 � xn
� � ¼ xn � f xnð Þ

f
0
xnð Þ þ f

0 0
xnð Þ
2 vp � xn
� �

As

vp ¼ v 0
p ¼ xn � f xnð Þ

f
0
xnð Þ

TpðLnÞ
Tpþ1ðLnÞ
� �

then

vpþ1 ¼ xn � f xnð Þ
f
0
xnð Þ � f

0 0
xnð Þf xnð Þ

2f
0
xnð Þ

TpðLnÞ
Tpþ1ðLnÞ

� �

¼ xn � f xnð Þ
f
0
xnð Þ

Tpþ1ðLnÞ
Tpþ1ðLnÞ � Ln

2 TpðLnÞ

 !

So

vpþ1 ¼ xn � f xnð Þ
f
0
xnð Þ

Tpþ1ðLnÞ
Tpþ2ðLnÞ
� �

where

Tpþ2ðLnÞ ¼ Tpþ1ðLnÞ �
Ln
2
TpðLnÞ

Consequently vpþ1 ¼ v 0
pþ1 and the induction is completed.

Now, let’s try to find the general expression of the polynomial
Tp as a function of Ln.

From (7), we obtain

TpðLnÞ ¼
X½pþ1

2 �

k¼0

Rp
k :ðLnÞk

where x½ � is integer part of x; and

Rp
0 ¼ 1 for p � 0

Rp
1 ¼ �p

2 for p � 1

R
2½p�1

2 �
½pþ1

2 � ¼ 0 and R
2 pþ1

2½ ��1

½pþ1
2 � ¼ �1

2

� �½pþ1
2 � for p � 1

Rp
k � Rp�1

k ¼ � 1
2R

p�2
k�1 for p � 3 and 2 � k � pþ1

2

� 	

8>>>>><
>>>>>:

ð8Þ

Thus,

for k ¼ 0;Rp
0 ¼ 1 ¼ �1ð Þ0

20 :
pþ 1ð Þ!
pþ 1ð Þ!0!

for k ¼ 1; Rp
1 ¼ �p

2
¼ �1ð Þ1

21 :
p!

p� 1ð Þ!1!

for k ¼ 2;

Rp
2 � Rp�1

2 ¼ �1
2R

p�2
1

Rp�1
2 � Rp�2

2 ¼ �1
2R

p�3
1

..

.

R4
2 � R3

2 ¼ �1
2R

2
1

8>>>>>><
>>>>>>:
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We deduce that

Rp
2 ¼ R3

2 �
1
2

R2
1 þ � � �þRp�2

1

h i
knowing that

R
2 pþ1

2½ ��1

½pþ1
2 � ¼ �1

2

� �½pþ1
2 �

for p ¼ 3, we find R3
2 ¼ 1

4, so

Rp
2 ¼ 1

4
1þ

Xp�2

i¼2

ið Þ
" #

¼ �1ð Þ2
22 :

p� 2ð Þ p� 1ð Þ
2!

¼ �1ð Þ2
22 :

p� 1ð Þ!
p� 3ð Þ!2! for p � 3 ð9Þ

We admit that:

Xn
k¼1

k kþ 1ð Þ � � � kþ ið Þ ¼ n nþ 1ð Þ � � � nþ ið Þðnþ iþ 1Þ
iþ 2

for i � 0

ð10Þ
By using (8)–(10) and by applying the same method, we obtain:
For k ¼ 3 and p � 5;

Rp
3 ¼ R5

3 �
1
2

R4
2 þ � � �þRp�2

2

h i
¼ �1ð Þ3

23 :
p� 4ð Þ p� 3ð Þ p� 2ð Þ

3!

¼ �1ð Þ3
23 :

p� 2ð Þ!
p� 5ð Þ!3!

For k ¼ 4 and p � 7

Rp
4 ¼ R7

4 �
1
2

R6
3 þ � � �þRp�2

3

h i
¼ �1ð Þ4

24 :
p� 6ð Þ p� 5ð Þ p� 4ð Þ p� 3ð Þ

3!

¼ �1ð Þ4
24 :

p� 3ð Þ!
p� 7ð Þ!4!

and by conjecture, we obtain for p � 2k� 1:

Rp
k ¼

�1ð Þkðp� kþ 1Þ!
2kðp� 2kþ 1Þ!k!

Corollary 1. Let p be a natural integer parameter and f a real function
sufficiently smooth in some neighborhood of zero,a. The family of
Halley’s method Bpf g, defined by the sequences (7), can be expressed
in the following explicit form:

xpnþ1 ¼ xn �WpðLnÞ f xnð Þ
f
0
xnð Þ

for n 2 N ð11Þ

where

Wp Lnð Þ ¼ TpðLnÞ
Tpþ1ðLnÞ

TpðLnÞ ¼
P½pþ1

2 �
k¼0R

p
kðLnÞk

Rp
k ¼ �1ð Þkðp�kþ1Þ!

2kðp�2kþ1Þ!k!

8>>><
>>>:

and Ln is defined in (3).

Proof. We will prove, by induction, that (7) is expressed by (11) for
allp 2 N:

From (7), we have

T0ðLnÞ ¼ 1 and T1ðLnÞ ¼ 1� Ln
2
:

From (11), we obtain the same result:

T0ðLnÞ ¼ R0
0 ¼ 1 and T1ðLnÞ ¼ R1

0 þ R1
1Ln ¼ 1� Ln

2

3

Now, we assume that, for a given p, TpðLnÞ and Tpþ1ðLnÞ given by
(11) is equal to the one defined by (7). We will show that Tpþ2ðLnÞ is
also the same.

From (7), we have:

Tpþ2ðLnÞ ¼ Tpþ1ðLnÞ �
Ln
2
TpðLnÞ

Furthermore, according (11), we have

Tpþ1ðLnÞ � Tpþ2ðLnÞ ¼
X½pþ2

2 �

k¼0

Rpþ1
k ðLnÞk �

X½pþ3
2 �

k¼0

Rpþ2
k ðLnÞk

If p is even, we have

pþ 3
2


 �
¼ pþ 2

2


 �
and Rpþ1

0 ¼ Rpþ2
0

So

Tpþ1ðLnÞ � Tpþ2ðLnÞ ¼
X½pþ2

2 �

k¼1

Rpþ1
k � Rpþ2

k

� �
ðLnÞk

¼ Ln
X½p2�
k¼0

Rpþ1
kþ1 � Rpþ2

kþ1

� �
ðLnÞk

As Rpþ1
kþ1 � Rpþ2

kþ1 ¼ 1
2R

p
k and p

2

� 	 ¼ pþ1
2

� 	
, then

Tpþ1ðLnÞ � Tpþ2ðLnÞ ¼
Ln
2

X½pþ1
2 �

k¼0

Rp
kðLnÞk

Consequently

Tpþ2ðLnÞ ¼ Tpþ1ðLnÞ �
Ln
2
TpðLnÞ

The case p odd is analogous. We conclude, by induction, that (7)
is expressed by (11) for allp 2 N:

The scheme (11) is powerful because it regenerates the Halley’s
method B0, the Super-Halley method B1, and several new methods
such as B2 and B8 given by

x2nþ1 ¼ xn þ f xnð Þ
f
0
xnð Þ

4Ln � 4
L2n � 6Ln þ 4

 !
ð12Þ

x8nþ1 ¼ xn � f xnð Þ
f
0
xnð Þ

16� 56Ln þ 60L2n � 20L3n þ L4n
16� 64Ln þ 84L2n � 40L3n þ 5L4n

 !
ð13Þ
3. Convergence study of new methods

3.1. Order of convergence

Theorem 2. Let f be a real function. Assuming that f is sufficiently
smooth in some neighborhood of a simple zero a: Further, assume that
the initial value x0 is sufficiently close to a. Then the iteration process
defined by (11) converges cubically to a.
Proof. According to Sharma et al. (2012), the iteration process defined
by:

xnþ1 ¼ xn �WðLnÞ f xnð Þ
f
0
xnð Þ

converges cubically to a; provided that

W 0ð Þ ¼ 1;W
0
0ð Þ ¼ 1

2
and W}ð0Þj j < 1:
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From (11), for all p 2 N; we have

Tp 0ð Þ ¼ 1; T
0
p 0ð Þ ¼ � p

2
; T

0 0
0 0ð Þ ¼ 0

and for allp 2 N� :

T
0 0
p 0ð Þ ¼ p� 1ð Þ p� 2ð Þ

4

So

For all p 2 N Wp 0ð Þ ¼ 1 and W
0
p 0ð Þ ¼ 1

2

For all p 2 N
� W

0 0
p 0ð Þ ¼ 1 and W

0 0
0 0ð Þ ¼ 1

2

(

Consequently, the sequences defined by (11) are cubically
convergent for all p 2 N:

3.2. Global convergence

The following lemmas will be useful for the future.

3.2.1. Important lemmas

Lemma 1. Let p 2 IN�: We assume that the polynomial Tp, defined in
(11), admits real roots of which bp is the smallest. Then, the root bp is
strictly positive and the polynomial Tp is strictly positive over the
interval �1; bp

� �
:

Proof. Let p 2 N�; we have

Tp xð Þ ¼
Xpþ1

2½ �

k¼0

Rp
kx

k ¼
Xpþ1

4½ �

k¼0

Rp
2kx

2k þ x:
Xp�1

4½ �

k¼0

Rp
2kþ1x

2k

and Tp bp
� � ¼ 0:So

bp ¼ �
P pþ1

4½ �
k¼0 Rp

2k: bp
� �2k

P p�1
4½ �

k¼0 Rp
2kþ1 bp

� �2k :
As for all 0 � k � pþ1

2

� 	� �
, we have

Rp
2k > 0 and Rp

2kþ1 < 0

Then

bp > 0

We also have
lim

x!�1
TpðxÞ ¼ þ1 and Tp bp

� � ¼ 0 where bp is the smallest root of

Tp. As, in addition, the function Tp is continuous over �1; bp
� �

,
then for all x 2 �1; bp

� �
;we have

Tp xð Þ > 0

This end the proof of Lemma 1.
In lemma 1, we have assumed that, for a given p, the function Tp

admits at least one real root. Now we will show that this is always
true.

Lemma 2. The polynomials Tp, defined by (11) for different values of
non-zero natural integer p, each admit at least one real root, and the
sequence bp

� 
, constituted by their smallest positive real roots, is

strictly decreasing.
Proof. By induction, we have

T1ðLnÞ ¼ 1� Ln=2 and T2ðLnÞ ¼ 1� Ln
4

Then

b1 ¼ 2 and b2 ¼ 1

So

ðb1 and b2Þ exist and b2 < b1

Let p 2 N�, we suppose that for every k � pþ 1, we have

bk exist and bk < bk�1

We will show that

bpþ2 exist and bpþ2 < bpþ1

From (7), we have

Tpþ1 xð Þ � Tpþ2 xð Þ ¼ x
2
Tp xð Þ

and, from lemma 1, we have for all x 2 0; bp
� �

Tp xð Þ > 0

So

Tpþ2 xð Þ < Tpþ1 xð Þ
Since

0 < bpþ1 < bp

then

Tpþ2 bpþ1
� �

< Tpþ1ðbpþ1Þ
As

Tpþ1 bpþ1
� � ¼ 0

then

Tpþ2 bpþ1
� �

< 0

Furthermore, we have

Tpþ2 0ð Þ ¼ 1 > 0

So

Tpþ2 0ð Þ:Tpþ2 bpþ1
� �

< 0

As the function Tp is continuous on 0; bpþ1
� 	

, then, from Inter-
mediate value theorem, there existsc 2 0; bpþ1

� �
such as

Tpþ2 cð Þ ¼ 0

As bpþ2 is the smallest real root of Tpþ2, then
Tpþ2 bpþ2

� � ¼ 0 and bpþ2 2 0; bpþ1
� �

So

bpþ2 exists and bpþ2 < bpþ1

This end the proof of Lemma 2.
In order to study the global convergence of the sequences (11),

we must calculate the derivative of the iterative function Fp of f
and study its sign.

Lemma 3. Let p 2 N:The iterative function Fp of f relative to the
sequence (11) is given by:

Fp xð Þ ¼ x� f xð Þ
f
0
xð Þ

Wp Lð Þ ð14Þ

L ¼ Lf xð Þ ¼ f xð Þf}ðxÞ
f
0
xð Þ2

ð15Þ

and
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Wp Lð Þ ¼ TpðLÞ
Tpþ1ðLÞ ; Tp Lð Þ ¼

Xpþ1
2½ �

k¼0

Rp
kL

k; Rp
k ¼

�1ð Þkðp� kþ 1Þ!
2kðp� 2kþ 1Þ!k!

The derivative F
0
p is given by:

F
0
p xð Þ ¼ 1� 1

T2
pþ1ðLÞ

: Ap Lð Þ þ Cp Lð Þ:L2:L
f
0 ðxÞ

h i
ð16Þ

where

Ap Lð Þ ¼ T2
pþ1ðLÞ � pþ 3ð Þ L

2

� �pþ2

ð17Þ

and

T2
pþ1ðLÞ ¼

X2 p
2½ �þ1ð Þ

k¼0

ap;k:L
k ð18Þ

where

ap;k ¼
Xminðk; p

2½ �þ1Þ

i¼maxð0;k� p
2½ ��1Þ

�1ð Þk pþ 2� ið Þ! pþ 2� kþ ið Þ!
2ki! k� ið Þ! pþ 2� 2ið Þ! pþ 2� 2kþ 2ið Þ!

ð19Þ

and

Cp Lð Þ ¼
X2 p

2½ �

k¼0

bp;kL
k ð20Þ

where

bp;k ¼ �1ð Þkðpþ 2Þ
2kþ1

Xk
2½ �

i¼sup 0;k� p
2½ �ð Þ

k� 2iþ 1ð Þ2 p� iþ 1ð Þ! p� kþ ið Þ!
i! k� iþ1ð Þ! p� 2iþ2ð Þ! p� 2kþ 2ið Þ!

ð21Þ
Proof of lemma 3. Let p 2 N:From (14) and (15) we have

F
0
p xð Þ ¼ 1� f xð Þ

f
0
xð Þ

 !0

:Wp Lð Þ � f xð Þ
f
0
xð Þ

 !
:L0:W

0
p Lð Þ ð22Þ

where

f xð Þ
f
0
xð Þ

 !0

¼ 1� L

f xð Þ
f
0
xð Þ

 !
:L0 ¼ L: 1þ L Lf 0 xð Þ � 2

� �� 	 ð23Þ

and

L0 ¼ Lf xð Þ� �0 Lf 0 xð Þ ¼ f 0 xð Þf}0ðxÞ
f 0 0 xð Þ2

W
0
p Lð Þ ¼ Cp Lð Þ

T2
pþ1ðLÞ

ð24Þ

where

Cp Lð Þ ¼ T
0
pðLÞ:Tpþ1ðLÞ � T

0
pþ1ðLÞ:TpðLÞ ð25Þ

Using (23) and (24), the formula (22) become

F
0
p xð Þ ¼ 1� 1

T2
pþ1ðLÞ

Ap Lð Þ þ L2:Cp Lð Þ:L
f
0 ðxÞ

h i
ð26Þ

where

Ap Lð Þ ¼ 1� Lð Þ:Tp Lð Þ:Tpþ1 Lð Þ þ L 1� 2Lð Þ:Cp Lð Þ ð27Þ
5

and Cp Lð Þ is given by (25). By developing the calculation, we obtain

Cp Lð Þ ¼
X2 p

2½ �

k¼0

bp;kL
k ð28Þ

where

bp;k ¼
Xk

2½ �

i¼sup 0;k� p
2½ �ð Þ

k� 2iþ 1ð Þ: �Rp
i :R

pþ1
k�iþ1 þ Rpþ1

i :Rp
k�iþ1

h i
ð29Þ

Using Rj
i given in (11), we obtain

�Rp
i :R

pþ1
k�iþ1 þ Rpþ1

i :Rp
k�iþ1 ¼ �1ð Þk p� iþ 1ð Þ! p� kþ ið Þ!ðk� 2iþ 1Þðpþ 2Þ

2kþ1 k� iþ 1ð Þ! p� 2kþ 2ið Þ! p� 2iþ 2ð Þ!i!
ð30Þ

Replacing (30) in (29), we obtain (21). Furthermore, we have:

T2
pþ1 Lð Þ ¼

Xp2½ �þ1

k¼0

Rpþ1
k Lk

2
4

3
5

2

¼
X2 p
2½ �þ1ð Þ

k¼0

ap;k:L
k

where

ap;k ¼
Xminðk; p

2½ �þ1Þ

i¼maxð0;k� p
2½ ��1Þ

Rpþ1
i :Rpþ1

k�i

Using Rj
i given in (11), we obtain (19).

Developing the expression of Ap Lð Þ given by (27), we obtain

Ap Lð Þ ¼ � pþ 3ð Þ L
2

� �pþ2

þ
X2 p
2½ �þ1ð Þ

k¼0

bp;k:L
k ð31Þ

where

bp;k ¼
Xminðk; p

2½ �þ1Þ

i¼maxð0;k� p
2½ ��1Þ

�1
2

� �k

:
�1ð Þk p� iþ 2ð Þ! p� kþ 2þ ið Þ!

2k pþ 2� 2ið Þ! k� ið Þ! pþ 2� 2kþ 2ið Þ!i!
ð32Þ

We note that bp;k ¼ ap;k. So, by using (18) and (31), we obtain
(17).

This end the proof of Lemma 3.
The formulas (16)–(21) are of great importance because they

give the derivatives F
0
p for all the methods of the family (11). In

the literature, these derivatives are known only for the two follow-
ing cases (Ezquerro and Hernández (1997) in theorem 6.2):

� Halley’s method ðp ¼ 0Þ

F
0
0 xð Þ ¼

L2f xð Þð3� 2L
f
0 xð ÞÞ

ð2� Lf xð ÞÞ2
ð33Þ

� Super Halley’s method ðp ¼ 1Þ

F
0
1 xð Þ ¼

L2f xð ÞðLf xð Þ � L
f
0 xð ÞÞ

2ð1� Lf xð ÞÞ2
ð34Þ

A simple calculation allows us to verify that our formulas give
exactly the same expressions.

Now Let’s look the sign of Cp that we will use later.
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Lemma 4. The polynomials Cp, defined in (20) and (21) for different
values of the natural integer p, are all strictly positive on �1; bpþ1

� �
,

where bpþ1 are the smallest real roots of the polynomials Tpþ1.
Proof. Let p 2 N:We have for all x 2 �1; bpþ1
� �

:

xpþ2
nþ1 ¼ xn � f xnð Þ

f
0
xnð Þ þ f

0 0
xnð Þ
2 xpþ1

nþ1 � xn
� �

¼ xn � f xnð Þ
f
0
xnð Þ

:
1

1þ f
0 0

xnð Þ
2f

0
xnð Þ � f xnð Þ

f 0 xnð ÞWpþ1 Lnð Þ
� �

xpþ2
nþ1 ¼ xn � f xnð Þ

f
0
xnð Þ

:
1

1� Ln
2 :Wpþ1 Lnð Þ ¼ xn � f xnð Þ

f
0
xnð Þ

:Wpþ2 Lnð Þ

where

Wpþ2 Lnð Þ ¼ 1
1� Ln

2 :Wpþ1 Lnð Þ
So,

Wpþ2 Lnð Þ ¼ 1

1� Ln
2 :

1
1�Ln

2 :Wp Lnð Þ

� � ¼ 1� Ln
LnWp Lnð Þ � 2þ Ln

Using (15), we have

Fpþ2 xð Þ ¼ x� f xð Þ
f
0
xð Þ

Wpþ2 Lð Þ

where L 2 �1; bpþ3
	 �

and

Wpþ2 Lð Þ ¼ 1� L
LWp Lð Þ � 2þ L

By deriving Fpþ2 xð Þ given above, we find:

Cpþ2 Lð Þ ¼ 1
2

Tpþ1ðLÞ
� �2 þ L

2

� �2

C
p
Lð Þ

Then, developing the calculations, we obtain :

Cp Lð Þ ¼ 1
2

L
2

� �2 p
2½ � þPsup 0; p

2½ ��1ð Þ
k¼0

L
2

� �2k Tp�2k�1 Lð Þ� �2
 �
; p 2 N

�

C0 Lð Þ ¼ C1 Lð Þ ¼ 1
2

8><
>:

ð35Þ
Consequently, for all p 2 N and for all L 2 �1; bpþ1

� �
, Cp Lð Þ > 0

This end the proof of Lemma 4.
Now, we present a study on the global convergence of the Bpf g

family’s methods (Hernández (1988); Ezquerro and Hernández
(1997)).

3.3. Monotonic convergence of new sequences

Let p 2 N, Cp and L are defined by (20), (21) and (15). We con-
sider the function gp defined by:

gp Lð Þ ¼ pþ 3
2pþ2 :

Lp

CpðLÞ ð36Þ

where L 2 �1; bpþ1
� �

Theorem 3. Let p 2 N; f 2 C4 a; b½ �; f 0
xð Þ–0; f

0 0
xð Þ–0; L < bpþ1 and

L
f
0 ðxÞ � gp Lð Þ ð37Þ

On an interval a; b½ � containing the root a of f . The sequence (11)
is decreasing (resp. increasing) and converges to a from any point

x0 2 a; b½ � checking f x0ð Þf 0
x0ð Þ > 0 ðresp: f x0ð Þf 0

x0ð Þ < 0).
6

Proof. Let p 2 N; f 2 C4 a; b½ �; f 0
xð Þ–0; f

0 0
xð Þ–0 and L < bpþ1 on

a; b½ � containing a. Let’s look for the condition on L
f
0 for convergence

to be monotonous.

If

f x0ð Þf 0
x0ð Þ > 0 ð38Þ

then

x0 > a

The mean Value Theorem gives

xp1 � a ¼ F
0
p bð Þðx0 � aÞ ð39Þ

where b 2 a; x0ð Þ. Using (16) and (17), we have

F
0
p xð Þ � 0 is equivalent to Cp Lð ÞL2L

f
0 xð Þ � T2

pþ1 Lð Þ � Ap Lð Þ ð40Þ

Using (17) and lemma 4, we obtain

Lf 0 xð Þ � pþ 3

2pþ2 :
Lp

CpðLÞ
Thus, if the condition (37) is satisfied for all L 2 �1; bpþ1

� �
, then

we have:

F
0
p xð Þ � 0

for all x 2 a;b½ �; especially

F
0
p bð Þ � 0

Since x0 > a, then, from (39), we obtain

xp1 � a

By induction, we obtain that, for all n 2 N

xpn � a

Furthermore, from (11), we have

xp1 � x0 ¼ �WpðL0Þ f x0ð Þ
f
0
x0ð Þ

From lemma 1, the function Tp ðresp:Tpþ1Þ is strictly positive on
�1; bp
� �

resp: �1; bpþ1
� �� 	

. As

bpþ1 < bp and L0 < bpþ1

Then,

Wp L0ð Þ ¼ TpðL0Þ
Tpþ1ðL0Þ

> 0

So

xp1 < x0

By induction we obtain for all n 2 N

xpnþ1 � xpn

Thereby, the sequence (11) is decreasing and converges to a
limit r 2 a; b½ �, so

r ¼ r � f rð Þ
f
0
rð Þ
WpðLf ðrÞÞ

Thus

f rð Þ:Wp Lf rð Þ� � ¼ 0

Since, from lemma 1, we have

Tp Lf ðrÞ
� �

> 0



M. Barrada, H. Bennis, M. Kabbaj et al. Journal of King Saud University – Science 33 (2021) 101291
then

WpðLf ðrÞÞ–0

so

f rð Þ ¼ 0

As a is the unique root of f ; then

r ¼ a:

This end the proof of theorem 3.

Corollary 2. Let p 2 N; f 2 C4 a; b½ �; f
0
xð Þ–0; f

0 0
xð Þ–0; 0 � L < bpþ1

and L
f
0 xð Þ � 0 on an interval a; b½ � containing the root a of f . The

sequence (11) is decreasing (resp. increasing) and converges to a from

any point x0 2 a; b½ � checking f x0ð Þf 0
x0ð Þ > 0 (rep.f x0ð Þf 0

x0ð Þ < 0).
Proof. For 0 � L < bpþ1, we have

Lp � 0 and Cp Lð Þ > 0

So

gp Lð Þ ¼ pþ 3
2pþ2 :

Lp

Cp Lð Þ � 0

As, by hypothesis

L
f
0 xð Þ � 0

then

L
f
0 ðxÞ � gp Lð Þ
By applying theorem 3, we obtain the thesis.
The formula (37) is of great importance because it gives the nec-

essary conditions on Lf 0 to ensure the monotonous convergence of

all the methods of the new Halley’s family (11). In the literature,
these conditions are known only for the cases of Halley’s method
ðLf 0 � 3=2Þ and Super Halley’s method ðLf 0 � LÞ (Hernández

(1988) in theorem (i)).

3.3.1. Convergence of the Bp methods
Here, we treat the case where the convergence of (11) is

ensured in any form: monotonic convergence, oscillating conver-
gence or non-regular oscillation (between two successive itera-
tions, it sometimes there is oscillation, sometimes no). This case
is guaranteed if for all x 2 a; b½ �; we have

�1 < F
0
p xð Þ < 1

We consider the functions hp and kp defined on
J�pþ1 ¼ �1;0ð Þ [ 0; bpþ1

� �
by:

hp Lð Þ ¼ T2
pþ1 Lð Þ þ ðpþ 3Þ L=2ð Þpþ2

L2Cp Lð Þ and

kp Lð Þ ¼ �T2
pþ1 Lð Þ þ ðpþ 3Þ L=2ð Þpþ2

L2Cp Lð Þ ð41Þ

Where L is defined in (15), Tpþ1ðLÞ
� �2 and Cp Lð Þ are given in (18)

and (20).

Theorem 4. Let p 2 N; f 2 C4 a; b½ �, f
0
xð Þ–0; f

0 0
xð Þ–0 and L < bpþ1

on an interval I ¼ a; b½ � containing the root a of f , and

kp Lð Þ < L
f
0 ðxÞ < hp Lð Þ ð42Þ

for all x 2 I� ¼ a;aÞ [ ða; b½ �. The sequence (11) converges to a from
any point x0 where

a � Fp x0ð Þ � b
7

Proof. Let 2 N; f 2 C4 a; b½ �, f
0
xð Þ–0; f

0 0
xð Þ–0 and L < bpþ1 on

a; b½ �containing a. We treat the case where a < x0 � b: By the Mean
Value Theorem, we have:

xp1 � a ¼ F
0
p kð Þðx0 � aÞ

Where k 2 a; x0ð Þ. From (16), we can prove that if the condition
(42) is satisfied; then for all x 2 I�; we have

�1 < F
0
p xð Þ < 1

As

F
0
p að Þ ¼ 0

then for all x 2 ½a; b�; we obtain

�1 < F
0
p xð Þ < 1

Thus, there exists Mp 2 0;1ð Þ such that, for all x 2 ½a; b�; we have

F
0
p xð Þ

��� ��� � Mp

So

xp1 � a
�� �� � Mp x0 � aj j

By induction, we get, for all n 2 N

xpn � a
�� �� � ðMpÞn x0 � aj j

In addition, since

a � Fp x0ð Þ � b

it follows that, for all n 2 N

a � xpn � b

and therefore, the sequence (11) converges to a.

4. Advantages of the new family

It is interesting to study the variation of the convergence speed
of the sequences (11) as a function of the parameter p. For this, we

will compare xpþ1
n

� �
and xpnð Þ:

Lemma 5. Let p 2 N; ðunÞn2N and ðvnÞn2N be defined respectively by

xpþ1
n

n o
and xpn

� 
given by (11). We have:

unþ1 � vnþ1 ¼ � f xnð Þ
f
0
xnð Þ

Ln
2

� �pþ2

Tpþ1ðLnÞ:Tpþ2ðLnÞ

 !
n 2 N ð43Þ

Proof. We have

unþ1 � vnþ1 ¼ Fpþ1 xnð Þ � Fp xnð Þ

¼ f xnð Þ
f
0
xnð Þ

Tpþ2 Lnð Þ:Tp Lnð Þ � T2
pþ1 Lð Þ

Tpþ1ðLnÞ:Tpþ2ðLnÞ

 !

Using (7), it follows that

Tpþ2 Lnð ÞTp Lnð Þ � T2
pþ1 Lð Þ ¼ Ln

2
Tpþ1 Lnð ÞTp�1 Lnð Þ � T2

pþ1 Lð Þ
h i

So

Tpþ2 Lnð ÞTp Lnð Þ � T2
pþ1 Lð Þ ¼ Ln

2

� �p

T2 Lnð ÞT0 Lnð Þ � T1 Lnð Þð Þ2
h i

¼ � Ln
2

� �pþ2

and (43) is completed.
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Theorem 5. Let p 2 N; f 2 C4 a; b½ �; f 0
xð Þ–0; f

0 0
xð Þ–0; 0 � L < bpþ2

and L
f
0 ðxÞ � 0 on an interval ½a; b�; containing the root a of f . Starting

from the same initial point x0 2 a; b½ �, the convergence’s rate of the

sequence xpþ1
n

n o
given by (11) is higher than the one of xpn

� 
:

Proof. By induction, Let p 2 N and we assume that the assumptions
of theorem 5 are verified. If

f x0ð Þf 0
x0ð Þ > 0

then

x0 > a

From corollary 2 and lemma 2, if, for all x 2 ½a; b�; we have
Lf 0 xð Þ � 0 and 0 � L < bpþ2 then the sequence ðvnÞ and ðunÞ are

decreasing and converge to a from any point x0 2 a; b½ �.
Since u0 ¼ v0 ¼ x0 then u0 � v0

We have

u1 � v1 ¼ � f x0ð Þ
f
0
x0ð Þ

L0
2

� �pþ2

Tpþ1ðL0ÞTpþ2ðL0Þ

 !

and from lemma 1, for all 0 � L0 < bpþ2, we have

Tpþ1 L0ð Þ > 0 and Tpþ2 L0ð Þ > 0

So

u1 � v1

We assume that

un � vn

Since, Fpþ1 is increasing on a; b½ �, we get

Fpþ1ðunÞ � Fpþ1ðvnÞ
In addition, we have:

Fpþ1 vnð Þ � Fp vnð Þ ¼ � f vnð Þ
f
0
vnð Þ

Lf ðvnÞ
2

� �pþ2

Tpþ1ðLf ðvnÞÞTpþ2ðLf ðvnÞÞ

0
B@

1
CA � 0

So

Fpþ1ðunÞ � FpðvnÞ
thus

unþ1 � vnþ1
Table 1
Convergence’s comparison of some methods Bp.

B0 B2 B3

x0 2.1 2.1 2.1
3.608727895037079 3.58200315543224 3.9
3.977250615324702 3.99239178714579 3.9
3.999988994594171 3.99999999674939 4.0
4.0 4.0 –

Table 2
Test functions and their roots.

Test functions Root (a)

f 1 xð Þ=x2 � 5xþ 6 3.00000000000000
f 2 xð Þ = 1+ðx� 3Þex 2.947530902542285

f 3ðxÞ ¼ ðx� 2Þ2 � lnx 3.057103549994738

f 4 xð Þ=2 cosh xþ 2cosx� 6 1.85792082915019
f 5 xð Þ ¼ 0:5x3 þ 0:75x2 � 3x� 1 2.000000000000000

f 6 xð Þ ¼ x12 � 2x3 � xþ 1 0.5903344367965851

8

This end the proof of theorem 5.
The theorem 5 announces a result of high importance: under

some conditions, the convergence speed of the methods Bp
improves if the parameter p increases. Thus, since p can take high
values, then the convergence speed can always be improved with
p. As the methods of Halley and Super Halley are obtained for
p ¼ 0 and p ¼ 1, then their rate’s convergence will be lower than
the one of the other methods of our family.
5. Numerical results

Numerical computations reported here were carried out in
MATLAB R2015b and the stopping criterion was taken as
xnþ1 � xnj j � 10�15 and f ðxnÞj j � 10�15:

5.1. Numerical Comparison between some methods of new family

We consider f xð Þ ¼ x2 � 9xþ 20 on 2;4½ � and we take x0 ¼ 2:1:
The conditions of theorem 5 are satisfied for our methods
ðB0;B2;B3;B5 and B6Þ given by (11) for p ¼ 0;2;3;5 and 6. In
Table 1, we note that:

� All sequences are increasing and converge to the zero
a ¼ 4 of f ;

� The convergence speed of methods increases with the
parameter p;

� Our methods B2; B3; B5 and B6 converge more rapidly than
Halley’s method B0.

This example confirms the importance of the theorem 5.

5.2. Comparison with other methods

The tests functions used in Table 3 are given in Table 2.
We indicate the number of iterations (NI) and the number of

function evaluations (NOFE) required to meet the shutdown
criterion.

On the left side of the Table 3, we compare our methods B6 and
B11; given by (11) for p ¼ 6 and 11, with Newton’s method (N)
defined by (1) (Sharma et al. (2012)) and some cubically conver-
gent methods: Sharma (S) defined by (17)ða ¼ 0:5Þ; Jiang-Han’s
method (J) defined by (19) ða ¼ 1Þ in Sharma et al. (2012), Chun’s
method (U) defined by (23) ðan ¼ 1Þ in Chun (2007), Halley’s
method (B0) defined by (2.3) before.
B5 B6

2.1 2.1
1411497158407 3.96485646880613 3.977250615324
9999975520541 3.99999999999823 4.0

4.0 –
– –

Test functions Root (a)

f 7 xð Þ ¼ xlnx 1.000000000000000

f 8 xð Þ ¼ ex � 4x2 0.714805912362777

f 9 xð Þ ¼ ðx� 2Þ4 � 1 3.000000000000000

f 10 xð Þ ¼ 2sinx� 1 0.5235987755982989
f 11 xð Þ ¼ ex � 3x2 0.910007572488709

�0.458962267536948



Table 3
Comparison with order methods.

Comparison with third order methods Comparison with higher order methods

f x0 NI f x0 NOFE

N S U J B0 B6 B11 C W R B2 B8

f 1 5 7 4 5 5 4 2 2 f 1 5 12 21 12 9 6
f 2 2.55 6 5 5 5 4 3 3 f 2 2.55 12 15 12 9 9
f 3 2.45 6 7 5 7 4 3 3 f 3 2.6 12 18 12 9 9
f 5 1.3 4 8 8 7 4 3 3 f 4 1.4 12 18 12 9 9
f 7 0.5 6 6 5 7 4 3 3 f 6 0.26 12 12 12 9 9
f 8 0.4 6 5 5 5 4 3 3 f 7 0.58 12 18 12 9 9
f 9 2.7 6 5 5 5 4 3 3 f 8 0.4 12 12 12 9 9
f 10 1.2 5 9 5 5 4 3 3 f 9 2.72 12 12 12 9 9
f 11 0.5 6 5 6 5 4 3 3 f 11 �0.1 12 9 12 9 9
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On the right side of the same Table, we compare our methods
B2 and B8, given by (11) for p ¼ 2 and 8, with some higher order
methods: Wang and Zhang (2014) (W) defined by (19) (c = b = �
0.6), a fourth-order method; Chun and Ham (2007) (C) defined
by ((10)–(12)), a sixth-order methods; Noor et al. (2007) (R)
defined by (Algorithm 2.4), a fifth-order method.

The results obtained for our methods are similar or better than
those of other third and higher order methods, as they require the
same number of iterations/number of function evaluations or less.
These results are promising and show the efficiency and speed of
the new family.

6. Conclusion

In this paper, we constructed a new Halley’s family of third
order iterative techniques for solving nonlinear equations with
simple roots. The originality of this family lies first in the fact that
these sequences are governed by one exceptional formula depend-
ing on a natural integer parameter p, and then, in the case where
certain conditions are met, the convergence speed of its methods
improves when the value of p increases. In addition, a study on
the global convergence of the new methods has been carried out.
Finally, the performance of our methods is compared with some
methods of similar or higher order. The numerical results showed
the robustness, efficiency and speed of the proposed family’s
techniques.
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