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In the chemistry, the chemical compound’s structures are commonly shown by the graphs. In the scenar-
io, atoms are replaced with vertices or nodes and bond types with simple lines known as edges. When the
each node and edge of a graph have distinct representation or location with respect to the chosen vertices
in a subset from the graph is known as the resolving set of mixed metric dimension say Fm. This concept is
known as vertex and edge resolvability parameter. This concept is usually helps to acquired a unique
location or position of a structure or a graph. It is used to know the patterns of different drugs in the phar-
maceutical research. There are many other applications of this variant. The exact metric dimension or
resolving set of mixed metric dimension of benzenoid tripod structure is found in this research work.
We proved that, this parameter is constant for the particular structure of benzenoid tripod graph.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Understanding the chemical structures that support current
chemical ideas, establishing and exploring unique mathematical
models of chemical processes, and applying mathematical con-
cepts and techniques to chemistry are just a few of the challenges
that mathematical chemistry has lately addressed. Throughout the
history of science, some countable researchers have been per-
suaded to utilize links between both major fields in which mathe-
matics and the second most important is chemistry, as well as the
prospect of using basic operations of arithmetic to deduce estab-
lished and anticipate new chemical properties. Mathematical tech-
niques are frequently employed in a variety of fields of physical
chemistry, most notably thermodynamics and chemical energy.
After physicists demonstrated in the early 20th century that the
main properties of chemical compounds could be foresee using
the techniques of quantum theory, there was a considerable
demand for math in chemistry. The realization that chemistry can-
not be understood without understanding of quantum physics,
including its sophisticated mathematical tools, was the fundamen-
tal driving factor that brought the math and its concepts into the
laboratories of chemistry. We recommend various material for dis-
tinct studies of related to the topic of mathematical chemistry in th
form of graph theory (Yang et al., 2019; Manzoor et al., 2020;
Siddiqui et al., 2016).

To characterize the structural properties of clusters, polymers,
crystals, processes, molecules and many other materials, chemical
graph theory is used which is very deep and novel field of mathe-
matical science. The nodes or vertices of this field can be orbitals,
intermediates, group of atoms, molecule, electron and many other
items. Some forces such as Debye, Keesom, van der Waals forces
may all be used to show the relationships between a structure’s
vertices, moreover, also some non-bonded and bonded connection,
intermolecular bonding and basic reactions.

For the literature review and base case parameter of this case
study, we will start from Nadeem et al. (2020), in which authors
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made a three-dimensional hexagonal structure and proved that the
resolving set of this is constant, moreover this concept is named as
locating number and discussed some applications. Particular type
of chemical structure are also studied by this parameter, for exam-
ple a-boron nanotubes are discussed in Hussain et al. (2018), sili-
cate star structure and its metric are determined in Simonraj and
George (2015), on the cellulose network (Siddiqui and Imran,
2015). And another structure of VC5C7 nanotubes are reshaped
with this parameter are available in Imran et al. (2019). Mixed
metric generators for generalized Peterson graphs and some gener-
alize classes of rotational symmetric graphs are studied in Raza and
Ji (2020) and Raza et al. (2020). The graph generated from different
path graphs and discussed its edge and vertex resolvability in Raza
et al. (2020). The vertex and edge resolvability of polcyclic hydro-
carbons from aromatic family are found in Azeem and Nadeem
(2021).

The seminal paper of the notion of resolving sets, are avail-
able at Slater (1975), the same idea presented by Harary and
Melter (1976) with the name of locating parameter. In the pure
graph theoretical parameter (Chartrand et al., 2000; Chartrand
et al., 2000) named it as metric generator. This parameter have
distinct applications and implementations like, for determining
the patterns of variant of drugs in the field of pharmaceutical
research, the statement enclosed by Johnson (1993). Metric
resolving parameters have different variant of applications, such
as image processing, facility location problems, sonar and coast-
guard loran (Slater, 1975), combinatorial optimization (Sebö and
Tannier, 2004), computer networks (Manuel et al., 2008), weigh-
ing problems (Söderberg and Shapiro, 1963), robot navigation
(Khuller et al., 1996), for detailed and further study on this
parameter see (Perc et al., 2013; Perc and Szolnoki, 2010). The
notion of metric dimension is commonly employed to address
many complex issues due to its vast range of applications. We
refer to for resolvability parameters of various chemical struc-
tures (Hussain et al., 2018; Krishnan and Rajan, 2016; Siddiqui
and Imran, 2014).

Two edges are separated in the similar manner of vertices. For
example, instead of nodes of a graph two edges may have unique
representation or locations in terms of with respect to the chosen
vertices in a subset of a graph. Taking this reason behind (Kelenc
et al., 2018) put forward another parameter known as the edge
metric resolving set or the edge metric dimension. In which the
used the metric of a graph in terms of edges to locate every pair
of edges and it is purely depend on the selection of vertices. Later
on Kelenc et al. (Dec 2017), developed a mixed metric dimension in
which both notions (recognising vertices and edges) are combined,
with the additional restriction that no two elements (vertices and
edges) have the same distances with regard to the selected subset.
For the computational costs of all above topics we suggested to see
(Hauptmann et al., 2012; Lewis et al., 1983; Johnson, 1993;
Johnson, 1998).

Next to this, some basic definitions are provided for the basic
use of them in our main task. In the Section 2, construction of
our main structure or chemical compound is drawn for the better
understanding to readers. Also the same section included the
results of main task in terms of lemmas and remarks. In the Sec-
tion 3, conclusion is drawn and closing remarks are added. At the
end appropriate references are given related to this research work.

Given below are basic concepts and background results related
to study of this work.

Definition 1.1 Nadeem et al. (2020). ‘‘Assume C be an associated
graph of chemical structure/network, whose vertex/node set we
will denote with symbol NðCÞ or simply N, while BðCÞ or B is the
edge/bond set, the shortest distance between two bonds
2

b1; b2 2 NðCÞ denoted by Sb1 ;b2 , and calculated by counting the
number of bonds while moving through the b1 � b2 path. The
distance between an edge e ¼ b1b2 2 BðCÞ, and a node b 2 NðCÞ is
counted by the relation Se;b ¼ minfSb1 ;b; Sb2;bg.”
Definition 1.2 Deng et al. (mar 2021). ‘‘A vertex b of a connected
associated graph C of a chemical structure, differentiates nodes (b1)
and edges (e1), if Sb1 ;b – Sb;e1 . A subset Fm is a mixed resolving set if
any different pair of components of C are separated by a node of Fm.
The minimum number of nodes in mixed resolving set for C is
named the mixed metric dimension and is denoted by dimmðCÞ. It
is also known as blended version of both metric (Slater, 1975)
and edge metric dimension (Chartrand et al., 2000).”
Theorem 1.3 Kelenc et al. (Dec 2017). ‘‘If dimmðCÞ is the mixed met-
ric dimension, then dimmðCÞ ¼ 2, iff C is a path Pn.”
2. Construction of tripod structure

Benzenoid hydrocarbons are considered as very important and
natural representations of graph of benzenoid systems, because
of their prominence in theoretical chemistry (Chou et al., 2012).
According to Ali et al. (2018), it is an established theory that ben-
zenoids based hydrocarbons are vital and advantageous in the
environmental, food and chemical sectors. Various catacondensed
and pericondensed benzenoid structures were considered in
respect to polynomial types. This is a tripod made of pericon-
densed benzenoid. It has 4 h1 þ h2 þ h3ð Þ � 8 nodes and
5 h1 þ h2 þ h3ð Þ � 11 bonds, with all the running parameters
h1; h2; h3 P 2. In addition, Jamil et al. (2020) is available for com-
prehensive topological studies of benzenoid structures and in
Koam et al. (2021), some metric based study is recently came up
in the literature. The bond and node or we can say simply edge
set and vertex set for this benzenoid structure T h1; h2; h3ð Þ is shown
below.We use the labelling of edges and nodes provided in Fig. 1 in
our primary results (Ali et al., 2021).

N T h1; h2; h3ð Þð Þ ¼ fad : 1 6 d � 2h3g [ fbd : 1 6 d � 2h1g [ fcd; c0d : 1 6 d � 2h2 � 1g
[fa0d : 1 6 d � 2h3 � 3g [ fb0

d : 1 6 d � 2h1 � 3g;
B T h1; h2; h3ð Þð Þ ¼ fadadþ1 : 1 6 d � 2h3 � 1g [ fbdbdþ1 : 1 6 d � 2h1 � 1g
[fcdcdþ1 ; c0dc

0
dþ1 : 1 6 d � 2h2 � 2g [ fa0da0dþ1 : 1 6 d � 2h3 � 4g

[fb0
db

0
dþ1 : 1 6 d � 2h1 � 4g [ fada0

d : 1 6 d oddð Þ � 2h3 � 3g
[fbdþ3b

0
d : 1 6 d oddð Þ � 2h1 � 3g [ fcdc0d : 1 6 d oddð Þ � 2h2 � 1g

[fa2h3b1 ; a2h3�1c01 ; b2c1 ; a0
2h3�3c

0
2 ; b

0
1c2; g:

Lemma 2.1. If T h1; h2; h3ð Þ is a benzenoid tripod graph with any of
h1; h2; h3 ¼ 2, then the mixed metric resolving set has minimum three
members.
Proof. The order or the total amount of vertices in the benzenoid
tripod’s associated graph with any of h1; h2; h3 ¼ 2, are
4 h1 þ h2 þ h3ð Þ � 8, and to look over the likelihood of mixed metric
resolving set having three members in it, are
C 4 h1 þ h2 þ h3ð Þ � 8;3ð Þ ¼ 4 h1þh2þh3ð Þ�8ð Þ!

2� 4 h1þh2þh3ð Þ�11ð Þ!. Over here we are focus-

ing on three members in the set, from the result of Theorem 1.3
in the literature, the only two member of mixed metric resolving
set is just for the basic graph f path. Now because of its computa-
tional cost of selecting mixed metric resolving set, for a graph, we
can’t discover the precise number of mixed resolving sets, but from

4 h1þh2þh3ð Þ�8ð Þ!
2� 4 h1þh2þh3ð Þ�11ð Þ!-possibilities we selected a subset Fm and described



Fig. 1. Benzenoid Tripod with fh1; h2; h3g ¼ f3;3;4g.
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as: Fm ¼ fa1; a2h3 ; b2h1g. Proving of this claim that Fm is also a subset
having ability to be the candidate of mixed metric resolvability set
of benzenoid tripod graph or T h1; h2; h3ð Þ, we will stick to 1.2’s def-
inition. We will also look over the distinct placements or locations
of each node and edge to meet the definition’s requirements, and
the approach is explained above in Definition 1.2.

Positions p adjFmð Þ with respect to Fm, for the nodes ad with
d ¼ 1;2; . . . ;2h3, are described as:

p adjFmð Þ ¼ d� 1; 2h3 � d; 2 h3 þ h1ð Þ � dð Þ:
Positions p bdjFmð Þ with respect to Fm, for the nodes bd with

d ¼ 1;2; . . . ;2h1, are described as:

p bdjFmð Þ ¼ 2h3 þ d� 1; d; 2h1 � dð Þ:
Positions p cdjFmð Þ with respect to Fm, for the nodes cd with

d ¼ 1;2; . . . ;2h2 � 1, are described as:

p cdjFmð Þ ¼
2h3 þ d� 1; dþ 2; 2h1 � 1ð Þ; if d ¼ 1;
2h3 þ d� 1; dþ 2; 2 h1 � 2ð Þ þ dð Þ; if d ¼ 2;
2h3 þ d� 3; dþ 2; 2 h1 � 2ð Þ þ dð Þ; if d ¼ 3;4; . . . ;2h2 � 1:

8><
>:

Positions p a0djFm
� �

with respect to Fm, for the nodes a0
d with

d ¼ 1;2; . . . ;2h3 � 3, are described as:

p a0djFm
� � ¼ d; 2h3 þ 1� d; 2 h3 þ h1ð Þ � 1� dð Þ:
Positions p b0

djFm
� �

with respect to Fm, for the nodes b0
d with

d ¼ 1;2; . . . ;2h1 � 3, are described as:

p b0
djFm

� � ¼ 2h3 þ dþ 1; dþ 4; 2 h1 � 1ð Þ � dð Þ:
Positions p c0djFm

� �
with respect to Fm, for the nodes c0d with

d ¼ 1;2; . . . ;2h2 � 1, are described as:

p c0djFm
� � ¼

2h3 � 1; dþ 1; 2h1 � 1þ dð Þ; if d ¼ 1;
2 h3 � 2ð Þ þ d; dþ 1; 2h1 � 1þ dð Þ; if d ¼ 2;
2 h3 � 2ð Þ þ d; dþ 1; 2h1 � 3þ dð Þ; if d ¼ 3;4; . . . ;2h2 � 1:

8><
>:

Given above are the positions of nodes only, with respect to the
chosen vertices in Fm, for the fulfillment of definition of mixed
resolving set we still need to investigates the edges or bonds of
graph. Following are positions of bonds that will complete the
definition.
3

Positions p adadþ1jFmð Þ with regard to Fm, for the bonds adadþ1

with d ¼ 1;2; . . . ;2h3 � 1, are described as:

p adadþ1jFmð Þ ¼ d� 1; 2h3 � 1� d; 2 h3 þ h1ð Þ � 1� dð Þ; if d ¼ 1;2; . . . ;2h3 � 2;
d� 1; 2h3 � 1� d; 2h3ð Þ; if d ¼ 2h3 � 1:

�

Positions p bdbdþ1jFmð Þ with regard to Fm, for the bonds bdbdþ1

with d ¼ 1;2; . . . ;2h1 � 1, are described as:

p bdbdþ1jFmð Þ ¼ 2h3 þ d� 1; d; 2h1 � 1� dð Þ:
Positions p cdcdþ1jFmð Þ with regard to Fm, for the bonds cdcdþ1

with d ¼ 1;2; . . . ;2h2 � 2, are described as:

p cdcdþ1jFmð Þ ¼
2h3; dþ 2; 2h1 � 2ð Þ; if d ¼ 1;
2h3; dþ 2; 2 h1 � 2ð Þ þ dð Þ; if d ¼ 2;
2h3 þ d� 3; dþ 2; 2 h1 � 2ð Þ þ dð Þ; if d ¼ 3;4; . . . ;2h2 � 1:

8><
>:

Positions p a0da
0
dþ1jFm

� �
with regard to Fm, for the bonds a0da

0
dþ1

with d ¼ 1;2; . . . ;2h3 � 4, are described as:

p a0da
0
dþ1jFm

� � ¼ d; 2h3 � d; 2 h3 þ h1 � 1ð Þ � dð Þ:
Positions p b0

db
0
dþ1jFm

� �
with regard to Fm, for the bonds b0

db
0
dþ1

with d ¼ 1;2; . . . ;2h1 � 4, are described as:

p b0
db

0
dþ1jFm

� � ¼ 2h3 þ dþ 1; dþ 4; 2h1 � 3� dð Þ:
Positions p c0dc

0
dþ1jFm

� �
with regard to Fm, for the bonds c0dc

0
dþ1

with d ¼ 1;2; . . . ;2h2 � 2, are described as:

p c0dc
0
dþ1jFm

� � ¼
2 h3 � 1ð Þ; dþ 1; 2h1ð Þ; if d ¼ 1;
2 h3 � 1ð Þ; dþ 1; 2h1ð Þ; if d ¼ 2;
2 h3 � 2ð Þ þ d; dþ 1; 2h1 � 3þ dð Þ; if d ¼ 3;4; . . . ;2h2 � 1:

8><
>:

Positions p ada0
djFm

� �
with regard to Fm, for the bonds ada0

d with
d ¼ 1;3; . . . ;2h3 � 3, are described as:

p ada0djFm
� � ¼ d� 1; 2h3 � d; 2 h3 þ h1ð Þ � 1� dð Þ:
Positions p bdþ3b

0
djFm

� �
with regard to Fm, for the bonds bdþ3b

0
d

with d ¼ 1;3; . . . ;2h1 � 3, are described as:

p bdþ3b
0
djFm

� � ¼ 2h3 þ dþ 1; dþ 3; 2h1 � 3� dð Þ:
Positions p cda0djFm

� �
with regard to Fm, for the bonds cdc0d with

d ¼ 1;3; . . . ;2h2 � 3, are described as:
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p cdc0djFm
� � ¼ 2h3 � 1; dþ 1; 2h1 � 1ð Þ; if d ¼ 1;

2 h3 � 2ð Þ þ d; dþ 1; 2 h1 � 2ð Þ þ dð Þ; if d ¼ 2;3; . . . ;2h2 � 1:

�

Positions of the joint edges are described as:
p a2h3b1jFm
� � ¼ 2h3 � 1; 0; 2h1 � 1ð Þ;

p a2h3c
0
1jFm

� � ¼ 2h3 � 2; 1; 2h1ð Þ;
p b2c1jFmð Þ ¼ 2h3; 2; 2h1 � 2ð Þ;

p a0
2h3�3c

0
2jFm

� �
¼ 2h3 � 3; 3; 2h1 þ 1ð Þ;

p b0
1c2jFm

� � ¼ 2h3 þ 1; 4; 2h1 � 3ð Þ:
By the given positions p :jFmð Þ of all 4 h1 þ h2 þ h3ð Þ � 8-nodes

and 5 h1 þ h2 þ h3ð Þ � 11-edges of T h1; h2; h3ð Þ graph of benzenoid
tripod with any of h1; h2; h3 ¼ 2, with respect to Fm, are unique
and no two nodes, no two edges and not a single edge with a vertex
have same position p. As a result, we may infer that the nodes and
edges of the T h1; h2; h3ð Þ graph have been resolved with only three
nodes. So it is concluded that the members with minimality condi-
tions of mixed metric resolving set of T h1; h2; h3ð Þ are three. h
Remark 1. If T h1; h2; h3ð Þ is a of benzenoid tripod graph with any of
h1; h2; h3 ¼ 2, then
dimm T h1; h2; h3ð Þð Þ ¼ 3:
Proof. As based on the definition of mixed metric dimension, the
concept is solemnly based on the selected subset (Fm) chooses in
a manner that each edge and vertex have distinct location in
regards to the chosen vertices in subset. The Lemma 2.1 shows
and proved the chosen subset for the mixed metric resolving set
and their hardness to be chosen with the condition of minimality.
We proved in that lemma the subset Fm ¼ fa1; a2h3 ; b2h1g is one of
the candidate for the mixed metric resolving set for a particular
benzenoid tripod or T h1; h2; h3ð Þ graph for all the possible combina-
torial values of with any of h1; h2; h3 ¼ 2. Moreover, we discussed in
the same lemma that Fmj j ¼ 3 is fulfilling the minimality condi-
tions on their members. It is impossible to get a subset with two
members in a selected subset. It is sufficient to verify what we
assert in the assertion that the mixed metric dimension of the ben-
zenoid tripod is three, which concludes the proof. h
Lemma 2.2. If T h1; h2; h3ð Þ is a benzenoid tripod graph with
h1; h2; h3 P 3, then the mixed metric resolving set has minimum four
members.
Proof. The order or the total amount of vertices in the benzenoid
tripod’s associated graph with any of h1; h2; h3 P 3, are
4 h1 þ h2 þ h3ð Þ � 8, and to look over the likelihood of mixed metric
resolvability set having four members in it, are
C 4 h1 þ h2 þ h3ð Þ � 8;4ð Þ ¼ 4 h1þh2þh3ð Þ�8ð Þ!

2� 4 h1þh2þh3ð Þ�12ð Þ!. Over here we are focus-

ing on four members in the set, for the three cardinality of mixed
resolving set we will discuss in next part of this proof. Now
because of its computational cost of selecting mixed metric resolv-
ing set, for a graph, we can’t discover the precise number of mixed
resolving sets, but from 4 h1þh2þh3ð Þ�8ð Þ!

2� 4 h1þh2þh3ð Þ�12ð Þ!-possibilities we selected

the subset Fm and described as: Fm ¼ fa1; a2h3 ; b2h1 ; c2h2�1g. Proving
of this claim that Fm is also a subset having ability to be the candi-
date of mixed metric resolving set of benzenoid tripod graph or
T h1; h2; h3ð Þ, we will stick to 1.2’s definition. We will also look over
the distinct placements or locations of each node and edge to meet
the definition’s requirements, and the approach is explained above
in Definition 1.2.
4

Positions p adjFmð Þ with respect to Fm, for the nodes ad with
d ¼ 1;2; . . . ;2h3, are described as:

p adjFmð Þ¼

d�1; 2h3�d; 2 h3þh1ð Þ�d; 2 h3þh2ð Þ�3�dð Þ; if d¼1;2;...;2h3�3;
d�1; 2h3�d; 2 h3þh1ð Þ�d; 2h2þ1ð Þ; if d¼2h3�2;
d�1; 2h3�d; 2 h3þh1ð Þ�d; 2h2ð Þ; if d¼2h3�1;
d�1; 2h3�d; 2 h3þh1ð Þ�d; 2h2þ1ð Þ; if d¼2h3:

8>>><
>>>:

Positions p bdjFmð Þ with respect to Fm, for the nodes bd with
d ¼ 1;2; . . . ;2h1, are described as:

p bdjFmð Þ ¼
2h3 þ d� 1; d; 2h1 � d; 2h2 þ 1� dð Þ; if d ¼ 1;2;
2h3 þ d� 1; d; 2h1 � d; 2h2ð Þ; if d ¼ 3;
2h3 þ d� 1; d; 2h1 � d; 2h2 � 5þ dð Þ; if d ¼ 4;5; . . . ;2h1:

8><
>:

Positions p cdjFmð Þ with respect to Fm, for the nodes cd with
d ¼ 1;2; . . . ;2h2 � 1, are described as:

p cdjFmð Þ ¼
2h3 þ d� 1; dþ 2; 2h1 � 1; 2h2 � d� 1ð Þ; if d ¼ 1;
2h3 þ d� 1; dþ 2; 2 h1 � 2ð Þ þ d; 2h2 � d� 1ð Þ; if d ¼ 2;
2h3 þ d� 3; dþ 2; 2 h1 � 2ð Þ þ d; 2h2 � d� 1ð Þ; if d ¼ 3;4; . . . ;2h2 � 1:

8><
>:

Positions p a0
djFm

� �
with respect to Fm, for the nodes a0d with

d ¼ 1;2; . . . ;2h3 � 3, are described as:

p a0djFm
� � ¼ d; 2h3 þ 1� d; 2 h3 þ h1ð Þ � 1� d; 2 h3 þ h1 � 2ð Þ � dð Þ:

Positions p b0
djFm

� �
with respect to Fm, for the nodes b0

d with
d ¼ 1;2; . . . ;2h1 � 3, are described as:

p b0
djFm

� � ¼ 2h3 þ dþ 1; dþ 4; 2 h1 � 1ð Þ � d; 2h2 � 3þ dð Þ:
Positions p c0djFm

� �
with respect to Fm, for the nodes c0d with

d ¼ 1;2; . . . ;2h2 � 1, are described as:

p c0djFm
� � ¼

2h3 � 1; dþ 1; 2h1 � 1þ d; 2h2 � dð Þ; if d ¼ 1;
2 h3 � 2ð Þ þ d; dþ 1; 2h1 � 1þ d; 2h2 � dð Þ; if d ¼ 2;
2 h3 � 2ð Þ þ d; dþ 1; 2h1 � 3þ d; 2h2 � dð Þ; if d ¼ 3;4; . . . ;2h2 � 1:

8><
>:

Given above are the positions of nodes only, with respect to the
chosen vertices in Fm, for the fulfillment of definition of mixed
resolving set we still need to investigates the edges or bonds of
graph. Following are positions of bonds that will complete the
definition.

Positions p adadþ1jFmð Þ with respect to Fm, for the bonds adadþ1

with d ¼ 1;2; . . . ;2h3 � 1, are described as:

p adadþ1jFmð Þ ¼

d� 1; 2h3 � 1� d; 2 h3 þ h1ð Þ � 1� d; 2 h3 þ h2 � 2ð Þ � dð Þ;
if d ¼ 1;2; . . . ;2h3 � 4;
d� 1; 2h3 � 1� d; 2 h3 þ h1ð Þ � 1� d; 2h2ð Þ;
if d ¼ 2h3 � 3;2h3 � 2;
d� 1; 2h3 � 1� d; 2h3; 2h2ð Þ;
if d ¼ 2h3 � 1:

8>>>>>>>><
>>>>>>>>:

Positions p bdbdþ1jFmð Þ in regards to Fm, for the bonds bdbdþ1 with
d ¼ 1;2; . . . ;2h1 � 1, are described as:

p bdbdþ1 jFmð Þ ¼ 2h3 þ d� 1; d; 2h1 � 1� d; 2h2 � 1ð Þ; if d ¼ 1;2;3;
2h3 þ d� 1; d; 2h1 � 1� d; 2h2 � 5þ dð Þ; if d ¼ 4;5; . . . ;2h1 � 1:

�

Positions p cdcdþ1jFmð Þ in regards to Fm, for the bonds cdcdþ1 with
d ¼ 1;2; . . . ;2h2 � 2, are described as:

p cdcdþ1jFmð Þ¼
2h3 ; dþ2; 2h1�2; 2h2�2�dð Þ; if d¼1;
2h3 ; dþ2; 2 h1�2ð Þþd; 2h2�2�dð Þ; if d¼2;
2h3þd�3; dþ2; 2 h1�2ð Þþd; 2h2�2�dð Þ; if d¼3;4;...;2h2�1:

8><
>:

Positions p a0
da

0
dþ1jFm

� �
in regards to Fm, for the bonds a0

da
0
dþ1 with

d ¼ 1;2; . . . ;2h3 � 4, are described as:

p a0da
0
dþ1jFm

� � ¼ d; 2h3 � d; 2 h3 þ h1 � 1ð Þ � d; 2 h3 þ h1ð Þ � 5� dð Þ:

Positions p b0
db

0
dþ1jFm

� �
in regards to Fm, for the bonds b0

db
0
dþ1 with

d ¼ 1;2; . . . ;2h1 � 4, are described as:
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p b0
db

0
dþ1jFm

� � ¼ 2h3 þ dþ 1; dþ 4; 2h1 � 3� d; 2h2 � 3þ dð Þ:
Positions p c0dc

0
dþ1jFm

� �
in regards to Fm, for the bonds c0dc

0
dþ1 with

d ¼ 1;2; . . . ;2h2 � 2, are described as:

p c0dc
0
dþ1 jFm

� �¼
2 h3�1ð Þ; dþ1; 2h1 ; 2h2�3þdð Þ; if d¼1;
2 h3�1ð Þ; dþ1; 2h1 ; 2h2�3þdð Þ; if d¼2;
2 h3�2ð Þþd; dþ1; 2h1�3þd; 2h2�3þdð Þ; if d¼3;4;...;2h2�1:

8><
>:

Positions p ada0djFm
� �

in regards to Fm, for the bonds ada0d with
d ¼ 1;3; . . . ;2h3 � 3, are described as:

p ada0djFm
� �¼ d�1; 2h3�d; 2 h3þh1ð Þ�1�d; 2 h3þh2�2ð Þ�dð Þ:
Positions p bdþ3b

0
djFm

� �
in regards to Fm, for the bonds bdþ3b

0
d with

d ¼ 1;3; . . . ;2h1 � 3, are described as:

p bdþ3b
0
djFm

� � ¼ 2h3 þ dþ 1; dþ 3; 2h1 � 3� d; 2h2 � 3þ dð Þ:
Positions p cda0djFm

� �
in regards to Fm, for the bonds cdc0d with

d ¼ 1;3; . . . ;2h2 � 3, are described as:

p cdc0d jFm
� �¼ 2h3�1; dþ1; 2h1�1; 2h2�1�dð Þ; if d¼1;

2 h3�2ð Þþd; dþ1; 2 h1�2ð Þþd; 2h2�1�dð Þ; if d¼2;3;...;2h2�1:

�

Positions of the joint bonds are described as:

p a2h3b1jFm
� � ¼ 2h3 � 1; 0; 2h1 � 1; 2h2ð Þ;
p a2h3c

0
1jFm

� � ¼ 2h3 � 2; 1; 2h1; 2h2 � 1ð Þ;
p b2c1jFmð Þ ¼ 2h3; 2; 2h1 � 2; 2h2 � 2ð Þ;

p a0
2h3�3c

0
2jFm

� �
¼ 2h3 � 3; 3; 2h1 þ 1; 2h2 � 2ð Þ;

p b0
1c2jFm

� � ¼ 2h3 þ 1; 4; 2h1 � 3; 2h2 � 3ð Þ:
In support of a particular fact in order to meet the definition’s

requirements of mixed metric resolving set, we can say that Fm

having four members in it is achievable, however when we discuss
the optimized value of Fmj j, we still have to look at the least num-
ber for Fmj j. The given bellow are some scenarios to consider while
determining whether Fmj j ¼ 3 is achievable or not. Though we have
found the set of mixed metric resolvability by doing with the help
of algorithm and satisfied that Fmj j– 3, but for the proving purpose
we build some general cases and try to conclude that only Fmj j > 3
is possible.

Case1: Assume that F 0m � fad : d ¼ 1;2; . . . ;2h3g, considering
the constraint that, according to the demand of our theorem
jF 0mj ¼ 3. In the same vertex’s position and/or edge’s position, the
outcome is inferred and our supposition is contradicted by the fact
that p ararþ1jF 0m

� � ¼ p asa0sjF 0m
� �

, where 1 6 r � 2h3 � 1 and
1 6 s oddð Þ � 2h3 � 3. In the vertex’s position the similarities are
in p aujF 0m

� � ¼ p c0v jF 0m
� �

, where 1 6 u � 2h3 and 1 6 v � 2h2 � 1.
Case2: Assume that F 0m � fbd : d ¼ 1;2; . . . ;2h1g, considering

the constraint that, according to the demand of our theorem
jF 0mj ¼ 3. In the same vertex’s position and/or edge’s position, the
outcome is inferred and our supposition is contradicted by the fact
that p ararþ1jF 0m

� � ¼ p a0sa
0
sþ1jF 0m

� �
, where 1 6 r � 2h3 � 1 and

1 6 s � 2h3 � 4. In the vertex’s position the similarities are in
p aujF 0m
� � ¼ p a0v jF 0m

� �
, where 1 6 u � 2h3 and 1 6 v � 2h3 � 3.

Case3: Assume that F 0m � fcd : d ¼ 1;2; . . . ;2h2 � 1g, consider-
ing the constraint that, according to the demand of our theorem
jF 0mj ¼ 3. In the same vertex’s position and/or edge’s position, the
outcome is inferred and our supposition is contradicted by the fact
that p brþ3b

0
r jF 0m

� � ¼ p asasþ1jF 0m
� �

, where 1 6 r oddð Þ � 2h1 � 3 and
1 6 s � 2h3 � 1. In the vertex’s position the similarities are in
p aujF 0m
� � ¼ p b0v jF 0m

� �
, where 1 6 u � 2h3 and 1 6 v � 2h1.

Case4: Assume that F 0m � fad0 : d ¼ 1;2; . . . ;2h3 � 3g, consider-
ing the constraint that, according to the demand of our theorem
jF 0mj ¼ 3. In the same vertex’s position and/or edge’s position, the
outcome is inferred and our supposition is contradicted by the fact
5

that p ararþ1jF 0m
� � ¼ p csc0sjF 0m

� �
, where 1 6 r � 2h3 � 1 and

1 6 s oddð Þ � 2h2 � 1. In the vertex’s position the similarities are
in p aujF 0m

� � ¼ p c0v jF 0m
� �

, where 1 6 u � 2h3 and 1 6 v � 2h2 � 1.
Case5: Assume that F 0m � fbd0 : d ¼ 1;2; . . . ;2h1 � 3g, consider-

ing the constraint that, according to the demand of our theorem
jF 0mj ¼ 3. In the same vertex’s position and/or edge’s position, the
outcome is inferred and our supposition is contradicted by the fact
that p ararþ1jF 0m

� � ¼ p a0sa
0
sþ1jF 0m

� �
, where 1 6 r � 2h3 � 1 and

1 6 s � 2h3 � 4. In the vertex’s position the similarities are in
p aujF 0m
� � ¼ p c0v jF 0m

� �
, where 1 6 u � 2h3 and 1 6 v � 2h2 � 1.

Case6: Assume that F 0m � fcd0 : d ¼ 1;2; . . . ;2h2 � 1g, consider-
ing the constraint that, according to the demand of our theorem
jF 0mj ¼ 3. In the same vertex’s position and/or edge’s position, the
outcome is inferred and our supposition is contradicted by the fact
that p ararþ1jF 0m

� � ¼ p asasþ1jF 0m
� �

, where 1 6 r; s � 2h3 � 1. In the
vertex’s position the similarities are in p aujF 0m

� � ¼ p bv jF 0m
� �

, where
1 6 u � 2h3 and 1 6 v � 2h1.

Case7: Assume that F 0m � fad; bj : d ¼ 1;2; . . . ;2h3;
j ¼ 1;2; . . . ;2h1g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p brbrþ1jF 0m

� � ¼ p b0sb
0
sþ1jF 0m

� �
, where

1 6 r � 2h1 � 1 and 1 6 s � 2h1 � 4. In the vertex’s position the
similarities are in p aujF 0m

� � ¼ p c0v jF 0m
� �

, where 1 6 u � 2h3 and
1 6 v � 2h2 � 1.

Case8: Assume that F 0m � fad; cj : d ¼ 1;2; . . . ;2h3; j ¼ 1;2; . . . ;
2h2 � 1g, considering the constraint that, according to the demand
of our theorem jF 0mj ¼ 3. In the same vertex’s position and/or edge’s
position, the outcome is inferred and our supposition is contra-
dicted by the fact that p brþ3b

0
r jF 0m

� � ¼ p b0sb
0
sþ1jF 0m

� �
, where

1 6 r oddð Þ � 2h1 � 3 and 1 6 s � 2h1 � 4. In the vertex’s position
the similarities are in p aujF 0m

� � ¼ p c0v jF 0m
� �

, where 1 6 u � 2h3 and
1 6 v � 2h2 � 1.

Case9: Assume that F 0m � fad; a0j : d ¼ 1;2; . . . ;2h3; j ¼ 1;2; . . . ;

2h3 � 3g, considering the constraint that, according to the demand
of our theorem jF 0mj ¼ 3. In the same vertex’s position and/or edge’s
position, the outcome is inferred and our supposition is contra-
dicted by the fact that p brbrþ1jF 0m

� � ¼ p bsþ3jb0rF 0m
� �

, where
1 6 r � 2h1 � 1 and 1 6 s oddð Þ � 2h1 � 3. In the vertex’s position
the similarities are in p bujF 0m

� � ¼ p b0v jF 0m
� �

, where 1 6 u � 2h1 � 1
and 1 6 v � 2h1 � 3.

Case10: Assume that F 0m � fad; b0j : d ¼ 1;2; . . . ;2h3; j ¼ 1;
2; . . . ;2h1 � 3g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p ararþ1jF 0m

� � ¼ p asa0sjF 0m
� �

, where
1 6 r � 2h3 � 1 and 1 6 s oddð Þ � 2h3 � 3. In the vertex’s position
the similarities are in p aujF 0m

� � ¼ p a0v jF 0m
� �

, where 1 6 u � 2h3 and
1 6 v � 2h3 � 3.

Case11: Assume that F 0m � fad; c0j : d ¼ 1;2; . . . ;2h3; j ¼ 1;

2; . . . ;2h2 � 1g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p brbrþ1jF 0m

� � ¼ p b0sb
0
sþ1jF 0m

� �
, where

1 6 r � 2h1 � 1 and 1 6 s � 2h1 � 4. In the vertex’s position the
similarities are in p bujF 0m

� � ¼ p b0v jF 0m
� �

, where 1 6 u � 2h1 and
1 6 v � 2h1 � 3.

Case12: Assume that F 0m � fbd; cj : d ¼ 1;2; . . . ;2h1; j ¼ 1;
2; . . . ;2h2 � 1g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
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contradicted by the fact that p ararþ1jF 0m
� � ¼ p asa0sjF 0m

� �
, where

1 6 r � 2h3 � 1 and 1 6 s oddð Þ � 2h3 � 3. In the vertex’s position
the similarities are in p a0ujF 0m

� � ¼ p b0v jF 0m
� �

, where 1 6 u � 2h3 � 3
and 1 6 v � 2h1 � 3.

Case13: Assume that F 0m � fbd; a0j : d ¼ 1; 2; . . . ;2h1; j ¼ 1;

2; . . . ;2h3 � 3g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p ararþ1jF 0m

� � ¼ p asa0sjF 0m
� �

, where
1 6 r � 2h3 � 1 and 1 6 s oddð Þ � 2h3 � 3. In the vertex’s position
the similarities are in p a0ujF 0m

� � ¼ p c0v jF 0m
� �

, where 1 6 u � 2h3 � 3
and 1 6 v � 2h2 � 1.

Case14: Assume that F 0m � fbd; b0j : d ¼ 1;2; . . . ;2h1; j ¼ 1;
2; . . . ;2h3 � 3g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p ararþ1jF 0m

� � ¼ p asa0sjF 0m
� �

, where
1 6 r � 2h3 � 1 and 1 6 s oddð Þ � 2h3 � 3. In the vertex’s position
the similarities are in p bujF 0m

� � ¼ p b0v jF 0m
� �

, where 1 6 u � 2h1 and
1 6 v � 2h1 � 3.

Case15: Assume that F 0m � fbd; c0j : d ¼ 1;2; . . . ;2h1; j ¼ 1;

2; . . . ;2h2 � 1g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p ararþ1jF 0m

� � ¼ p a0sa
0
sþ1jF 0m

� �
, where

1 6 r � 2h3 � 1 and 1 6 s � 2h3 � 4. In the vertex’s position the
similarities are in p cujF 0m

� � ¼ p c0v jF 0m
� �

, where 1 6 u;v � 2h2 � 1.
Case16: Assume that F 0m � fcd; a0j : d ¼ 1;2; . . . ;2h2 � 1; j ¼ 1;

2; . . . ;2h3 � 3g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p brbrþ1jF 0m

� � ¼ p b0sb
0
sþ1jF 0m

� �
, where

1 6 r � 2h1 � 1 and 1 6 s � 2h1 � 4. In the vertex’s position the
similarities are in p bujF 0m

� � ¼ p bv jF 0m
� �

, where 1 6 u;v � 2h1.

Case17: Assume that F 0m � fcd; b0j : d ¼ 1;2; . . . ;2h2 � 1; j ¼ 1;
2; . . . ;2h1 � 3g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p ararþ1jF 0m

� � ¼ p a0sa
0
sþ1jF 0m

� �
, where

1 6 r � 2h3 � 1 and 1 6 s � 2h3 � 4. In the vertex’s position the
similarities are in p aujF 0m

� � ¼ p a0v jF 0m
� �

, where 1 6 u � 2h3 and
1 6 v � 2h3 � 3.

Case18: Assume that F 0m � fcd; c0j : d; j ¼ 1;2; . . . ;2h2 � 1g, con-
sidering the constraint that, according to the demand of our
theorem jF 0mj ¼ 3. In the same vertex’s position and/or edge’s
position, the outcome is inferred and our supposition is contra-
dicted by the fact that p brbrþ1jF 0m

� � ¼ p bsbsþ1jF 0m
� �

, where
1 6 r; s � 2h1 � 1. In the vertex’s position the similarities are in
p bujF 0m
� � ¼ p b0v jF 0m

� �
, where 1 6 u � 2h1 and 1 6 v � 2h1 � 3.

Case19: Assume that F 0m � fa0d; b0j : d ¼ 1;2; . . . ;2h3 � 3; j ¼ 1;
2; . . . ;2h1 � 3g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p brbrþ1jF 0m

� � ¼ p b0sb
0
sþ1jF 0m

� �
, where

1 6 r � 2h1 � 1;1 6 s � 2h1 � 4. In the vertex’s position the
similarities are in p aujF 0m

� � ¼ p a0v jF 0m
� �

, where 1 6 u � 2h3 and
1 6 v � 2h3 � 3.

Case20: Assume that F 0m � fa0d; c0j : d ¼ 1;2; . . . ;2h3 � 3; j ¼ 1;

2; . . . ;2h2 � 1g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
6

or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p brbrþ1jF 0m

� � ¼ p b0sb
0
sþ1jF 0m

� �
, where

1 6 r � 2h1 � 1;1 6 s � 2h1 � 4. In the vertex’s position the simi-
larities are in p bujF 0m

� � ¼ p bv jF 0m
� �

, where 1 6 u;v � 2h1.

Case21: Assume that F 0m � fb0d; c0j : d ¼ 1;2; . . . ;2h1 � 3; j ¼ 1;

2; . . . ;2h2 � 1g, considering the constraint that, according to the
demand of our theorem jF 0mj ¼ 3. In the same vertex’s position and/
or edge’s position, the outcome is inferred and our supposition is
contradicted by the fact that p ararþ1jF 0m

� � ¼ p a0sa
0
sþ1jF 0m

� �
, where

1 6 r; s � 2h1. In the vertex’s position the similarities are in
p cujF 0m
� � ¼ p c0v jF 0m

� �
, where 1 6 u;v � 2h2 � 1.

By the given positions p :jFmð Þ of all 4 h1 þ h2 þ h3ð Þ � 8-nodes
and 5 h1 þ h2 þ h3ð Þ � 11-edges of T h1; h2; h3ð Þ graph of benzenoid
tripod with h1; h2; h3 P 3, in regards to Fm, are unique and no two
nodes, no two edges and not a single edge with a vertex have same
position p. As a result, we may infer that the nodes and edges of
T h1; h2; h3ð Þ have been resolved with four vertices. We also checked
that the mixed resolving set Fm with Fmj j ¼ 3 are resulted in with
either two edges, two vertices or a single edge with a vertex have
same position p.As a result, we may infer that the nodes and edges
of T h1; h2; h3ð Þ with four vertices. It is finalized that the subset of
mixed metric resolvability has minimal members and the graph
T h1; h2; h3ð Þ has cardinal mixed metric dimension. h
Remark 2. If T h1; h2; h3ð Þ is a benzenoid tripod graph with
h1; h2; h3 P 3, then

dimm T h1; h2; h3ð Þð Þ ¼ 4:
Proof. As based on the definition of mixed metric dimension, the
concept is solemnly based on the selected subset (Fm) chooses in
a manner that each edge and vertex have distinct location in
regards to the chosen vertices in subset. The Lemma 2.2 shows
and proved the chosen subset for the mixed metric resolving set
and their hardness to be chosen with the condition of minimality.
We proved in that lemma the subset Fm ¼ fa1; a2h3 ; b2h1 ; c2h2�1g is
one of the candidate for the mixed metric resolving set for a partic-
ular benzenoid tripod or T h1; h2; h3ð Þ graph for all the possible com-
binatorial values of with any of h1; h2; h3 P 3. Moreover, we
discussed in the same lemma that Fmj j ¼ 4 is fulfilling the minimal-
ity conditions on their members. It is impossible to get a subset
with three members in a selected subset. It is sufficient to verify
what we assert in the assertion that the mixed metric dimension
of the benzenoid tripod is three, which concludes the proof. h
3. Conclusion

The study of intricate chemical networks and structures in their
most fundamental forms has become easier thanks to only the field
of mathematical chemistry, particularly graph theoretical chem-
istry. Resolvability is a parameter that controls how the whole
node and edge set reconfigures itself into distinct ensembles to
called or accessed them. A parameter having this feature is called
as the mixed metric dimension, which transforms each node and
edge of a structure into a unique shape. In this paper, we look at
the benzenoid tripod structure in order to find the smallest edge
and node combined resolving set. For this structure, we deter-
mined that the node and edge combined resolving set has a con-
stant and precise number of members. In the scope of future
work, this work can be done for any regular polygons instead of
hexagons. This direction will be quite interesting and this help
for readers.
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